Corrosion Degree Evaluation of Polymer Anti-Corrosive Oil Well Cement under an Acidic Geological Environment Using an Artificial Neural Network
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Preparation of Cement Samples
2.2.2. Corrosion Simulation Experiment
2.2.3. Measurement of Corrosion Degree
2.2.4. Test of Compressive Strength
2.2.5. Analysis of Micromorphology
2.2.6. PSO Algorithm
2.3. Model Simulation
3. Results
3.1. The Effect of Polymer Resin on the Properties of Oil Well Cement
3.2. Corrosion Law of Polymer Anti-Corrosion Cement Slurry
3.3. Establishment of Corrosion Prediction Model
3.4. Evaluation of Long-Term Corrosion Degree of Polymer Anti-Corrosion Cement
3.4.1. Prediction of Corrosion Depth
3.4.2. Evaluation of Long-Term Corrosion Degree
4. Discussion
4.1. Anti-Corrosive Mechanism of Polymer Resin
4.2. PSO-BP Model
4.3. Comparison between the PSO-BP Model and the Traditional BP Model
4.4. Comparison between the PSO-BP Model and the Regression Model
4.5. Micromorphology of Cement Samples
5. Conclusions
- (1)
- Adding polymer resin can reduce the strength of cement to some extent but greatly enhance the corrosion resistance of oil well cement. Polymer anti-corrosion cement has lower corrosion than blank cement slurry in long-term corrosion.
- (2)
- The PSO algorithm can accelerate the convergence of BP neural networks and avoid BP neural networks falling into the local extremum. The PSO-BP model has higher accuracy in predicting the long-term corrosion depth of cement in complex geological environments compared to regression models and traditional BP networks.
- (3)
- The artificial neural network prediction model based on PSO optimization performs well in predicting and evaluating the long-term corrosion degree of polymer anti-corrosion cement and can guide the design and evaluation of anti-corrosion cement slurry.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Arjomand, E.; Bennett, T.; Nguyen, G.D. Evaluation of cement sheath integrity subject to enhanced pressure! J. Pet. Sci. Eng. 2018, 170, 1–13. [Google Scholar] [CrossRef]
- Kiran, R.; Teodoriu, C.; Dadmohammadi, Y.; Nygaard, R.; Wood, D.; Mokhtari, M.; Salehi, S. Identification and evaluation of well integrity and causes of failure of well integrity barriers (A review). J. Nat. Gas Sci. Eng. 2017, 45, 511–526. [Google Scholar] [CrossRef]
- Patel, H.; Salehi, S. Structural integrity of liner cement in oil & gas wells: Parametric study, sensitivity analysis, and risk assessment. Eng. Fail. Anal. 2021, 122, 105203. [Google Scholar] [CrossRef]
- Marbun, B.T.H.; Prasetyok, D.E.; Prabowo, H.; Susilo, D.; Firmansyah, F.R.; Palilu, J.M.; Silamba, I.C.; Santoso, D.; Kadir, W.G.A.; Sule, R.; et al. Well integrity evaluation prior to converting a conventional gas well to CO2 injector well—Gundih CCS pilot project in Indonesia (phase 1). Int. J. Greenh. Gas Control 2019, 88, 447–459. [Google Scholar] [CrossRef]
- Liaudat, J.; Martinez, A.; Lopez, C.M.; Carol, I. Modelling acid attack of oilwell cement exposed to carbonated brine. Int. J. Greenh. Gas Control 2018, 68, 191–202. [Google Scholar] [CrossRef]
- Kuo, C.C.; Wang, C.L.; Hsiang, H.I. Mechanical and microscopic properties of API G cement after exposure to supercritical CO2. Terr. Atmos. Ocean. Sci. 2017, 28, 209–216. [Google Scholar] [CrossRef]
- Yin, S.H.; Yang, Y.F.; Zhang, T.S.; Guo, G.F.; Yu, F. Effect of carbonic acid water on the degradation of Portland cement paste: Corrosion process and kinetics. Constr. Build. Mater. 2015, 91, 39–46. [Google Scholar] [CrossRef]
