Ag/Cu-Chitosan Composite Improves Laundry Hygiene and Reduces Silver Emission in Washing Machines
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Strains
2.2. Preparation of Ag/Cu-CTS Composite
2.3. Characterization of Ag/Cu-CTS Composite Particles
2.3.1. Mechanical Strength
2.3.2. Antibacterial Properties
2.3.3. Scanning Electron Microscope (SEM) and Energy Dispersive Spectroscopy (EDS)
2.4. Application of Ag/Cu-CTS Composite Particles in Laundry
2.4.1. Loss of Antibacterial Properties
2.4.2. Antibacterial Effect Detection
2.4.3. Detection of Silver Emission
2.5. Statistical Analysis
3. Results
3.1. Preparation and Structural Characterization of Ag-CTS Colloid
3.2. Preparation of Ag/Cu-CTS Composite
3.3. Plate Inhibition Zone of Ag/Cu-CTS Composite
3.4. Structural Characterization of Ag/Cu-CTS Composite
3.5. Inhibition of Laundry Pathogens by Ag/Cu-CTS Composite
3.6. Antibacterial Activity Loss Test of Ag/Cu-CTS Composite
3.7. Silver Emission in Laundering
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dirk, P.B.; Jan, S.; Laura, R. Laundry and textile hygiene in healthcare and beyond. Microb. Cell 2019, 7, 299–306. [Google Scholar]
- Altenbaher, B.; Turk, S.S.; Fijan, S. Ecological parameters and disinfection effect of low-temperature laundering in hospitals in Slovenia. J. Clean. Prod. 2011, 19, 253–258. [Google Scholar] [CrossRef]
- Honisch, M.; Stamminger, R.; Bockmuhl, D.P. Impact of wash cycle time, temperature and detergent formulation on the hygiene effectiveness of domestic laundering. J. Appl. Microbiol. 2014, 117, 1787–1797. [Google Scholar] [CrossRef]
- Wiksell, J.C.; Pickett, M.S.; Hartman, P.A. Survival of microorganisms in laundered polyester-cotton sheeting. Appl. Microbiol. 1973, 25, 431–435. [Google Scholar] [CrossRef]
- Nix, I.D.; Frontzek, A.; Bockmuhl, D.P. Characterization of microbial communities in household washing machines. Tenside Surfact. Det. 2015, 52, 432–440. [Google Scholar] [CrossRef]
- Stapleton, K.; Hill, K.; Day, K.; Perry, J.D.; Dean, J.R. The potential impact of washing machines on laundry malodour generation. Lett. Appl. Microbiol. 2013, 56, 299–306. [Google Scholar] [CrossRef]
- Callewaert, C.; Nevel, S.V.; Kerckhof, F.M.; Granitsiotis, M.S.; Boon, N. Bacterial exchange in household washing machines. Front. Microbiol. 2015, 6, 1381. [Google Scholar] [CrossRef] [Green Version]
- Jacksch, S.; Kaiser, D.; Weis, S.; Weide, M.; Ratering, S.; Schnell, S.; Egert, M. Influence of sampling site and other environmental factors on the bacterial community composition of domestic washing machines. Microorganisms 2019, 8, 30. [Google Scholar] [CrossRef] [Green Version]
- Gibson, L.L.; Rose, J.B.; Haas, C.N. Use of quantitative microbial risk assessment for evaluation of the benefits of laundry sanitation. Am. J. Infect. Control 1999, 27, S34–S39. [Google Scholar] [CrossRef]
- Younes, I.; Rinaudo, M. Chitin and chitosan preparation from marine sources, structure, properties and applications. Mar. Drugs 2015, 13, 1133–1174. [Google Scholar] [CrossRef] [Green Version]
- Li, J.H.; Zhuang, S.L. Antibacterial activity of chitosan and its derivatives and their interaction mechanism with bacteria: Current state and perspectives. Eur. Polym. J. 2020, 138, 109984. [Google Scholar] [CrossRef]
- Lou, C.W.; Chen, A.P.; Li, T.T.; Lin, J.H. Antimicrobial activity of UV-induced chitosan capped silver nanoparticles. Mater. Lett. 2014, 128, 248–252. [Google Scholar] [CrossRef]
