Enhancing the Initial Whiteness and Long-Term Thermal Stability of Polyvinyl Chloride by Utilizing Layered Double Hydroxides with Low Surface Basicity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of LDHs
2.3. Characterization of LDHs by XRD, CO2-TPD, SEM, BET, and Particle Size
2.4. Preparation of PVC Composites
2.5. Thermal Stability Tests of PVC Composites
3. Results and Discussion
3.1. Effect of Metal Species in the Laminae on the Surface Basicity of LDHs and the Thermal Stability of PVC Composites
3.2. The Effect of Mg/Al Ratio in Laminae on the Surface Basicity of LDHs and the Thermal Stability of PVC Composites
3.3. The Impact of Crosslinking on the Surface Basicity of LDHs and Thermal Stability of PVC Composites
4. Conclusions
5. Patents
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Avalos, A.S.; Hakkarainen, M.; Odelius, K. Superiorly plasticized PVC/PBSA blends through crotonic and acrylic acid functionalization of PVC. Polymers 2017, 9, 84. [Google Scholar] [CrossRef] [Green Version]
- Abreu, C.M.R.; Fonseca, A.C.; Rocha, N.M.P.; Guthrie, J.T.; Coelho, J.F.J. Poly(Vinyl Chloride): Current status and future perspectives via reversible deactivation radical polymerization methods. Prog. Polym. Sci. 2018, 87, 34–69. [Google Scholar] [CrossRef]
- Tian, W.; Li, Z.; Zhang, K.; Ge, Z. Facile synthesis of exfoliated vermiculite nanosheets as a thermal stabilizer in polyvinyl chloride resin. RSC Adv. 2019, 9, 19675–19679. [Google Scholar] [CrossRef] [Green Version]
- Ye, F.; Ye, Q.; Zhan, H.; Ge, Y.; Ma, X.; Xu, Y.; Wang, X. Synthesis and study of zinc orotate and its synergistic effect with commercial stabilizers for stabilizing poly(vinyl chloride). Polymers 2019, 11, 194. [Google Scholar] [CrossRef] [Green Version]
- Ye, F.; Guo, X.J.; Zhan, H.H.; Lin, J.X.; Lou, W.C.; Ma, X.T.; Wang, X. The synergistic effect of zinc urate with calcium stearate and commercial assistant stabilizers for stabilizing poly(vinyl chloride). Polym. Degrad. Stab. 2018, 156, 193–201. [Google Scholar] [CrossRef]
- Chen, J.; Liu, Z.; Wang, K.; Huang, J.; Li, K.; Nie, X.; Jiang, J. Epoxidized castor oil–based diglycidyl–phthalate plasticizer: Synthesis and thermal stabilizing effects on poly(vinyl chloride). J. Appl. Polym. Sci. 2018, 135, 47142. [Google Scholar] [CrossRef]
- Wu, B.Z.; Wang, Y.T.; Chen, S.; Wang, M.Y.; Ma, M.; Shi, Y.Q.; Wang, X. Bis–uracil based high efficient heat stabilizers used in super transparent soft poly (vinyl chloride). Polym. Degrad. Stab. 2018, 149, 143–151. [Google Scholar] [CrossRef]
- Turner, A.; Filella, M. Hazardous metal additives in plastics and their environmental impacts. Environ. Int. 2021, 156, 106622. [Google Scholar] [CrossRef]
- Shi, Y.; Yao, Y.; Lu, S.; Chen, L.; Chen, S.; He, H.; Ma, M.; Wang, X. Synergistic effect of two plasticizers on thermal stability, transparency, and migration resistance of zinc arginine stabilized PVC. Polymers 2022, 14, 4560. [Google Scholar] [CrossRef]
- Ye, Q.; Ma, X.; Li, B.; Jin, Z.; Xu, Y.; Fang, C.; Zhou, X.; Ge, Y.; Ye, F. Development and investigation of lanthanum sulfadiazine with calcium stearate and epoxidised soyabean oil as complex thermal stabilizers for stabilizing poly(vinyl chloride). Polymers 2019, 11, 531. [Google Scholar] [CrossRef] [Green Version]
- Jubsilp, C.; Asawakosinchai, A.; Mora, P.; Saramas, D.; Rimdusit, S. Effects of organic based heat stabilizer on properties of polyvinyl chloride for pipe applications: A comparative study with Pb and CaZn systems. Polymers 2022, 14, 133. [Google Scholar] [CrossRef]
- Li, Y.; Li, D.; Han, W.; Zhang, M.; Ai, B.; Zhang, L.; Sun, H.; Cui, Z. Facile Synthesis of di–mannitol adipate ester–based zinc metal alkoxide as a bi–functional additive for poly(vinyl chloride). Polymers 2019, 11, 813. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Xie, L.; Ming, F.; Zhang, J.; Indrawirawan, S.; Zhang, Y. Synergistic effects of lanthanum–pentaerythritol alkoxide with zincstearates and with β–diketone on the thermal stability of poly(vinyl chloride). Polym. Degrad. Stab. 2015, 114, 52–59. [Google Scholar] [CrossRef]
