Optimization the Stab Resistance and Flexibility of Ultra-High Molecular Weight Polyethylene Knitted Structure Fabric with Response Surface Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Preparation
2.2. Test Method
3. Results and Discussion
3.1. Shear Resistant Force and Breaking Strength of UHMWPE
3.2. Analysis of Single-Factor
3.3. Response Surface Method Optimization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Panneke, N.; Ehrmann, A. Stab-Resistant Polymers—Recent Developments in Materials and Structures. Polymers 2023, 15, 983. [Google Scholar] [CrossRef]
- Nayak, R.; Crouch, I.; Kanesalingam, S.; Ding, J.; Tan, P.; Lee, B.; Miao, M.H.; Ganga, D.; Wang, L.J. Body armor for stab and spike protection, Part 1: Scientific literature review. Text. Res. J. 2018, 88, 812–832. [Google Scholar] [CrossRef]
- Hou, L.; Sun, B.; Gu, B. An analytical model for predicting stab resistance of flexible woven composites. Appl. Compos. Mater. 2013, 20, 569–585. [Google Scholar] [CrossRef]
- Mawkhlieng, U.; Majumdar, A.; Laha, A. A review of fibrous materials for soft body armour applications. RSC Adv. 2020, 10, 1066–1086. [Google Scholar] [CrossRef]
- Tien, D.T.; Kim, J.S.; Huh, Y. Evaluation of anti-stabbing performance of fabric layers woven with various hybrid yarns under different fabric conditions. Fiber. Polym. 2011, 12, 808–815. [Google Scholar] [CrossRef]
- Cai, W.; Li, T.; Zhang, X. Polyacrylate and Carboxylic Multi-Walled Carbon Nanotube-Strengthened Aramid Fabrics as Flexible Puncture-Resistant Composites for Anti-Stabbing Applications. ACS Appl. Nano Mater. 2023, 6, 6334–6344. [Google Scholar] [CrossRef]
- Li, D.; Wang, R.; Guan, F.; Zhu, Y.J.; You, F.F. Enhancement of the quasi-static stab resistance of Kevlar fabrics impregnated with shear thickening fluid. J. Mater. Res. Technol. 2022, 18, 3673–3683. [Google Scholar] [CrossRef]
- Xu, Y.; Chen, X.; Wang, Y.; Yuan, Z.S. Stabbing resistance of body armour panels impregnated with shear thickening fluid. Compos. Struct. 2017, 163, 465–473. [Google Scholar] [CrossRef]
- Zhang, X.; Li, T.T.; Peng, H.K.; Lou, C.W.; Lin, J.H. Enhanced sandwich structure composite with shear thickening fluid and thermoplastic polyurethanes for High-performance stab resistance. Compos. Struct. 2022, 280, 114930. [Google Scholar] [CrossRef]
- Gadow, R.; Niessen, K.V. Lightweight ballistic with additional stab protection made of thermally sprayed ceramic and cermet coatings on aramide fabrics. Int. J. Appl. Ceram. Tec. 2006, 3, 284–292. [Google Scholar] [CrossRef]
- Lin, T.R.; Lin, T.A.; Lin, M.C.; Lin, Y.Y.; Lou, C.W.; Lin, J.H. Impact resistance of fiber reinforced sandwich-structured nonwoven composites: Reinforcing effect of different fiber length. Mater. Today Commun. 2020, 24, 101345. [Google Scholar] [CrossRef]
- Mao, L.Z.; Zhou, M.J.; Yao, L.; Yu, H.; Yan, X.F.; Shen, Y.; Chen, W.S.; Ma, P.B.; Ma, Y.; Zhang, S.L.; et al. Crocodile Skin-Inspired Protective Composite Textiles with Pattern-Controllable Soft-Rigid Unified Structures. Adv. Funct. Mater. 2023, 33, 2213419. [Google Scholar] [CrossRef]
- Rao, S.V.S.; Midha, V.; Kumar, N. Studies on the stab resistance and ergonomic comfort behaviour of multilayer STF-treated tri-component woven fabric and HPPE laminate composite material. J. Text. Inst. 2023, 7, 1–8. [Google Scholar] [CrossRef]