- Malini, M.; Thirumavalavan, M.; Yang, W.Y.; Lee, J.F.; Annadurai, G. A versatile chitosan/ZnO nanocomposite with enhanced antimicrobial properties. Int. J. Biol. Macromol. 2015, 80, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Donia, A.M.; Atia, A.A.; Elwakeel, K.Z. Recovery of gold(III) and silver(I) on a chemically modified chitosan with magnetic properties. Hydrometallurgy 2007, 87, 197–206. [Google Scholar] [CrossRef]
- Raghavendra, G.M.; Jung, J.; Kim, D.; Seo, J. Microwave assisted antibacterial chitosan-silver nanocomposite films. Int. J. Biol. Macromol. 2016, 84, 281–288. [Google Scholar] [CrossRef]
- Mallic, S.; Sanpui, P.; Ghosh, S.S.; Chattopadhyay, A.; Paul, A. Synthesis, characterization and enhanced bactericidal action of a chitosan supported core-shell copper-silver nanoparticle composite. RSC Adv. 2015, 5, 12268–12276. [Google Scholar] [CrossRef]
- Khan, A.; Mehmood, S.; Shafiq, M.; Yasin, T.; Ahmad, S. Structural and antimicrobial properties of irradiated chitosan and its complexes with zinc. Radiat. Phys. Chem. 2013, 91, 138–142. [Google Scholar] [CrossRef]
- Ishihara, M.; Nguyen, V.Q.; Mori, Y.; Nakamura, S.; Hattori, H. Adsorption of silver nanoparticles onto different surface structures of chitin/chitosan and correlations with antimicrobial activities. Int. J. Mol. Sci. 2015, 36, 13973–13988. [Google Scholar] [CrossRef] [Green Version]
- Mallick, S.; Sharma, S.; Banerjee, M.; Ghosh, S.S.; Chattopadhyay, A.; Paul, A. Iodine stabilized Cu nanoparticle chitosan composite for antibacterial applications. ACS Appl. Mater. Interfaces 2012, 4, 1313–1323. [Google Scholar] [CrossRef]
- Zhao, Y.; Jiang, Y.; Fang, Y. Spectroscopy property of Ag nanoparticles. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2006, 65, 1003–1006. [Google Scholar] [CrossRef]
- Kumar-Krishnan, S.; Prokhorov, E.; Hernández-Iturriaga, M.; Mota-Morales, J.D.; Vázquez-Lepe, M.; Kovalenko, Y.; Sanchez, I.C.; Luna-Bárcenas, G. Chitosan/silver nanocomposites: Synergistic antibacterial action of silver nanoparticles and silver ions. Eur. Polym. J. 2015, 67, 242–251. [Google Scholar] [CrossRef]
- Reicha, F.M.; Sarhan, A.; Abdel-Hamid, M.I.; El-Sherbiny, I.M. Preparation of silver nanoparticles in the presence of chitosan by electrochemical method. Carbohydr. Polym. 2012, 89, 236–244. [Google Scholar] [CrossRef] [PubMed]
- Prashanth, K.V.H.; Kittur, F.S.; Tharanathan, R.N. Solid state structure of chitosan prepared under different N-deacetylating conditions. Carbohydr. Polym. 2002, 11, 27–33. [Google Scholar] [CrossRef]
- Li, H.L.; Deng, J.C.; Deng, H.R.; Liu, Z.L.; Li, X.L. Preparation, characterization and antimicrobial activities of chitosan/Ag/ZnO blend films. Chem. Eng. J. 2010, 160, 378–382. [Google Scholar] [CrossRef]
- Varmaa, A.J.; Deshpande, S.V.; Kennedy, J.F. Metal complexation by chitosan and its derivatives: A review. Carbohydr. Polym. 2004, 55, 77–93. [Google Scholar] [CrossRef]
- Palatsingh, S.; Mohanta, A.; Panda, N.R.; Sahu, D. Evaluation of antibacterial activity, biodegradability and mechanical properties of chitosan blended ZnO biofilm for food packaging. Oriental J. Chem. 2020, 36, 367–372. [Google Scholar] [CrossRef]
- Kanimozhi, K.; Basha, S.K.; Kumari, V.S. Processing and characterization of chitosan/PVA and methylcellulose porous scaffolds for tissue engineering. Mat. Sci. Eng. C-Mater. 2016, 61, 484–491. [Google Scholar] [CrossRef]
