The Influence of Printing Layer Thickness and Orientation on the Mechanical Properties of DLP 3D-Printed Dental Resin
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
- printing layer direction influences the accuracy of the final product when using less thick layers or printing round shapes, and in both cases the 45° orientation leads to the biggest deviations;
- to increase the tensile strength of this resin after printing, the orientation of the printed layers should be parallel to the 3D printer tray, that is, at an angle of 0°;
- to increase the tensile strength of this resin after printing, a thinner printing layer is recommended;
- if better strain properties are needed, printing a thicker printing layer is recommended;
- Considering that, the maximum yield point is more important when designing a product. To increase the compression strength of dental crowns, bridges, or other dental products that are to be 3D printed with the C&B MFH dental resin, using a printing layer direction of 90° towards the 3D printer’s tray is recommended.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Ashutosh, T.Ş.A. Advanced Engineering Materials and Modeling; Advanced Material Series; Wiley: Hoboken, NJ, USA, 2016; p. 528. [Google Scholar]
- Gibson, I. Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2015; p. 498. [Google Scholar]
- Hanon, M.M.; Ghaly, A.; Zsidai, L.; Szakál, Z.; Szabó, I.; Kátai, L. Investigations of the Mechanical Properties of Dlp 3d Printed graphene/resin Composites. Acta Polytech. Hung. 2021, 18, 143–161. [Google Scholar] [CrossRef]
- Maines, E.M.; Porwal, M.K.; Ellison, C.J.; Reineke, T.M. Sustainable advances in SLA/DLP 3D printing materials and processes. Green Chem. 2021, 23, 6863–6897. [Google Scholar] [CrossRef]
- Xiang, H.; Wang, X.; Ou, Z.; Lin, G.; Yin, J.; Liu, Z.; Zhang, L.; Liu, X. UV-curable, 3D printable and biocompatible silicone elastomers. Prog. Org. Coat. 2019, 137, 105372. [Google Scholar] [CrossRef]
- Chen, F.; Li, R.; Sun, J.; Lu, G.; Wang, J.; Wu, B.; Li, J.; Nie, J.; Zhu, X. Photo-curing 3D printing robust elastomers with ultralow viscosity resin. J. Appl. Polym. Sci. 2021, 138, e49965. [Google Scholar] [CrossRef]
- Patel, D.K.; Sakhaei, A.H.; Layani, M.; Zhang, B.; Ge, Q.; Magdassi, S. Highly Stretchable and UV Curable Elastomers for Digital Light Processing Based 3D Printing. Adv. Mater. 2017, 29, 1606000. [Google Scholar] [CrossRef]
- Meem, A.H.; Rudolph, K.; Cox, A.; Andwan, A.; Osborn, T.; Lowe, R. Impact of process parameters on the tensile properties of DLP additively manufactured ELAST-BLK 10 UV-curable elastomer. MSEC 2021, V002T06A031, 10. [Google Scholar] [CrossRef]
- Zhu, G.; Hou, Y.; Xu, J.; Zhao, N. Digital Light Processing 3D Printing of Enhanced Polymers via Interlayer Welding. Macromol. Rapid Commun. 2022, 43, 2200053. [Google Scholar] [CrossRef] [PubMed]
- Safai, L.; Cuellar, J.S.; Smit, G.; Zadpoor, A.A. A review of the fatigue behavior of 3D printed polymers. Addit. Manuf. 2019, 28, 87–97. [Google Scholar] [CrossRef]
- Wang, Y.; Li, X.; Chen, Y.; Zhang, C. Strain rate dependent mechanical properties of 3D printed polymer materials using the DLP technique. Addit. Manuf. 2021, 47, 102368. [Google Scholar] [CrossRef]
- Bayne, S.C.; Ferracane, J.L.; Marshall, G.W.; Marshall, S.J.; van Noort, R. The Evolution of Dental Materials over the Past Century: Silver and Gold to Tooth Color and Beyond. J. Dent. Res. 2019, 98, 257–265. [Google Scholar] [CrossRef]
- Bajraktarova-Valjakova, E.; Korunoska-Stevkovska, V.; Kapusevska, B.; Gigovski, N.; Bajraktarova-Misevska, C.; Grozdanov, A. Contemporary Dental Ceramic Materials, A Review: Chemical Composition, Physical and Mechanical Properties, Indications for Use. Open Access Maced. J. Med. Sci. 2018, 6, 1742–1755. [Google Scholar] [CrossRef] [Green Version]