- Gürgen, S.; Kuşhan, M.C. The stab resistance of fabrics impregnated with shear thickening fluids including various particle size of additives. Compos. Part A Appl. Sci. Manuf. 2017, 94, 50–60. [Google Scholar] [CrossRef]
- Bilisik, K. Two-dimensional (2D) fabrics and three-dimensional (3D) preforms for ballistic and stabbing protection: A review. Text. Res. J. 2017, 87, 2275–2304. [Google Scholar] [CrossRef]
- Kang, T.J.; Hong, K.H.; Yoo, M.R. Preparation and properties of fumed silica/Kevlar composite fabrics for application of stab resistant material. Fiber. Polym. 2010, 11, 719–724. [Google Scholar] [CrossRef]
- Na, W.; Ahn, H.; Han, S.J.; Harrison, P.; Park, J.K.; Jeong, E.; Yu, W.R. Shear behavior of a shear thickening fluid-impregnated aramid fabrics at high shear rate. Compos. Part B Eng. 2016, 97, 162–175. [Google Scholar] [CrossRef]
- Zhang, X.; Li, T.T.; Wang, Y.X.; Shiu, B.C.; Peng, H.K.; Lou, C.W.; Lin, J.H. Hydrogel with high toughness and strength for fabricating high performance stab-resistant aramid composite fabric. J. Mater. Res. Technol. 2021, 15, 1630–1641. [Google Scholar] [CrossRef]
- Liu, H.Q.; Fu, K.K.; Cui, X.Y.; Zhu, H.X.; Yang, B. Shear Thickening Fluid and Its Application in Impact Protection: A Review. Polymers 2023, 15, 2238. [Google Scholar] [CrossRef]
- Obradović, V.; Stojanović, D.B.; Jokić, B.; Zrilić, M.; Radojević, V.; Uskoković, P.S.; Aleksić, R. Nanomechanical and anti-stabbing properties of Kolon fabric composites reinforced with hybrid nanoparticles. Compos. Part B Eng. 2017, 108, 143–152. [Google Scholar] [CrossRef]
- Khuyen, N.Q.; Han, P.V.D.; Nguyen, N.T.; Le, Q.B.; Harjo, M.; Anbarjafari, G.; Kiefer, R.; Tamm, T. The Use of Laminates of Commercially Available Fabrics for Anti-Stab Body-Armor. Polymers 2021, 13, 1077. [Google Scholar] [CrossRef]
- Wei, R.B.; Dong, B.; Zhai, W.; Li, H. Stab-Resistant Performance of the Well-Engineered Soft Body Armor Materials Using Shear Thickening Fluid. Molecules 2022, 27, 6799. [Google Scholar] [CrossRef]
- Xia, M.M.; Quan, Z.Z.; Wang, X.L.; Yu, J.Y. Preparation and characterization of B4C particle coated composites for stab-resistance. Compos. Struct. 2019, 228, 111370. [Google Scholar] [CrossRef]
- Baharvandi, H.R.; Alebooyeh, M.; Alizadeh, M.; Khaksari, P.; Kordani, N. Effect of silica weight fraction on rheological and quasi-static puncture characteristics of shear thickening fluid-treated Twaron® composite. J. Ind. Text. 2016, 46, 473–494. [Google Scholar] [CrossRef]
- Li, T.T.; Wang, R.; Lou, C.W.; Lin, J.Y.; Lin, J.H. Static and dynamic puncture failure behaviors of 3D needle-punched compound fabric based on Weibull distribution. Text. Res. J. 2014, 84, 1903–1914. [Google Scholar] [CrossRef]
- Krauledaitė, J.; Ancutienė, K.; Urbelis, V.; Krauledas, S.; Sacevičienė, V. Development and evaluation of 3D knitted fabrics to protect against mechanical risk. J. Ind. Text. 2019, 49, 383–401. [Google Scholar] [CrossRef]
- Memon, A.A.; Peerzada, M.H.; Sahito, I.A.; Abbassi, S.; Jeong, S.H. Facile fabrication and comparative exploration of high cut resistant woven and knitted composite fabrics using Kevlar and polyethylene. Fash. Text. 2018, 5, 5. [Google Scholar] [CrossRef]
