Efficiency of Neat and Quaternized-Cellulose Nanofibril Fillers in Chitosan Membranes for Direct Ethanol Fuel Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. CNF Quaternization
2.3. Characterization of CNF
2.4. Membrane Preparation
2.5. Membrane Characterization
2.6. Cell Performance Test
3. Results and Discussion
3.1. CNF Quaternization
3.2. Characterization of CS Membranes: Effect of Fillers on Membrane Properties
3.3. Thermal Stability of the Membranes
3.4. Mechanical Properties, Swelling Ratio, Alkaline Uptake, Ethanol Permeability, IEC and Ion Conductivity of the CS Composite Membranes
3.5. Direct Ethanol Alkaline Fuel Cell (DEAFCs) Performance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, T. Ion exchange membranes: State of their development and perspective. J. Memb. Sci. 2005, 263, 1–29. [Google Scholar] [CrossRef]
- Cermenek, B.; Ranninger, J.; Hacker, V. Alkaline Direct Ethanol Fuel Cell; Elsevier Inc.: Amsterdam, The Netherlands, 2018; Volume 1904, ISBN 9780128114582. [Google Scholar]
- Zhao, T.S.; Li, Y.S.; Shen, S.Y. Anion-exchange membrane direct ethanol fuel cells: Status and perspective. Front. Energy Power Eng. China 2010, 4, 443–458. [Google Scholar] [CrossRef]
- Couture, G.; Alaaeddine, A.; Boschet, F.; Ameduri, B. Polymeric materials as anion-exchange membranes for alkaline fuel cells. Prog. Polym. Sci. 2011, 36, 1521–1557. [Google Scholar] [CrossRef]
- Choudhury, R.R.; Gohil, J.M.; Dutta, K. Poly(vinyl alcohol)-based membranes for fuel cell and water treatment applications: A review on recent advancements. Polym. Adv. Technol. 2021, 32, 4175–4203. [Google Scholar] [CrossRef]
- Oroujzadeh, M.; Etesami, M.; Mehdipour-Ataei, S. Poly(ether ketone) composite membranes by electrospinning for fuel cell applications. J. Power Sources 2019, 434, 226733. [Google Scholar] [CrossRef]
- Son, T.Y.; Kim, D.J.; Vijayakumar, V.; Kim, K.; Kim, D.S.; Nam, S.Y. Anion exchange membrane using poly(ether ether ketone) containing imidazolium for anion exchange membrane fuel cell (AEMFC). J. Ind. Eng. Chem. 2020, 89, 175–182. [Google Scholar] [CrossRef]
- Elakkiya, S.; Arthanareeswaran, G.; Venkatesh, K.; Kweon, J. Enhancement of fuel cell properties in polyethersulfone and sulfonated poly (ether ether ketone) membranes using metal oxide nanoparticles for proton exchange membrane fuel cell. Int. J. Hydrogen Energy 2018, 43, 21750–21759. [Google Scholar] [CrossRef]
- Pal, S.; Mondal, R.; Chatterjee, U. Sulfonated polyvinylidene fluoride and functional copolymer based blend proton exchange membrane for fuel cell application and studies on methanol crossover. Renew. Energy 2021, 170, 974–984. [Google Scholar] [CrossRef]
- Lee, C.; Na, H.; Jeon, Y.; Jung Hwang, H.; Kim, H.J.; Mochida, I.; Yoon, S.H.; Park, J.I.; Shul, Y.G. Poly(ether imide) nanofibrous web composite membrane with SiO2/heteropolyacid ionomer for durable and high-temperature polymer electrolyte membrane (PEM) fuel cells. J. Ind. Eng. Chem. 2019, 74, 7–13. [Google Scholar] [CrossRef]
- Gorgieva, S.; Kokol, V. Preparation, characterization, and in vitro enzymatic degradation of chitosan-gelatine hydrogel scaffolds as potential biomaterials. J. Biomed. Mater. Res. Part A 2012, 100, 1655–1667. [Google Scholar] [CrossRef]