- Peng, Z.; Lv, F.; Feng, Q.; Zheng, Y. Enhancing the CO2-H2S corrosion resistance of oil well cement with a modified epoxy resin. Constr. Build. Mater. 2022, 326, 126854. [Google Scholar] [CrossRef]
- Qu, L.; Wang, Q.; Mao, J.; Xu, S.; Zhang, H.; Shi, Z.; Li, X. Study of anti-chlorine corrosion of anion exchange resin based superhydrophobic cement mortar in chloride salt environment. Constr. Build. Mater. 2021, 313, 125540. [Google Scholar] [CrossRef]
- Wu, Z.; Song, J.; Xu, M.; Liu, W.; Chen, R.; Pu, L.; Zhou, S. Effect of weighting materials on carbonation of oil well cement-based composites under high temperature and CO2-rich environment. Arab. J. Chem. 2023, 16, 104670. [Google Scholar] [CrossRef]
- Guo, S.-Y.; Zhang, X.; Chen, J.-Z.; Mou, B.; Shang, H.-S.; Wang, P.; Zhang, L.; Ren, J. Mechanical and interface bonding properties of epoxy resin reinforced Portland cement repairing mortar. Constr. Build. Mater. 2020, 264, 120715. [Google Scholar] [CrossRef]
- Aguiar, J.B.; Junior, C. Carbonation of surface protected concrete. Constr. Build. Mater. 2013, 49, 478–483. [Google Scholar] [CrossRef]
- Wang, Z.; Li, W.; Chen, J. Application of Various Nonlinear Models to Predict the Uniaxial Compressive Strength of Weakly Cemented Jurassic Rocks. Nat. Resour. Res. 2022, 31, 371–384. [Google Scholar] [CrossRef]
- Fu, H.; Li, K.; Zhang, C.; Zhang, J.; Liu, J.; Chen, X.; Chen, G.; Sun, Y.; Li, S.; Ling, L. Machine-Learning-Assisted Optimization of a Single-Atom Coordination Environment for Accelerated Fenton Catalysis. ACS Nano 2023, 17, 13851–13860. [Google Scholar] [CrossRef]
- Hao, X.; Guo, T.; Huang, G.; Shi, X.; Zhao, Y.; Yang, Y. Energy consumption prediction in cement calcination process: A method of deep belief network with sliding window. Energy 2020, 207, 118256. [Google Scholar] [CrossRef]
- Shiratori, K.; Bishop, L.D.C.; Ostovar, B.; Baiyasi, R.; Cai, Y.-Y.; Rossky, P.J.; Landes, C.F.; Link, S. Machine-Learned Decision Trees for Predicting Gold Nanorod Sizes from Spectra. J. Phys. Chem. C 2021, 125, 19353–19361. [Google Scholar] [CrossRef]
- Terzic, A.; Radulovic, D.; Pezo, M.; Stojanovic, J.; Pezo, L.; Radojevic, Z.; Andric, L. Prediction model based on artificial neural network for pyrophyllite mechano-chemical activation as an integral step in production of cement binders. Constr. Build. Mater. 2020, 258, 119721. [Google Scholar] [CrossRef]
- Tsamatsoulis, D. Prediction of Cement Compressive Strength by Combining Dynamic Models of Neural Networks. Chem. Biochem. Eng. Q. 2021, 35, 295–318. [Google Scholar] [CrossRef]
- Brown, K.A.; Brittman, S.; Maccaferri, N.; Jariwala, D.; Ceano, U. Machine Learning in Nanoscience: Big Data at Small Scales. Nano Lett. 2020, 20, 2–10. [Google Scholar] [CrossRef]
- Ivanov, A.S.; Nikolaev, K.G.; Novikov, A.S.; Yurchenko, S.O.; Novoselov, K.S.; Andreeva, D.V.; Skorb, E.V. Programmable Soft-Matter Electronics. J. Phys. Chem. Lett. 2021, 12, 2017–2022. [Google Scholar] [CrossRef]
- Zou, X.F.; Hu, Y.J.; Long, X.B.; Huang, L.Y. Prediction and optimization of phosphorus content in electroless plating of Cr12MoV die steel based on PSO-BP model. Surf. Interfaces 2020, 18, 100443. [Google Scholar] [CrossRef]
- Anysz, H.; Narloch, P. Designing the Composition of Cement Stabilized Rammed Earth Using Artificial Neural Networks. Materials 2019, 12, 1396. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Song, J.; Xu, M.; Wang, X.; Yin, Z.; Liu, T.; Luo, N. Prediction of the corrosion depth of oil well cement corroded by carbon dioxide using GA-BP neural network. Constr. Build. Mater. 2023, 394, 132127. [Google Scholar] [CrossRef]
- GB/T 19139-2012; Test Methods for Oil Well Cement. China Standard Press: Beijing, China, 2012.