- Guo, Y.; Leroux, F.; Tian, W.; Li, D.; Tang, P.; Feng, Y. Layered double hydroxides as thermal stabilizers for poly(vinyl chloride): A review. Appl. Clay Sci. 2021, 211, 106198. [Google Scholar] [CrossRef]
- Ven, L.V.D.; Gemert, M.L.M.V.; Batenburg, L.F. On the action of hydrotalcite–like clay materials as stabilizers in polyvinylchloride. Appl. Clay Sci. 2000, 17, 25–34. [Google Scholar]
- Chen, Y.; Zhang, S.; Han, X.; Zhang, X.; Yi, M.; Yang, S.; Yu, D.; Liu, W. Catalytic dechlorination and charring reaction of polyvinyl chloride by CuAl layered double hydroxide. Energy Fuel 2018, 32, 2407–2413. [Google Scholar] [CrossRef]
- Labuschagne, F.; Dan, M.M.; Focke, W.W.; Westhuizen, I. Heat stabilising flexible pvc with layered double hydroxide derivatives. Polym. Degrad. Stab. 2015, 113, 46–54. [Google Scholar] [CrossRef] [Green Version]
- Wen, R.; Yang, Z.; Chen, H.; Youwang, H.U.; Duan, J. Zn–al–la hydrotalcite–like compounds as heating stabilizer in pvc resin. J. Rare Earths 2012, 30, 8. [Google Scholar] [CrossRef]
- Yan, J.; Yang, Z. Intercalated hydrotalcite-like materials and their application as thermal stabilizers in poly(vinyl chloride). J. Appl. Polym. Sci. 2017, 134, 44896. [Google Scholar] [CrossRef]
- Liu, S.T.; Zhang, P.P.; Yan, K.K.; Zhang, Y.H.; Ye, Y.; Chen, X.G. Sb–intercalated layered double hydroxides–poly(vinyl chloride) nanocomposites: Preparation, characterization, and thermal stability. J. Appl. Polym. Sci. 2015, 132, 42524. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, T.; Pi, H.; Guo, S. Preparation of intercalated Mg–Al layered double hydroxides and its application in pvc thermal stability. J. Appl. Polym. Sci. 2012, 124, 5180–5186. [Google Scholar] [CrossRef]
- Gao, Z.; Lu, L.; Shi, C.; Qian, X.-D. The effect of OCoAl–LDH and OCoFe–LDH on the combustion behaviors of polyvinyl chloride. Polym. Adv. Technol. 2020, 31, 675–685. [Google Scholar] [CrossRef]
- Yang, H.; Yang, Z. The effect of sodium stearate-modified hydrocalumite on the thermal stability of poly(vinyl chloride). J. Appl. Polym. Sci. 2017, 135, 45758. [Google Scholar] [CrossRef]
- Zhang, H.M.; Zhang, S.H.; Stewart, P.; Zhu, C.H.; Liu, W.J.; Hexemer, A. Thermal stability and thermal aging of poly(vinyl chloride)/mgal layered double hydroxides composites. Chin. J. Polym. Sci. 2016, 34, 542–551. [Google Scholar] [CrossRef]
- Wen, X.; Yang, Z.H.; Yan, J.; Xie, X. Green preparation and characterization of a novel heat stabilizer for poly(vinyl chloride)–hydrocalumites. RSC Adv. 2015, 5, 32020–32026. [Google Scholar] [CrossRef]
- Mori, K.; Miyata, S. Particulate Hydrotalcite, Its Manufacturing Method, Its Resin Composition, and Suspension Thereof. Patent Application No. JPWO2018169019A1, 20 November 2019. [Google Scholar]
- Lin, Y.J.; Li, D.Q.; Evans, D.G.; Xue, D. Modulating effect of Mg–Al–CO3 layered double hydroxides on the thermal stability of pvc resin. Polym. Degrad. Stab. 2005, 88, 286–293. [Google Scholar] [CrossRef]
- Jia, L.; Yin, L.; Luo, Z.; Wang, H.; Zhong, W. Molecular chain model construction, thermo–stability, and thermo–oxidative degradation mechanism of poly (vinyl chloride). RSC Adv. 2016, 6, 31898–31905. [Google Scholar]
- Sideris, P.J.; Nielsen, U.G.; Gan, Z.; Grey, C.P. Mg/Al ordering in layered double hydroxides revealed by multinuclear NMR spectroscopy. Science 2008, 32, 113–117. [Google Scholar] [CrossRef] [Green Version]
- Yu, G.; Zhou, Y.; Yang, R. Dehydration and dehydroxylation of layered double hydroxides: New insights from solid–state NMR and FT–IR studies of deuterated samples. J. Phys. Chem. C 2015, 119, 12325–12345. [Google Scholar] [CrossRef]
- GB/T 9349–2002; Determination of Thermal Stability of Poly(Vinyl Chloride) Related Chlorine–Containing Homopolymers and Copolymers and Their Compounds––Discoloration Method. ISO: Geneva, Switzerland, 2019.