- Mastrangelo, F.; Battaglia, R.; Natale, D.; Quaresima, R. Three-Dimensional (3D) Stereolithographic Tooth Replicas Accuracy Evaluation: In Vitro Pilot Study for Dental Auto-Transplant Surgical Procedures. Materials 2022, 15, 2378. [Google Scholar] [CrossRef] [PubMed]
- Yoo, S.-Y.; Kim, S.-K.; Heo, S.-J.; Koak, J.-Y.; Kim, J.-G. Dimensional Accuracy of Dental Models for Three-Unit Prostheses Fabricated by Various 3D Printing Technologies. Materials 2021, 14, 1550. [Google Scholar] [CrossRef] [PubMed]
- Revilla-León, M.; Sadeghpour, M.; Özcan, M. An update on applications of 3D printing technologies used for processing polymers used in implant dentistry. Odontology 2020, 108, 331–338. [Google Scholar] [CrossRef] [PubMed]
- Nagib, R.; Szuhanek, C.; Moldoveanu, B.; Negrutiu, M.; Sinescu, C.; Brad, S. Dimensional Study of Impacted Maxillary Canine Replicas 3D Printed Using Two Types of Resin Materials. Mater. Plast. 2018, 55, 190–191. [Google Scholar] [CrossRef]
- Hanon, M.M.; Zsidai, L. Tribological and mechanical properties investigation of 3D printed polymers using DLP technique. AIP Conf. Proc. 2020, 2213, 020205. [Google Scholar] [CrossRef]
- Hamam, F.M.; Bader, B.A.; Slewa, M.Y. Evaluation of mechanical properties for selected dental composite resin polymerized by light curing technology at different thickness. MSF 2020, 1002, 331–339. [Google Scholar] [CrossRef]
- Ali, H.M.A.; Abdi, M.; Sun, Y. Insight into the mechanical properties of 3D printed strut-based lattice structures. Prog. Addit. Manuf. 2022. [Google Scholar] [CrossRef]
- Saed, A.B.; Behravesh, A.H.; Hasannia, S.; Ardebili, S.A.A.; Akhoundi, B.; Pourghayoumi, M. Functionalized poly l-lactic acid synthesis and optimization of process parameters for 3D printing of porous scaffolds via digital light processing (DLP) method. J. Manuf. Process. 2020, 56, 550–561. [Google Scholar] [CrossRef]
- Huang, W.; Zhang, J.; Singh, V.; Xu, L.; Kabi, P.; Bele, E.; Tiwari, M.K. Digital light 3D printing of a polymer composite featuring robustness, self-healing, recyclability and tailorable mechanical properties. Addit. Manuf. 2023, 61, 103343. [Google Scholar] [CrossRef]
- Chen, H.; Lee, S.-Y.; Lin, Y.-M. Synthesis and Formulation of PCL-Based Urethane Acrylates for DLP 3D Printers. Polymers 2020, 12, 1500. [Google Scholar] [CrossRef] [PubMed]
- Steyrer, B.; Busetti, B.; Harakály, G.; Liska, R.; Stampfl, J. Hot Lithography vs. room temperature DLP 3D-printing of a dimethacrylate. Addit. Manuf. 2018, 21, 209–214. [Google Scholar] [CrossRef]
- Kim, D.; Shim, J.S.; Lee, D.; Shin, S.H.; Nam, N.E.; Park, K.H.; Shim, J.S.; Kim, J.E. Effects of Post-Curing Time on the Mechanical and Color Properties of Three-Dimensional Printed Crown and Bridge Materials. Polymers 2020, 12, 2762. [Google Scholar] [CrossRef] [PubMed]
- Espinar, C.; Della Bona, A.; Pérez, M.M.; Pulgar, R. Color and optical properties of 3D printing restorative polymer-based materials: A scoping review. J. Esthet. Restor. Dent. 2022, 34, 853–864. [Google Scholar] [CrossRef]
- Nagib, R.; Szuhanek, C.; Moldoveanu, B.; Negrutiu, M.L.; Sinescu, C.; Brad, S. Custom Designed Orthodontic Attachment Manufactured Using a Biocompatible 3D Printing Material. Mater. Plast. 2017, 54, 4. [Google Scholar] [CrossRef]
- Dizon, J.R.C.; Espera, A.H.; Chen, Q.; Advincula, R.C. Mechanical characterization of 3D-printed polymers. Addit. Manuf. 2018, 20, 44–67. [Google Scholar] [CrossRef]
- Nexdent.com. Available online: https://nextdent.com/products/cb-mfh-micro-filled-hybrid/ (accessed on 25 December 2022).