- Zhang, C.; Zhang, J.; Peng, B.; Qiao, H. Depth and prediction model of oilwell cement stone eroded by carbon dioxide. J. Portland 2010, 38, 1782–1787. [Google Scholar] [CrossRef]
- Steiner, S.; Lothenbach, B.; Proske, T.; Borgschulte, A.; Winnefeld, F. Effect of relative humidity on the carbonation rate of portlandite, calcium silicate hydrates and ettringite. Cem. Concr. Res. 2020, 135, 106116. [Google Scholar] [CrossRef]
- Aladejare, A.E.; Akeju, V.O.; Wang, Y. Probabilistic characterisation of uniaxial compressive strength of rock using test results from multiple types of punch tests. Georisk-Assess. Manag. Risk Eng. Syst. Geohazards 2021, 15, 209–220. [Google Scholar] [CrossRef]
- Gaedicke, C.; Torres, A.; Huynh, K.C.T.; Marines, A. A method to correlate splitting tensile strength and compressive strength of pervious concrete cylinders and cores. Constr. Build. Mater. 2016, 125, 271–278. [Google Scholar] [CrossRef]
- Malik, S.; Kim, D. Prediction-Learning Algorithm for Efficient Energy Consumption in Smart Buildings Based on Particle Regeneration and Velocity Boost in Particle Swarm Optimization Neural Networks. Energies 2018, 11, 1289. [Google Scholar] [CrossRef]
- Wan, P.; Zou, H.; Wang, K.; Zhao, Z. Research on hot deformation behavior of Zr-4 alloy based on PSO-BP artificial neural network. J. Alloys Compd. 2020, 826, 154047. [Google Scholar] [CrossRef]
- Yang, J.; Hu, Y.; Zhang, K.; Wu, Y. An improved evolution algorithm using population competition genetic algorithm and self-correction BP neural network based on fitness landscape. Soft Comput. 2021, 25, 1751–1776. [Google Scholar] [CrossRef]
- Li, N.; Wang, Y.L.; Ma, W.T.; Xiao, Z.H.; An, Z.E. A Wind Power Prediction Method Based on DE-BP Neural Network. Front. Energy Res. 2022, 10, 844111. [Google Scholar] [CrossRef]
- Wang, B.; Yin, S.; Liu, M. Investigation on the Displacement Ductility Coefficient of Reinforced Concrete Columns Strengthened with Textile-Reinforced Concrete. Adv. Civ. Eng. 2021, 2021, 3152619. [Google Scholar] [CrossRef]
- Williamson, E.M.; Brutchey, R.L. Using Data-Driven Learning to Predict and Control the Outcomes of Inorganic Materials Synthesis. Inorg. Chem. 2023, 62, 16251–16262. [Google Scholar] [CrossRef] [PubMed]
- Han, W.; Nan, L.B.; Su, M.; Chen, Y.; Li, R.N.; Zhang, X.J. Research on the Prediction Method of Centrifugal Pump Performance Based on a Double Hidden Layer BP Neural Network. Energies 2019, 12, 2709. [Google Scholar] [CrossRef]
- Furuichi, T.; Takamizawa, T.; Tsujimoto, A.; Miyazaki, M.; Barkmeier, W.W.; Latta, M.A. Mechanical Properties and Sliding-impact Wear Resistance of Self-adhesive Resin Cements. Oper. Dent. 2016, 41, E83–E92. [Google Scholar] [CrossRef]
- Aliev, T.A.; Belyaev, V.E.; Pomytkina, A.V.; Nesterov, P.V.; Shityakov, S.; Sadovnichii, R.V.; Novikov, A.S.; Orlova, O.Y.; Masalovich, M.S.; Skorb, E.V. Electrochemical Sensor to Detect Antibiotics in Milk Based on Machine Learning Algorithms. ACS Appl. Mater. Interfaces 2023, 15, 52010–52020. [Google Scholar] [CrossRef] [PubMed]
- Yang, A.; Zhuansun, Y.; Liu, C.; Li, J.; Zhang, C. Design of Intrusion Detection System for Internet of Things Based on Improved BP Neural Network. IEEE Access 2019, 7, 106043–106052. [Google Scholar] [CrossRef]
- Liu, K.; Wang, S.; Quan, X.; Jing, W.; Xu, J.; Zhao, N.; Liu, B.; Ying, H. Industrial byproduct Iron ore tailings as ecofriendly materials in the utilization of cementitious composites. Constr. Build. Mater. 2023, 372, 130813. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author (s) and contributor (s) and not of MDPI and/or the editor (s). MDPI and/or the editor (s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