- McKee, P.J.; Sokolow, A.C.; Jian, H.Y.; Long, L.L.; Wetzel, E.D. Finite element simulation of ballistic impact on single jersey knit fabric. Compos. Struct. 2017, 162, 98–107. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, L.L.; Luo, M.; Wu, Q.; Kang, Y.; Ma, P.B. Stab resistance of flexible composite reinforced with warp-knitted fabric like scale structure at quasi-static loading. J. Ind. Text. 2022, 51, 7983S–7998S. [Google Scholar] [CrossRef]
- Niu, L.; Zhao, S.Q.; Liu, Q.; Wu, G.J.; Chen, C.Y.; Ma, P.B. Analyzing the output performance of the knitted triboelectric nanogenerator based on the fish-scale shape using fast Fourier transform. Text. Res. J. 2022, 92, 1079–1087. [Google Scholar] [CrossRef]
- Liu, Q.; Mao, H.W.; Niu, L.; Chen, F.X.; Ma, P.B. Excellent flexibility and stab-resistance on pangolin-inspired scale-like structure composite for versatile protection. Compos. Commun. 2022, 35, 101266. [Google Scholar] [CrossRef]
- Cao, S.S.; Pang, H.M.; Zhao, C.Y.; Xuan, S.H.; Gong, X.L. The CNT/PSt-EA/Kevlar composite with excellent ballistic performance. Compos. Part B Eng. 2020, 185, 107793. [Google Scholar] [CrossRef]
- Tang, F.; Dong, C.; Yang, Z.; Kang, Y.; Huang, X.C.; Li, M.H.; Chen, Y.C.; Cao, W.J.; Huang, C.G.; Guo, Y.C.; et al. Protective performance and dynamic behavior of composite body armor with shear stiffening gel as buffer material under ballistic impact. Compos. Sci. Technol. 2022, 218, 109190. [Google Scholar] [CrossRef]
- Bao, L.M.; Wang, Y.L.; Baba, T.; Fukuda, Y.; Wakatsuki, K.; Morikawa, H. Development of a high-density nonwoven structure to improve the stab resistance of protective clothing material. Ind. Health 2017, 55, 513–520. [Google Scholar] [CrossRef]
- Li, T.T.; Fang, J.; Huang, C.H.; Lou, C.W.; Lin, J.Y.; Lin, M.C.; Chen, Y.S.; Lin, J.H. Numerical simulation of dynamic puncture behaviors of woven fabrics based on the Finite Element Method. Text. Res. J. 2017, 87, 1308–1317. [Google Scholar] [CrossRef]
- Arora, S.; Majumdar, A.; Butola, B.S. Structure induced effectiveness of shear thickening fluid for modulating impact resistance of UHMWPE fabrics. Compos. Struct. 2019, 210, 41–48. [Google Scholar] [CrossRef]
- Boubaker, J.; Rim, C.; Nihed, B. Evaluating the effectiveness of coating knitted fabrics with silica nanoparticles for protection from needle-stick injuries. J. Ind. Text. 2022, 51, 3372S–3392S. [Google Scholar] [CrossRef]
- Wang, L.J.; Yu, K.J.; Zhang, D.T.; Qian, K. Cut resistant property of weft knitting structure: A review. J. Ind. Text. 2018, 109, 1054–1066. [Google Scholar] [CrossRef]
- GB/T 7690. 3-2013; Reinforcements. Test Method for Yarns. Part 3: Determination of Breaking Force and Breaking Elongation for Glass Fibre. Standardization Administration of China: Beijing, China, 2013.
- ASTM D 3787:2016: R2020; Standard Test Method for Bursting Strength of Textiles—Constant-Rate-of-Traverse (CRT) Ball Burst Test. American Society for Testing and Materials: West Conshohocken, PA, USA, 2020.
- GA 68-2019; Police Stab Proof Clothing. National Technical Committee on Police Equipment: Beijing, China, 2019.
- GB/T 18318-2009; Textiles—Determination of Bending Behavior. Standardization Administration of China: Beijing, China, 2009.
