Switchable Deep Eutectic Solvents for Lignin Dissolution and Regeneration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Switchable Ionic Liquids
2.3. Preparation of Switchable Deep Eutectic Solvents
2.4. Characterizations of Solvent Properties
2.5. Preparation of Milled Wood Lignin
2.6. Solubility of the Lignin Model Compound
2.7. Dissolution and Regeneration of Lignin
2.8. Characterizations of Lignin
2.9. Molecular Simulation
3. Results and Discussion
3.1. Characterizations of Switchable Ionic Liquids
3.2. From Switchable Ionic Liquids to Switchable Deep Eutectic Solvents
3.3. Lignin Dissolution in Switchable Solvents
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
SIL/SDES | pH | Conductivity (μS/cm) | Viscosity (Pa·s) | Polarity |
---|---|---|---|---|
DBU–MeOH | 15.14 ± 0.16 | 0.307 ± 0.089 | 0.1095 ± 0.0972 | Non-polar |
DBU–MeOHCO2 | - | - | - | Polar |
DBU–MeOH′ | 14.48 ± 0.21 | 0.863 ± 0.161 | 0.0205 ± 0.1590 | Polar |
DBU–EtOH | 15.08 ± 0.20 | 0.224 ± 0.037 | 0.1337 ± 0.1894 | Non-polar |
DBU–EtOHCO2 | 12.48 ± 0.56 | 1.075 ± 0.365 | 0.6755 ± 0.3039 | Polar |
DBU–EtOH′ | 14.58 ± 0.12 | 0.681 ± 0.003 | 0.0190 ± 0.0022 | Polar |
DBU–EG | 14.32 ± 0.02 | 0.112 ± 0.010 | 0.0474 ± 0.0007 | Polar |
DBU–EGCO2 | 12.83 ± 0.17 | 0.278 ± 0.024 | 2.0262 ± 0.0322 | Polar |
DBU–EG′ | 13.25 ± 0.37 | 0.690 ± 0.245 | 0.2110 ± 0.0007 | Polar |
DBU–PrOH | 14.96 ± 0.04 | 0.148 ± 0.016 | 0.0070 ± 0.0013 | Non-polar |
DBU–PrOHCO2 | 12.02 ± 0.58 | 1.012 ± 0.013 | 0.5267 ± 0.0607 | Polar |
DBU–PrOH′ | 13.76 ± 0.04 | 0.528 ± 0.013 | 0.0389 ± 0.0090 | Non-polar |
DBU–PrOH | 15.01 ± 0.11 | 0.195 ± 0.011 | 0.1734 ± 0.1444 | Non-polar |
DBU–iPrOHCO2 | 12.62 ± 0.93 | 1.066 ± 0.012 | 0.4049 ± 0.0453 | Polar |
DBU–iPrOH′ | 14.33 ± 0.09 | 0.402 ± 0.006 | 0.0296 ± 0.2647 | Polar |
DBU–Gly | 13.95 ± 0.35 | 0.063 ± 0.041 | 0.5086 ± 0.0017 | Polar |
DBU–GlyCO2 | 13.27 ± 1.09 | 0.158 ± 0.061 | 1.2097 ± 0.0047 | Polar |
DBU–Gly′ | 13.68 ± 0.23 | 0.163 ± 0.067 | 1.0338 ± 0.0145 | Polar |
DBU–BuOH | 14.76 ±0.07 | 0.126 ± 0.015 | 0.0085 ± 0.0015 | Non-polar |
DBU–BuOHCO2 | 11.44 ± 0.64 | 1.239 ± 0.043 | 0.9127 ± 0.034 | Polar |
DBU–BuOH′ | 14.39 ± 0.02 | 0.616 ± 0.043 | 0.0138 ± 0.0009 | Non-polar |
DBU–sBuOH | 14.94 ± 0.05 | 0.047 ± 0.010 | 0.0057 ± 0.0019 | Non-polar |
DBU–sBuOHCO2 | 13.01 ± 0.14 | 0.799 ± 0.039 | 0.3782 ± 0.0769 | Polar |
DBU–sBuOH′ | 14.38 ± 0.10 | 0.328 ± 0.259 | 0.0173 ± 0.0008 | Non-polar |
DBU–tBuOH | 14.75 ± 0.30 | 0.018 ± 0.014 | 0.0005 ± 0.0003 | Non-polar |
DBU–tBuOHCO2 | 13.49 ± 0.26 | 0.252 ± 0.047 | 0.3252 ± 0.1020 | Polar |
DBU–tBuOH′ | 14.36 ± 0.46 | 0.202 ± 0.098 | 0.0458 ± 0.0012 | Non-polar |