- Mayer, J.; Reymus, M.; Wiedenmann, F.; Edelhoff, D.; Hickel, R.; Stawarczyk, B. Temporary 3D printed fixed dental prosthesis materials: Impact of post printing cleaning methods on degree of conversion as well as surface and mechanical properties. Int. J. Prosthodont. 2021, 34, 784–795. [Google Scholar] [CrossRef]
- Arutyunov, S.; Krasheninnikov, S.; Levchenko, I.; Orjonikidze, R.; Sadovskaya, N.; Kirakosyan, L.; Kharakh, Y. Monitoring of changes in physicochemical and clinical characteristics of the dental polymer materials used in additive manufacturing of dental prostheses. Georgian Med. News 2018, 285, 37–41. [Google Scholar]
- Arutyunov, A.S.; Tsareva, T.V.; Kirakosyan, L.G.; Levchenko, I.M. Osobennosti i znachenie adgezii bakterii i gribov polosti rta kak etapa formirovaniya mikrobnoi bioplenki na stomatologicheskikh polimernykh materialakh [Features and significance of adhesion of bacteria and fungi of the oral cavity as the initial stage of the formation of a microbial biofilm on dental polymer materials]. Stomatologiia 2020, 99, 79–84. [Google Scholar] [CrossRef]
- Nagib, R.; Zogorean, R.; Gavriliuc, O.; Szuhanek, C.; Moldoveanu, B.; Negrutiu, M.; Sinescu, C.; Paunescu, V.; Brad, S. Cytotoxicity Assessment of Metal and 3D Printed Resin Orthodontic Attachments An in vitro cell culture behavior study. Rev. Chim. 2018, 69, 1515–1518. [Google Scholar] [CrossRef]
- Alifui-Segbaya, F.; Bowman, J.; White, A.R.; George, R.; Fidan, I. Characterization of the Double Bond Conversion of Acrylic Resins for 3D Printing of Dental Prostheses. Compendium 2019, 40, 10. [Google Scholar]
- Iliev, G.; Vasileva, R.; Petrova, V.; Bozhkovski, C.; Kirov, D.; Kirlova, J. 3D printed, and CAD/CAM milled indirect restorations from hybrid polymers. Mechanical properties. A Literature Review. MedInform 2022, 9, 1455–1518. [Google Scholar] [CrossRef]
- Lakshmi, N.G. Finite Element Analysis; BS Publications: Hyderabad, India, 2021. [Google Scholar]
- Graspengineering.com. Available online: https://www.graspengineering.com/material-properties-required-in-fea/ (accessed on 25 December 2022).
- Anatavara, S.; Sitthiseripratip, K.; Senawongse, P. Stress relieving behaviour of flowable composite liners: A finite element analysis. Dent. Mater. J. 2016, 35, 369–378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Metrodent.com. Available online: https://www.metrodent.com/product/nextdent-cb-mfh-3d-printing-material/ (accessed on 8 February 2023).
- D638–14; ASTM International Standard Test Method for Tensile Properties of Plastics. ASTM: West Conshohocken, PA, USA, 2014.
- D695–02a; ASTM International Standard Test Method for Compressive Properties of Rigid Plastics. ASTM: West Conshohocken, PA, USA, 2014.
- Nulty, A. A comparison of trueness and precision of 12 3D printers used in dentistry. BDJ Open 2022, 8, 14. [Google Scholar] [CrossRef]
- Anycubic.com. Available online: https://www.anycubic.com/products/photon-mono-x-6k (accessed on 25 December 2022).
- Zwickroell.com. Available online: https://www.zwickroell.com/products/pre-owned-market/pre-owned-z005-allroundline-5-kn/#c67156 (accessed on 25 December 2022).
- Lbgsrl.com. Available online: https://www.lbgsrl.com/en/offers/item/54-a009-tc100-universal-testing-machine-capacity-100-kn-22481-lbf (accessed on 16 January 2023).