- Komorek, A.; Przybyłek, P.; Szczepaniak, R.; Godzimirski, J.; Rośkowicz, M.; Imiłowski, S. The influence of low-energy impact loads on the properties of the sandwich composite with a foam core. Polymers 2022, 14, 1566. [Google Scholar] [CrossRef]
- Li, M.R.; Boussu, F.; Soulat, D.; Luo, J.; Wang, P. Impact resistance of pre-deformed stab of multi-ply three-dimensional interlock polymeric fabrics. J. Ind. Text. 2022, 51, 4818S–4841S. [Google Scholar] [CrossRef]
Factors | A: Yarn Specifications/(D) | B: Stitch Density | C: Fabric Structure | D: Blending Ratio/(%) | |
---|---|---|---|---|---|
Levels | L1 | 200 | −10 | 1 × 3 | 100 |
L2 | 400 | −5 | 1 × 5 | 75 | |
L3 | 600 | 0 | 1 × 7 | 50 | |
L4 | 800 | 5 | 1 × 9 | 25 | |
L5 | 1000 | 10 | 1 × 11 | 0 | |
Normality | p (L1) | 0.666 | 0.381 | 0.993 | 0.439 |
p (L2) | 0.761 | 0.176 | 0.630 | 0.209 | |
p (L3) | 0.876 | 0.215 | 0.796 | 0.265 | |
p (L4) | 0.676 | 0.263 | 0.867 | 0.672 | |
p (L5) | 0.084 | 0.210 | 0.247 | 0.338 | |
Homogeneity | p | 0.287 | 0.986 | 0.547 | 0.932 |
ANOVA | F | 14.930 | 2.052 | 8.894 | 6.008 |
p | <0.001 | 0.142 | <0.001 | 0.016 |
No. | Levels | Thickness/(mm) | Areal Density/(g·m−2) | Stitch Density /(Wales/5 cm × Courses/5 cm) | No. | Levels | Thickness/(mm) | Areal Density/(g·m−2) | Stitch Density /(Wales/5 cm × Courses/5 cm) |
---|---|---|---|---|---|---|---|---|---|
A | L1 | 0.69 | 168 | 70 × 118 | C | L1 | 1.95 | 920 | 76 × 138 |
L2 | 1.16 | 422 | 70 × 112 | L2 | 1.87 | 777 | 70 × 124 | ||
L3 | 1.47 | 504 | 64 × 106 | L3 | 1.86 | 747 | 68 × 118 | ||
L4 | 1.75 | 659 | 64 × 102 | L4 | 1.87 | 733 | 68 × 115 | ||
L5 | 1.97 | 771 | 60 × 100 | L5 | 1.47 | 504 | 64 × 106 | ||
B | L1 | 1.41 | 677 | 74 × 192 | D | L1 | 1.47 | 504 | 64 × 106 |
L2 | 1.46 | 571 | 70 × 156 | L2 | 1.51 | 528 | 64 × 118 | ||
L3 | 1.47 | 463 | 68 × 140 | L3 | 1.64 | 641 | 66 × 130 | ||
L4 | 1.46 | 424 | 64 × 122 | L4 | 1.65 | 711 | 66 × 136 | ||
L5 | 1.49 | 367 | 64 × 106 | L5 | 1.75 | 739 | 70 × 148 |
β0 | β1 | β2 | β3 | β12 | β13 | β23 | β11 | β22 | β33 | |
---|---|---|---|---|---|---|---|---|---|---|
Stab resistance | +49.9 | +5.10 | −6.32 | +4.32 | +1.10 | +1.73 | −0.6753 | −3.72 | −2.56 | −5.00 |
Flexibility | +0.935 | −0.027 | +0.030 | +0.0155 | +0.0013 | −0.0039 | +0.0006 | −0.0016 | −0.026 | +0.001 |
Experiment No. | A: Yarn Specifications/(D) | C: Fabric Structure | D: Blending Ratio/(%) | Peak Force/(N) | Flexibility/(%) |
---|---|---|---|---|---|
1 | 400 | 1 × 9 | 25 | 23.6227 | 94.1363 |
2 | 600 | 1 × 7 | 50 | 50.622 | 92.7015 |
3 | 600 | 1 × 7 | 100 | 39.6543 | 96.8728 |
4 | 600 | 1 × 7 | 50 | 53.01 | 92.4698 |
5 | 400 | 1 × 9 | 75 | 28.282 | 97.7589 |
6 | 600 | 1 × 3 | 50 | 58.306 | 74.4592 |
7 | 400 | 1 × 5 | 75 | 40.679 | 94.8173 |
8 | 1000 | 1 × 7 | 50 | 47.308 | 88.703 |
9 | 200 | 1 × 7 | 50 | 26.9573 | 96.9847 |
10 | 600 | 1 × 7 | 50 | 48.389 | 94.6545 |
11 | 600 | 1 × 7 | 0 | 24.303 | 90.907 |