- Muhmed, S.A.; Nor, N.A.M.; Jaafar, J.; Ismail, A.F.; Othman, M.H.D.; Rahman, M.A.; Aziz, F.; Yusof, N. Emerging chitosan and cellulose green materials for ion exchange membrane fuel cell: A review. Energy Ecol. Environ. 2019, 5, 85–107. [Google Scholar] [CrossRef]
- Zhou, T.; He, X.; Lu, Z. Studies on a novel anion-exchange membrane based on chitosan and ionized organic compounds with multiwalled carbon nanotubes for alkaline fuel cells. J. Appl. Polym. Sci. 2018, 135, 46323. [Google Scholar] [CrossRef]
- Wang, L.; Shi, B. Hydroxide Conduction Enhancement of Chitosan Membranes by Functionalized MXene. Materials 2018, 11, 2335. [Google Scholar] [CrossRef] [PubMed]
- Gorgieva, S.; Osmić, A.; Hribernik, S.; Božič, M.; Svete, J.; Hacker, V.; Wolf, S.; Genorio, B. Efficient chitosan/nitrogen-doped reduced graphene oxide composite membranes for direct alkaline ethanol fuel cells. Int. J. Mol. Sci. 2021, 22, 1740. [Google Scholar] [CrossRef]
- Cheng, X.; Wang, J.; Liao, Y.; Li, C.; Wei, Z. Enhanced Conductivity of Anion-Exchange Membrane by Incorporation of Quaternized Cellulose Nanocrystal. ACS Appl. Mater. Interfaces 2018, 10, 23774–23782. [Google Scholar] [CrossRef] [PubMed]
- Hren, M.; Hribernik, S.; Gorgieva, S.; Motealleh, A.; Eqtesadi, S.; Wendellbo, R.; Lue, S.J.; Božič, M. Chitosan-Mg(OH)2 based composite membrane containing nitrogen doped GO for direct ethanol fuel cell. Cellulose 2021, 28, 1599–1616. [Google Scholar] [CrossRef]
- Kaker, B.; Hribernik, S.; Mohan, T.; Kargl, R.; Stana Kleinschek, K.; Pavlica, E.; Kreta, A.; Bratina, G.; Lue, S.J.; Božič, M. Novel Chitosan–Mg(OH)2 Based Nanocomposite Membranes for Direct Alkaline Ethanol Fuel Cells. ACS Sustain. Chem. Eng. 2019, 7, 19356–19368. [Google Scholar] [CrossRef]
- Jančič, U.; Božič, M.; Hribernik, S.; Mohan, T.; Kargl, R.; Kleinschek, K.S.; Gorgieva, S. High oxygen barrier chitosan films neutralized by alkaline nanoparticles. Cellulose 2021, 28, 10457–10475. [Google Scholar] [CrossRef]
- Abdou, E.S.; Nagy, K.S.A.; Elsabee, M.Z. Extraction and characterization of chitin and chitosan from local sources. Bioresour. Technol. 2008, 99, 1359–1367. [Google Scholar] [CrossRef]
- Roschger, M.; Wolf, S.; Mayer, K.; Singer, M.; Hacker, V. Alkaline Direct Ethanol Fuel Cell: Effect of the Anode Flow Field Design and the Setup Parameters on Performance. Energies 2022, 15, 7234. [Google Scholar] [CrossRef]
- Cermenek, B.; Genorio, B.; Winter, T.; Wolf, S.; Connell, J.G.; Roschger, M.; Letofsky-Papst, I.; Kienzl, N.; Bitschnau, B.; Hacker, V. Alkaline Ethanol Oxidation Reaction on Carbon Supported Ternary PdNiBi Nanocatalyst using Modified Instant Reduction Synthesis Method. Electrocatalysis 2020, 11, 203–214. [Google Scholar] [CrossRef] [PubMed]
- Bel-Hassen, R.; Boufi, S.; Salon, M.C.B.; Abdelmouleh, M. Adsorption of Silane onto Cellulose Fibers. II. The Effect of pH on Silane Hydrolysis, Condensation, and Adsorption Behavior. J. Appl. Polym. Sci. 2008, 108, 1958–1968. [Google Scholar] [CrossRef]
- Gorgieva, S.; Vogrinčič, R.; Kokol, V. The Effect of Membrane Structure Prepared from Carboxymethyl Cellulose and Cellulose Nanofibrils for Cationic Dye Removal. J. Polym. Environ. 2018, 27, 318–332. [Google Scholar] [CrossRef]
- Jankauskaite, V.; Balčiunaitiene, A.; Alexandrova, R.; Buškuviene, N.; Žukiene, K. Effect of cellulose microfiber silylation procedures on the properties and antibacterial activity of polydimethylsiloxane. Coatings 2020, 10, 567. [Google Scholar] [CrossRef]