- Tahayeri, A.; Morgan, M.; Fugolin, A.P.; Bompolaki, D.; Athirasala, A.; Pfeifer, C.; Ferracane, J.; Bertassoni, L. 3D printed versus conventionally cured provisional crown and bridge dental materials. Dent. Mater. 2018, 34, 192–200. [Google Scholar] [CrossRef]
- Alshamrani, A.A.; Raju, R.; Ellakwa, A. Effect of Printing Layer Thickness and Postprinting Conditions on the Flexural Strength and Hardness of a 3D-Printed Resin. BioMed Res. Int. 2022, 2022, 8353137. [Google Scholar] [CrossRef]
- Puebla, K.; Arcaute, K.; Quintana, R.; Wicker, R.B. Effects of environmental conditions, aging, and build orientations on the mechanical properties of ASTM type I specimens manufactured via stereolithography. Rapid Prototyp. J. 2012, 18, 374–388. [Google Scholar] [CrossRef]
- Alharbi, N.; Osman, R.; Wismeijer, D. Effects of build direction on the mechanical properties of 3D-printed complete coverage interim dental restorations. J. Prosthet. Dent. 2016, 115, 760–767. [Google Scholar] [CrossRef]
- Avram, L.; Goguta, L.; Galatanu, S.; Opris, C.; Ille, C.; Jivanescu, A. Material Thickness Influence on Fracture Load of Polymer Infiltrated Ceramic Network CAD/CAM Restorations. Mater. Plast. 2021, 58, 8–17. [Google Scholar] [CrossRef]
- Reymus, M.; Lümkemann, N.; Stawarczyk, B. 3D-printed material for temporary restorations: Impact of print layer thickness and post-curing method on degree of conversion. Int. J. Comput. Dent. 2019, 22, 231–237. [Google Scholar]
- Kunjan, C.; Jawahar, N.; Chandrasekhar, U. Influence of layer thickness on mechanical properties in stereolithography. Rapid Prototyp. J. 2006, 12, 106–113. [Google Scholar] [CrossRef]
- Derban, P.; Negrea, R.; Rominu, M.; Marsavina, L. Influence of the Printing Angle and Load Direction on Flexure Strength in 3D Printed Materials for Provisional Dental Restorations. Materials 2021, 14, 3376. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Chen, D.; Shulkin, Y.; Chudnovsky, A.; Jivraj, N.; Sehanobish, K.; Wu, S. Ductile Failure and Delayed Necking in Polyethylene. Plast. Fail. Anal. Prev. 2001, 2001, 25–30. [Google Scholar] [CrossRef]
- Ye, J.; André, S.; Farge, L. Kinematic study of necking in a semi-crystalline polymer through 3D Digital Image Correlation. Int. J. Solids Struct. 2015, 59, 58–72. [Google Scholar] [CrossRef]
- Urechescu, H.; Pricop, M.; Pricop, C.; Mateas, M.; Natanael, S.; Galatanu, S.V. Thermoplastic Materials Used for Fabrication of Maxillary Obturator Prostheses Experimental compression and traction tests. Mater. Plast. 2017, 54, 477–480. [Google Scholar] [CrossRef]
- Keßler, A.A.; Hickel, R.; Ilie, N. In vitro investigation of the influence of printing direction on the flexural strength, flexural modulus and fractographic analysis of 3D-printed temporary materials. Dent. Mater. J. 2021, 40, 641–649. [Google Scholar] [CrossRef]