Component | CaO | SiO2 | Fe2O3 | Al2O3 | MgO | Na2O + K2 | Others |
---|---|---|---|---|---|---|---|
Content (%) | 64.2 | 22.5 | 4.4 | 4.1 | 1.6 | 0.38 | 2.82 |
Samples | Cement | Water | Reinforcer | Dispersant | Filtrate Reducer | Retarder | Resin |
---|---|---|---|---|---|---|---|
M0 | 100 | 44 | 2 | 0.5 | 2 | 0.4 | 0 |
M1 | 100 | 39 | 2 | 0.5 | 2 | 0.4 | 10 |
Sample Groups | Factors and Control Scope | Observations | |||
---|---|---|---|---|---|
Time (d) | Temperature (°C) | Pressure of CO2 (MPa) | Corrosion Depth (mm) | Compressive Strength (MPa) | |
100 | 1~60 | 50~90 | 5~25 | h | P |
Variable | Parameter | ||
---|---|---|---|
Input parameter | Pressure of CO2, Temperature, Time | ||
Network structure | 3-3-1, 3-7-1, 3-10-1, 3-12-1 | ||
Variable | Parameter | Variable | Parameter |
Total number of samples | 100 | Output parameters | Corrosion depth |
Training methods | Gradient descent (L-M) | Particle dimension | 16, 36, 51, 61 |
Number of training samples | 80 | Learning rate of BP | 0.01 |
Weight correction method | Error backpropagation | Number of test samples | 10 |
Maximum iterations of BP | 2000 | Inertial factor | 0.7 |
Number of hidden layers | 1 | Particle swarm size | 100 |
Maximum iterations of PSO | 100 | Target error (MSE) | 0.001 |
Number of validation samples | 10 | Minimum position | −1 |
Learning parameters of PSO | 0.05 | Maximum position | 1 |
Minimum speed | −0.1 | Maximum speed | 0.1 |
Model | Structure | R2 | Best Validation Error (MSE) | Iterations | Test Error (MSE) |
---|---|---|---|---|---|
PSO-BPNN1 | 3-3-1 | 0.9880 | 0.0024 | 19 | 0.0197 |
PSO-BPNN2 | 3-7-1 | 0.9955 | 0.0062 | 14 | 0.0163 |
PSO-BPNN3 | 3-10-1 | 0.9970 | 0.0022 | 4 | 0.0136 |
PSO-BPNN4 | 3-12-1 | 0.9953 | 0.0007 | 19 | 0.0216 |
NO. | Corrosive Conditions | Prediction of Corrosion Depth (mm) | ||||
---|---|---|---|---|---|---|
Pressure of CO2 (MPa) | Temperature (°C) | Time (d) | REG | BPNN | PSO-BPNN3 | |
1 | 25 | 50 | 365 | 5.533 | 4.070 | 5.543 |
2 | 15 | 80 | 365 | 5.775 | 4.072 | 5.867 |
3 | 5 | 90 | 500 | 5.838 | 4.834 | 6.174 |
4 | 15 | 70 | 1000 | 6.624 | 5.358 | 6.583 |
5 | 20 | 80 | 1500 | 7.381 | 5.569 | 7.691 |
Model | Structure | R2 | Best Validation Error (MSE) | Iterations | Test Error (MSE) |
---|---|---|---|---|---|
PSO-BPNN3 | 3-10-1 | 0.9970 | 0.0022 | 4 | 0.0136 |
BPNN | 3-10-1 | 0.9941 | 0.0028 | 14 | 0.0184 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, J.; Chen, R.; Liu, S.; Zhou, S.; Xu, M.; Dai, F. Corrosion Degree Evaluation of Polymer Anti-Corrosive Oil Well Cement under an Acidic Geological Environment Using an Artificial Neural Network. Polymers 2023, 15, 4441. https://doi.org/10.3390/polym15224441
Zhao J, Chen R, Liu S, Zhou S, Xu M, Dai F. Corrosion Degree Evaluation of Polymer Anti-Corrosive Oil Well Cement under an Acidic Geological Environment Using an Artificial Neural Network. Polymers. 2023; 15(22):4441. https://doi.org/10.3390/polym15224441
Chicago/Turabian StyleZhao, Jun, Rongyao Chen, Shikang Liu, Shanshan Zhou, Mingbiao Xu, and Feixu Dai. 2023. "Corrosion Degree Evaluation of Polymer Anti-Corrosive Oil Well Cement under an Acidic Geological Environment Using an Artificial Neural Network" Polymers 15, no. 22: 4441. https://doi.org/10.3390/polym15224441
APA StyleZhao, J., Chen, R., Liu, S., Zhou, S., Xu, M., & Dai, F. (2023). Corrosion Degree Evaluation of Polymer Anti-Corrosive Oil Well Cement under an Acidic Geological Environment Using an Artificial Neural Network. Polymers, 15(22), 4441. https://doi.org/10.3390/polym15224441