- Jiang, C.; Zhang, Y.; Wang, Q.; Wang, T. Superhydrophobic polyurethane and silica nanoparticles coating with high transparency and fluorescence. J. Appl. Polym. Sci. 2013, 129, 2959–2965. [Google Scholar] [CrossRef]
- Tan, W.; Li, Q.; Dong, F.; Chen, Q.; Guo, Z. Preparation and characterization of novel cationic chitosan derivatives bearing quaternary ammonium and phosphonium salts and assessment of their antifungal properties. Molecules 2017, 22, 1438. [Google Scholar] [CrossRef] [PubMed]
- Patrulea, V.; Hirt-Burri, N.; Jeannerat, A.; Applegate, L.A.; Ostafe, V.; Jordan, O.; Borchard, G. Peptide-decorated chitosan derivatives enhance fibroblast adhesion and proliferation in wound healing. Carbohydr. Polym. 2016, 142, 114–123. [Google Scholar] [CrossRef] [PubMed]
- Badawy, M.E.I.; Rabea, E.I.; Taktak, N.E.M. Antimicrobial and inhibitory enzyme activity of N-(benzyl) and quaternary N-(benzyl) chitosan derivatives on plant pathogens. Carbohydr. Polym. 2014, 111, 670–682. [Google Scholar] [CrossRef]
- Li, H.; Bao, H.; Bok, K.X.; Lee, C.Y.; Li, B.; Zin, M.T.; Kang, L. High durability and low toxicity antimicrobial coatings fabricated by quaternary ammonium silane copolymers. Biomater. Sci. 2016, 4, 299–309. [Google Scholar] [CrossRef]
- Riaz, S.; Ashraf, M.; Hussain, T.; Hussain, M.T. Modification of silica nanoparticles to develop highly durable superhydrophobic and antibacterial cotton fabrics. Cellulose 2019, 26, 5159–5175. [Google Scholar] [CrossRef]
- Teresa, O.H.; Choi, C.K. Comparison between SiOC thin films fabricated by using plasma enhance chemical vapor deposition and SiO2 thin films by using fourier transform infrared spectroscopy. J. Korean Phys. Soc. 2010, 56, 1150–1155. [Google Scholar] [CrossRef]
- Mathew, R.T.; Cooney, R.P.; Zujovic, Z.; Doyle, C.; Wheelwright, W.; De Silva, K. A Sustained Release Anchored Biocide System Utilizing the Honeycomb Cellular Structure of Expanded Perlite. ACS Appl. Bio Mater. 2018, 1, 1959–1971. [Google Scholar] [CrossRef]
- Gorgieva, S.; Vogrinčič, R.; Kokol, V. Polydispersity and assembling phenomena of native and reactive dye-labelled nanocellulose. Cellulose 2015, 22, 3541–3558. [Google Scholar] [CrossRef]
- Sim, K.; Lee, J.; Lee, H.; Youn, H.J. Flocculation behavior of cellulose nanofibrils under different salt conditions and its impact on network strength and dewatering ability. Cellulose 2015, 22, 3689–3700. [Google Scholar] [CrossRef]
- Žepič, V.; Fabjan, E.; Kasunič, M.; Korošec, R.C.; Hančič, A.; Oven, P.; Perše, L.S.; Poljanšek, I. Morphological, thermal, and structural aspects of dried and redispersed nanofibrillated cellulose (NFC). Holzforschung 2014, 68, 657–667. [Google Scholar] [CrossRef]
- Wang, X.; Shi, L.; Zhang, J.; Cheng, J.; Wang, X. Self-assembly fabrication, microstructures and antibacterial performance of layer-structured montmorillonite nanocomposites with cationic silica nanoparticles. RSC Adv. 2017, 7, 31502–31511. [Google Scholar] [CrossRef]