- Monica, L.J.; Siti, H.S.; Zaemah, J. Synthesis and characterisation of layered double hydroxides with varying divalent metal cations: Mg2+, Zn2+, Ca2+. Mater. Today 2022, 66, 4015–4019. [Google Scholar]
- Yan, R.D.; Oscar, W.P.L. CO2 methanation over Ni–Al LDH–derived catalyst with variable Ni/Al ratio. J. CO2 Util. 2023, 68, 102381. [Google Scholar]
- Tomaszewska, J.; Sterzynski, T.; Walczak, D. Thermal stability of nanosilica–modified poly(vinyl chloride). Polymers 2021, 13, 2057. [Google Scholar] [CrossRef]
- Tao, Q.; Zhu, J.; Wellard, R.M.; Bostrom, T.E.; Frost, R.L.; Yuan, P.; He, H. Silylation of layered double hydroxides via an induced hydrolysis method. J. Mater. Chem. 2011, 21, 10711. [Google Scholar] [CrossRef] [Green Version]
LDHs | Temperature/°C | Area |
---|---|---|
MgAl2.0 | 165 | 1188 |
CaAl2.0 | 134 | 609 |
CaMgAl11 | 141 | 458 |
ZnAl2.0 | 225 | 982 |
ZnMgAl11 | 218 | 971 |
LDHs | Temperature/°C | Area |
---|---|---|
MgAl2.0 | 165 | 1188 |
MgAl2.5 | 158 | 1360 |
MgAl3.0 | 154 | 1718 |
MgAl3.5 | 153 | 2065 |
LDHs | Temperature/°C | Area |
---|---|---|
MgAl2.0 | 165 | 1188 |
CL-MgAl2.0 | 185 | 253 |
LDHs | D(0.1)/μm | D(0.35)/μm | D(0.5)/μm | D(0.75)/μm | D(0.9)/μm |
---|---|---|---|---|---|
MgAl2.0 | 1.69 | 3.59 | 4.51 | 6.48 | 9.13 |
CL-MgAl2.0 | 2.00 | 3.97 | 4.93 | 6.98 | 9.55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, G.; Zhao, Y.; Ma, M.; Wang, Y.; Hao, X.; Yuan, G. Enhancing the Initial Whiteness and Long-Term Thermal Stability of Polyvinyl Chloride by Utilizing Layered Double Hydroxides with Low Surface Basicity. Polymers 2023, 15, 1043. https://doi.org/10.3390/polym15041043
Shen G, Zhao Y, Ma M, Wang Y, Hao X, Yuan G. Enhancing the Initial Whiteness and Long-Term Thermal Stability of Polyvinyl Chloride by Utilizing Layered Double Hydroxides with Low Surface Basicity. Polymers. 2023; 15(4):1043. https://doi.org/10.3390/polym15041043
Chicago/Turabian StyleShen, Guanhua, Yanhua Zhao, Mingxin Ma, Yongli Wang, Xiangying Hao, and Guodong Yuan. 2023. "Enhancing the Initial Whiteness and Long-Term Thermal Stability of Polyvinyl Chloride by Utilizing Layered Double Hydroxides with Low Surface Basicity" Polymers 15, no. 4: 1043. https://doi.org/10.3390/polym15041043
APA StyleShen, G., Zhao, Y., Ma, M., Wang, Y., Hao, X., & Yuan, G. (2023). Enhancing the Initial Whiteness and Long-Term Thermal Stability of Polyvinyl Chloride by Utilizing Layered Double Hydroxides with Low Surface Basicity. Polymers, 15(4), 1043. https://doi.org/10.3390/polym15041043