- Hua, Z.H.; Zhang, L.; Zhong, L.L.; Zhou, Y.Z.; Xue, J.Q.; Li, Y. Preparation of an antibacterial chitosan-coated biochar-nanosilver composite for drinking water purification. Carbohydr. Polym. 2019, 291, 290–297. [Google Scholar] [CrossRef]
- Li, Q.; Lu, F.; Zhou, G.; Yu, K.; Lu, B.; Xiao, Y.; Dai, F.; Wu, D.; Lan, G. Silver inlaid with gold nanoparticle/chitosan wound dressing enhances antibacterial activity and porosity, and promotes wound healing. Biomacromolecules 2017, 18, 3766–3775. [Google Scholar] [CrossRef]
- Pinto, R.J.; Fernandes, S.C.; Freire, C.S.; Sadocco, P.; Causio, J.; Neto, C.P.; Trindade, T. Antibacterial activity of optically transparent nanocomposite films based on chitosan or its derivatives and silver nanoparticles. Carbohydr. Res. 2012, 348, 77–83. [Google Scholar] [CrossRef]
- Razzaz, A.; Ghorban, S.; Hosayni, L.; Irani, M.; Aliabadi, M. Chitosan nanofibers functionalized by TiO2 nanoparticles for the removal of heavy metal ions. J. Taiwan Inst. Chem. E 2016, 58, 333–343. [Google Scholar] [CrossRef]
- Singh, P.; Chauhan, K.; Priya, V.; Singhal, R.K. A greener approach for impressive removal of As3+/As5+ from an ultra-low concentration using a highly efficient chitosan thiomer as a new adsorbent. RSC Adv. 2016, 6, 64946–64961. [Google Scholar] [CrossRef]
Preparation Conditions | Diameters of Inhibition Zone against E. coli (mm) | Diameters of Inhibition Zone against S. aureus (mm) | |
---|---|---|---|
AgNO3 (g) | 0.05 | 8.1 | 5.4 |
0.10 | 10.3 | 7.2 | |
0.15 | 14.5 | 8.0 | |
0.20 | 16.0 | 9.1 | |
0.25 | 16.0 | 9.0 | |
Glutaraldehyde (%) | 0.5 | 16.1 | 8.0 |
0.75 | 16.0 | 8.3 | |
1.0 | 16.2 | 8.3 | |
1.5 | 15.9 | 8.0 | |
2.0 | 16.0 | 8.1 | |
Dibutyl phthalate (mL) | 0 | 13.8 | 8.1 |
2.5 | 14.3 | 8.3 | |
5.0 | 12.4 | 8.2 | |
7.5 | 14.0 | 8.4 | |
10.0 | 12.1 | 7.7 | |
Temperature (°C) | 25 | 14.1 | 7.3 |
35 | 14.5 | 8.0 | |
45 | 16.2 | 8.5 | |
55 | 16.1 | 8.0 | |
65 | 16.0 | 8.1 |
Runs of Laundering | Diameter of Inhibition Zone against E. coli (mm) |
---|---|
0 | 12.7 |
20 | 12.2 |
40 | 10.5 |
60 | 10.1 |
80 | 8.7 |
100 | 8.1 |
120 | 8.0 |
140 | 8.0 |
160 | 7.3 |
Amount of Ag/Cu-CTS Composite Used for Laundering (g) | Colony (CFU/mL) | Inhibition Rate (%) | Ag Emission |
---|---|---|---|
0 | 2.65 × 105 | / | Undetected |
5 | 2.085 × 105 | 21.3 | Undetected |
10 | 5.85 × 104 | 77.9 | Undetected |
15 | 0 | 99.9 | Undetected |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiang, M.; Wu, J.; Zhang, H.; Zhan, X. Ag/Cu-Chitosan Composite Improves Laundry Hygiene and Reduces Silver Emission in Washing Machines. Polymers 2023, 15, 695. https://doi.org/10.3390/polym15030695
Qiang M, Wu J, Zhang H, Zhan X. Ag/Cu-Chitosan Composite Improves Laundry Hygiene and Reduces Silver Emission in Washing Machines. Polymers. 2023; 15(3):695. https://doi.org/10.3390/polym15030695
Chicago/Turabian StyleQiang, Mengdan, Jianrong Wu, Hongtao Zhang, and Xiaobei Zhan. 2023. "Ag/Cu-Chitosan Composite Improves Laundry Hygiene and Reduces Silver Emission in Washing Machines" Polymers 15, no. 3: 695. https://doi.org/10.3390/polym15030695
APA StyleQiang, M., Wu, J., Zhang, H., & Zhan, X. (2023). Ag/Cu-Chitosan Composite Improves Laundry Hygiene and Reduces Silver Emission in Washing Machines. Polymers, 15(3), 695. https://doi.org/10.3390/polym15030695