- Osman, R.B.; Alharbi, N.; Wismeijer, D. Build angle: Does it influence the accuracy of 3D-printed dental restorations using digital light-processing technology? Int. J. Prosthodont. 2017, 30, 182–188. [Google Scholar] [CrossRef]
Layer Height: | 0.1 [mm]/0.05 [mm] | Bottom Lift Distance: | 6 [mm] |
Bottom Layer Count: | 4 [layers] | Lifting Distance: | 6 [mm] |
Exposure Time: | 3 [s] | Bottom Lift Speed: | 120 [mm/min] |
Bottom Exposure Time: | 15 [s] | Lifting Speed: | 120 [mm/min] |
Light-off Delay: | 8 [s] | Retract Speed: | 180 [mm/min] |
Bottom Light-off Delay: | 8 [s] |
Specimens | Layer orientation | Measurement 1 | Measurement 2 | Average Width [mm] | Measurement 1 | Measurement 2 | Average Thickness [mm] | Cross- Section Area [mm2] |
---|---|---|---|---|---|---|---|---|
Width [mm] | Width [mm] | Thickness [mm] | Thickness [mm] | |||||
P1 | 0° | 10.10 | 10.05 | 10.075 | 4.00 | 4.05 | 4.025 | 40.55 |
P2 | 10.05 | 10.05 | 10.05 | 4.00 | 4.00 | 4.00 | 40.20 | |
P3 | 10.00 | 10.00 | 10.00 | 4.00 | 4.00 | 4.00 | 40.00 | |
P4 | 10.05 | 10.10 | 10.075 | 4.00 | 4.00 | 4.00 | 40.30 | |
Min | 10 | 10 | 10 | 4 | 4 | 4 | 40 | |
Max | 10.1 | 10.1 | 10.075 | 4 | 4.05 | 4.025 | 40.55 | |
SD | 0.041 | 0.041 | 0.037 | 0 | 0.022 | 0.011 | 0.230 | |
P5 | 45° | 10.15 | 10.10 | 10.125 | 4.05 | 4.00 | 4.025 | 40.75 |
P6 | 10.20 | 10.20 | 10.20 | 4.10 | 4.00 | 4.05 | 41.31 | |
P7 | 10.20 | 10.15 | 10.175 | 4.10 | 4.10 | 4.10 | 41.71 | |
P8 | 10.25 | 10.25 | 10.25 | 4.05 | 4.10 | 4.075 | 41.76 | |
Min | 10.15 | 10.1 | 10.125 | 4.05 | 4 | 4.025 | 40.75 | |
Max | 10.25 | 10.25 | 10.25 | 4.1 | 4.1 | 4.1 | 41.76 | |
SD | 0.096 | 0.0961 | 0.0951 | 0.041 | 0.054 | 0.039 | 0.738 | |
P9 | 90° | 10.05 | 10.05 | 10.05 | 4.10 | 4.00 | 4.05 | 40.70 |
P10 | 10.10 | 10.00 | 10.05 | 4.00 | 4.00 | 4.00 | 40.20 | |
P11 | 10.10 | 10.05 | 10.075 | 4.00 | 4.00 | 4.00 | 40.30 | |
P12 | 10.05 | 10.00 | 10.025 | 4.05 | 4.00 | 4.025 | 40.35 | |
Min | 10.05 | 10 | 10.025 | 4 | 4 | 4 | 40.2 | |
Max | 10.1 | 10.05 | 10.075 | 4.1 | 4 | 4.05 | 40.7 | |
SD | 0.041 | 0.027 | 0.028 | 0.044 | 0 | 0.022 | 0.255 | |
S1 | 0° | 10.25 | 10.25 | 10.25 | 4.15 | 4.10 | 4.125 | 42.28 |
S2 | 10.50 | 10.30 | 10.40 | 4.10 | 4.05 | 4.075 | 42.38 | |
S3 | 10.30 | 10.30 | 10.30 | 4.15 | 4.10 | 4.125 | 42.48 | |
S4 | 10.15 | 10.25 | 10.20 | 4.10 | 4.05 | 4.075 | 41.56 | |
Min | 10.15 | 10.25 | 10.2 | 4.1 | 4.05 | 4.075 | 41.56 | |
Max | 10.5 | 10.3 | 10.4 | 4.15 | 4.1 | 4.125 | 42.48 | |
SD | 0.185 | 0.125 | 0.148 | 0.061 | 0.041 | 0.051 | 1.037 | |
S5 | 45° | 10.55 | 10.45 | 10.50 | 4.25 | 4.30 | 4.275 | 44.88 |
S6 | 10.15 | 10.25 | 10.20 | 4.10 | 4.15 | 4.125 | 42.07 | |
S7 | 10.25 | 10.30 | 10.275 | 4.30 | 4.30 | 4.30 | 44.18 | |
S8 | 10.35 | 10.30 | 10.325 | 4.35 | 4.35 | 4.35 | 44.91 | |