- Jeong, J.; Ayyoob, M.; Kim, J.H.; Nam, S.W.; Kim, Y.J. In situ formation of PLA-grafted alkoxysilanes for toughening a biodegradable PLA stereocomplex thin film. RSC Adv. 2019, 9, 21748–21759. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Y.; Guo, M.; Jin, T.Z.; Arabi, S.A.; He, Q.; Ismail, B.B.; Hu, Y.; Liu, D. Antimicrobial and UV Blocking Properties of Composite Chitosan Films with Curcumin Grafted Cellulose Nanofiber. Food Hydrocoll. 2021, 112, 106337. [Google Scholar] [CrossRef]
- Vasilev, A.; Efimov, M.; Bondarenko, G.; Kozlov, V.; Dzidziguri, E.; Karpacheva, G. Thermal behavior of chitosan as a carbon material precursor under IR radiation. IOP Conf. Ser. Mater. Sci. Eng. 2019, 693, 012002. [Google Scholar] [CrossRef]
- Ming Yang, J.; Chih Chiu, H. Preparation and characterization of polyvinyl alcohol/chitosan blended membrane for alkaline direct methanol fuel cells. J. Memb. Sci. 2012, 419–420, 65–71. [Google Scholar] [CrossRef]
Sample | mCNF (g) | mCNF(D) (g) |
---|---|---|
CS | 0 | 0 |
CS-CNF | 0.375 | 0 |
CS-CNF(D) | 0 | 0.125 |
CS-CNF-CNF(D) | 0.375 | 0.125 |
CS-CNF-CNF(D)H | 0.375 | 0.375 |
Sample | T1 (°C) | T2 (°C) | T3 (°C) | ∆y1 (%) | ∆y2 (%) | ∆y3 (%) | ∆y (%) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
T1s | T1p | T1e | T2s | T2p | T2e | T3s | T3p | T3e | |||||
CNF | 30 | 80 | 145 | 245 | 350 | 380 | / | / | / | 5.2 | 74.7 | / | 87.2 |
DMAOP pH = 4 | 30 | 105 | 175 | 205 | 235 | 265 | 370 | 440 | 525 | 3.0 | 14.4 | 36.6 | 80.3 |
DMAOP pH = 8 | 30 | 110 | 175 | 205 | 235 | 265 | 370 | 440 | 525 | 2.9 | 14.2 | 37.0 | 79.3 |
CNF(D) pH = 4 | 30 | 80 | 145 | 255 | 345 | 370 | / | / | / | 4.6 | 71.2 | / | 86.2 |
CNF(D) pH = 8 | 30 | 80 | 180 | 205 | 230 | 245 | 430 | 470 | 510 | 3.1 | 10.9 | 12.0 | 80.8 |
330 | 375 | 420 | 37.2 |
Sample | T1 (°C) | T2 (°C) | T3 (°C) | ∆y1 (%) | ∆y2 (%) | ∆y3 (%) | ∆y (%) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
T1s | T1p | T1e | T2s | T2p | T2e | T3s | T3p | T3e | |||||
CS | 30 | 49 | 110 | 235 | 283 | 345 | / | / | / | 9.1 | 35.9 | / | 85.7 |
CS-CNF | 30 | 40 | 105 | 250 | 361 | 400 | / | / | / | 3.1 | 53.1 | / | 72.6 |
CS-CNF(D) | 30 | 49 | 135 | 180 | 262 | 340 | 360 | 430 | 520 | 8.7 | 36.4 | 28.8 | 89.2 |
CS-CNF-CNF(D) | 30 | 90 | 120 | 220 | 305 | 367 | 385 | 440 | 500 | 4.7 | 50.9 | 13.0 | 93.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hren, M.; Makuc, D.; Plavec, J.; Roschger, M.; Hacker, V.; Genorio, B.; Božič, M.; Gorgieva, S. Efficiency of Neat and Quaternized-Cellulose Nanofibril Fillers in Chitosan Membranes for Direct Ethanol Fuel Cells. Polymers 2023, 15, 1146. https://doi.org/10.3390/polym15051146
Hren M, Makuc D, Plavec J, Roschger M, Hacker V, Genorio B, Božič M, Gorgieva S. Efficiency of Neat and Quaternized-Cellulose Nanofibril Fillers in Chitosan Membranes for Direct Ethanol Fuel Cells. Polymers. 2023; 15(5):1146. https://doi.org/10.3390/polym15051146
Chicago/Turabian StyleHren, Maša, Damjan Makuc, Janez Plavec, Michaela Roschger, Viktor Hacker, Boštjan Genorio, Mojca Božič, and Selestina Gorgieva. 2023. "Efficiency of Neat and Quaternized-Cellulose Nanofibril Fillers in Chitosan Membranes for Direct Ethanol Fuel Cells" Polymers 15, no. 5: 1146. https://doi.org/10.3390/polym15051146
APA StyleHren, M., Makuc, D., Plavec, J., Roschger, M., Hacker, V., Genorio, B., Božič, M., & Gorgieva, S. (2023). Efficiency of Neat and Quaternized-Cellulose Nanofibril Fillers in Chitosan Membranes for Direct Ethanol Fuel Cells. Polymers, 15(5), 1146. https://doi.org/10.3390/polym15051146