12 | 400 | 1 × 5 | 25 | 33.054 | 90.4713 |
13 | 800 | 1 × 5 | 75 | 52.025 | 86.529 |
14 | 800 | 1 × 5 | 25 | 37.748 | 84.7117 |
15 | 600 | 1 × 7 | 50 | 46.025 | 95.7696 |
16 | 600 | 1 × 11 | 50 | 25.202 | 91.6756 |
17 | 800 | 1 × 9 | 25 | 32.4462 | 87.9252 |
18 | 600 | 1 × 7 | 50 | 49.763 | 93.5647 |
19 | 600 | 1 × 7 | 50 | 55.763 | 91.8816 |
20 | 800 | 1 × 9 | 75 | 44.2864 | 90.9779 |
Sum of Squares | Degree of Freedom | Mean Square | F Value | p Value | Significant | |
---|---|---|---|---|---|---|
Model | 2232.10 | 9 | 248.01 | 13.14 | 0.0002 | ** |
A | 415.85 | 1 | 415.85 | 22.04 | 0.0008 | ** |
C | 638.53 | 1 | 638.53 | 33.84 | 0.0002 | ** |
D | 298.46 | 1 | 298.46 | 15.82 | 0.0026 | ** |
AC | 9.65 | 1 | 9.65 | 0.5116 | 0.4908 | |
AD | 23.92 | 1 | 23.92 | 1.27 | 0.2865 | |
DC | 3.65 | 1 | 3.65 | 0.1933 | 0.6695 | |
A2 | 347.08 | 1 | 347.08 | 18.39 | 0.0016 | ** |
C2 | 164.79 | 1 | 164.79 | 8.73 | 0.0144 | * |
D2 | 629.56 | 1 | 629.56 | 33.36 | 0.0002 | ** |
Residual | 188.70 | 10 | 18.87 | |||
Lack of Fit | 129.71 | 5 | 25.94 | 2.20 | 0.2037 | |
Pure Error | 58.98 | 5 | 11.80 |
Sum of Squares | Degree of Freedom | Mean Square | F Value | p Value | Significant | |
---|---|---|---|---|---|---|
Model | 0.0491 | 9 | 0.0055 | 12.49 | 0.0002 | ** |
A | 0.0119 | 1 | 0.0119 | 27.23 | 0.0004 | ** |
C | 0.0148 | 1 | 0.0148 | 33.97 | 0.0002 | ** |
D | 0.0038 | 1 | 0.0038 | 8.79 | 0.0142 | * |
AC | 0.0000 | 1 | 0.0000 | 0.0319 | 0.8618 | |
AD | 0.0001 | 1 | 0.0001 | 0.2750 | 0.6114 | |
DC | 3.277 × 10−6 | 1 | 3.277 × 10−6 | 0.0075 | 0.9327 | |
A2 | 0.0001 | 1 | 0.0001 | 0.1433 | 0.7130 | |
C2 | 0.0170 | 1 | 0.0170 | 39.00 | < 0.0001 | ** |
D2 | 0.0000 | 1 | 0.0000 | 0.0621 | 0.8083 | |
Residual | 0.0044 | 10 | 0.0004 | |||
Lack of Fit | 0.0033 | 5 | 0.0007 | 3.04 | 0.1240 | |
Pure Error | 0.0011 | 5 | 0.0002 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, X.; Su, T.; Liang, X.; Cong, H. Optimization the Stab Resistance and Flexibility of Ultra-High Molecular Weight Polyethylene Knitted Structure Fabric with Response Surface Method. Polymers 2023, 15, 4509. https://doi.org/10.3390/polym15234509
Yu X, Su T, Liang X, Cong H. Optimization the Stab Resistance and Flexibility of Ultra-High Molecular Weight Polyethylene Knitted Structure Fabric with Response Surface Method. Polymers. 2023; 15(23):4509. https://doi.org/10.3390/polym15234509
Chicago/Turabian StyleYu, Xuliang, Ting Su, Xinhua Liang, and Honglian Cong. 2023. "Optimization the Stab Resistance and Flexibility of Ultra-High Molecular Weight Polyethylene Knitted Structure Fabric with Response Surface Method" Polymers 15, no. 23: 4509. https://doi.org/10.3390/polym15234509
APA StyleYu, X., Su, T., Liang, X., & Cong, H. (2023). Optimization the Stab Resistance and Flexibility of Ultra-High Molecular Weight Polyethylene Knitted Structure Fabric with Response Surface Method. Polymers, 15(23), 4509. https://doi.org/10.3390/polym15234509