Min | 10.15 | 10.25 | 10.2 | 4.1 | 4.15 | 4.125 | 42.07 | |
Max | 10.55 | 10.45 | 10.5 | 4.35 | 4.35 | 4.35 | 44.91 | |
SD | 0.207 | 0.163 | 0.182 | 0.145 | 0.1443 | 0.144 | 2.134 | |
S9 | 90° | 10.10 | 10.10 | 10.10 | 4.25 | 4.25 | 4.25 | 42.92 |
S10 | 10.10 | 10.20 | 10.15 | 4.20 | 4.10 | 4.15 | 42.12 | |
S11 | 10.10 | 10.05 | 10.075 | 4.10 | 4.10 | 4.10 | 41.30 | |
S12 | 10.10 | 10.10 | 10.10 | 4.30 | 4.25 | 4.275 | 43.17 | |
Min | 10.1 | 10.05 | 10.075 | 4.1 | 4.1 | 4.1 | 41.3 | |
Max | 10.1 | 10.2 | 10.15 | 4.3 | 4.25 | 4.275 | 43.17 | |
SD | 0.044 | 0.074 | 0.054 | 0.120 | 0.108 | 0.112 | 1.291 |
Specimens | Layer Orientation | Mesurement 1 | Mesurement 2 | Average ø [mm] | Mesurement 2 | Cross-Section Area [mm2] |
---|---|---|---|---|---|---|
ø [mm] | ø [mm] | Hight [mm] | ||||
1 | 90° | 12.30 | 12.30 | 12.30 | 25.50 | 118.76 |
2 | 12.40 | 12.70 | 12.55 | 25.30 | 123.63 | |
3 | 12.30 | 12.60 | 12.45 | 25.30 | 121.67 | |
4 | 12.50 | 12.50 | 12.50 | 25.50 | 122.65 | |
Min | 12.3 | 12.3 | 12.3 | 25.3 | 118.76 | |
Max | 12.5 | 12.7 | 12.55 | 25.5 | 123.63 | |
SD | 0.1675 | 0.167 | 0.145 | 0.1 | 1.880 | |
5 | 45° | 12.35 | 12.60 | 12.475 | 25.55 | 122.16 |
6 | 12.50 | 12.45 | 12.475 | 26.00 | 122.16 | |
7 | 12.60 | 12.60 | 12.60 | 25.25 | 124.62 | |
8 | 12.20 | 12.20 | 12.20 | 25.70 | 116.83 | |
Min | 12.2 | 12.2 | 12.2 | 25.25 | 116.83 | |
Max | 12.6 | 12.6 | 12.6 | 26 | 124.62 | |
SD | 0.198 | 0.194 | 0.187 | 0.288 | 2.902 | |
9 | 0° | 12.35 | 12.30 | 12.325 | 26.00 | 119.24 |
10 | 12.50 | 12.30 | 12.40 | 25.65 | 120.70 | |
11 | 12.30 | 12.30 | 12.30 | 26.00 | 118.76 | |
12 | 12.45 | 12.45 | 12.45 | 25.95 | 121.67 | |
Min | 12.3 | 12.3 | 12.3 | 25.65 | 118.76 | |
Max | 12.5 | 12.45 | 12.45 | 26 | 121.67 | |
SD | 0.155 | 0.174 | 0.159 | 0.266 | 1.649 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farkas, A.Z.; Galatanu, S.-V.; Nagib, R. The Influence of Printing Layer Thickness and Orientation on the Mechanical Properties of DLP 3D-Printed Dental Resin. Polymers 2023, 15, 1113. https://doi.org/10.3390/polym15051113
Farkas AZ, Galatanu S-V, Nagib R. The Influence of Printing Layer Thickness and Orientation on the Mechanical Properties of DLP 3D-Printed Dental Resin. Polymers. 2023; 15(5):1113. https://doi.org/10.3390/polym15051113
Chicago/Turabian StyleFarkas, Andrei Zoltan, Sergiu-Valentin Galatanu, and Riham Nagib. 2023. "The Influence of Printing Layer Thickness and Orientation on the Mechanical Properties of DLP 3D-Printed Dental Resin" Polymers 15, no. 5: 1113. https://doi.org/10.3390/polym15051113
APA StyleFarkas, A. Z., Galatanu, S.-V., & Nagib, R. (2023). The Influence of Printing Layer Thickness and Orientation on the Mechanical Properties of DLP 3D-Printed Dental Resin. Polymers, 15(5), 1113. https://doi.org/10.3390/polym15051113