DBU–HexOH | 14.76 ± 0.05 | 0.035 ± 0.003 | 0.0060 ± 0.0019 | Non-polar |
DBU–HexOHCO2 | 11.92 ± 0.28 | 1.250 ± 0.022 | 0.8531 ± 0.055 | Polar |
DBU–HexOH′ | 14.24 ± 0.19 | 0.240 ± 0.037 | 0.0131 ± 0.0080 | Non-polar |
DBU–OctOH | 14.75 ± 0.10 | 0.021 ± 0.001 | 0.0126 ± 0.0007 | Non-polar |
DBU–OctOHCO2 | 10.99 ± 0.55 | 0.639 ± 0.056 | 0.3857 ± 0.0576 | Polar |
DBU–OctOH′ | 14.24 ± 0.05 | 0.100 ± 0.002 | 0.0156 ± 0.0011 | Non-polar |
DBU–ETA | 14.91 ± 0.05 | 0.100 ± 0.017 | 0.0116 ± 0.0007 | Polar |
DBU–ETACO2 | - | - | - | - |
DBU–ETA′ | - | - | - | - |
DBU–HexOH/H2O | 14.26 ± 0.28 | 4.848 ± 0.422 | 0.0186 ± 0.0011 | Polar * |
DBU–HexOH/H2OCO2 | 9.50 ± 0.60 | 23.030 ± 3.010 | 0.0825 ± 0.0205 | Polar * |
DBU–HexOH/H2O′ | 11.19 ± 0.50 | 10.066 ± 2.854 | 0.0466 ± 0.0046 | Polar * |
Wavenumbers (cm−1) | Assignment (Bond) | MWL | SDES-MWL | SDESCO2-MWL |
---|---|---|---|---|
3422 | O–H stretching vibration | √ | √ | √ |
2936 | C–H stretching vibration in methyl | √ | √ | √ |
1710 | C=O stretching vibration | √ | × | × |
1600, 1507 | Aromatic ring skeleton vibration | √ | √ | √ |
1461 | C–H deformation vibration in –CH2– | √ | √ | √ |
1373 | C–H bending vibration of aliphatic compounds in carbohydrate | √ | × | × |
1126, 1327 | C–O stretching vibration of syringyl units | √ | √ | √ |
1270 | C–O stretching vibration of guaiacyl units | √ | √ | √ |
1124 | C–H stretching vibration of syringyl units | √ | √ | √ |
1036 | C–H bending vibration of guaiacyl units | √ | √ | √ |
Labels | δC/δH (ppm) | Assignment |
---|---|---|
Cβ | 53.3/3.46 | Cβ−Hβ in phenylcoumarane substructures (C) |
Bβ | 53.5/3.06 | Cβ−Hβ in resinol substructures (B) |
–OCH3 | 55.6/3.73 | C−H in methoxyls |
Aγ | 59.5-59.7/3.40-3.63 | Cγ−Hγ in β-O-4′ substructures (A) |
Iγ | 61.4/4.10 | Cγ−Hγ in p-hydroxycinnamyl alcohol end groups (I) |
A′γ | 63.2/4.33-4.49 | Cγ−Hγ in γ-acylated β-O-4′ substructures (A′) |
Cγ | 62.5/3.73 | Cγ−Hγ in phenylcoumarane substructures (C) |
Bγ | 71.0/3.82 and 4.18 | Cγ−Hγ in resinol substructures (B) |
Aα | 71.8/4.86 | Cα−Hα in β-O-4′ substructures (A) |
Aβ(G/H) | 83.9/4.29 | Cβ−Hβ in β-O-4′ substructures linked to G/H units (A) |
Bα | 84.8/4.65 | Cα−Hα in resinol substructures (B) |
Aβ(S) | 85.9/4.12 | Cβ−Hβ in β-O-4′ substructures linked to S units (A) |
Cα | 86.8/5.46 | Cα−Hα in phenylcoumarane substructures (C) |
S2,6 | 103.8/6.71 | C2,6−H2,6 in etherified syringyl units (S) |
S′2,6 | 106.2/7.23 and 7.07 | C2,6−H2,6 in oxidized (Cα = O) syringyl units (S′) |
G2 | 110.9/6.98 | C2−H2 in guaiacyl units (G) |
G5 | 114.9/6.77 | C5−H5 in guaiacyl units (G) |
G6 | 119.0/6.80 | C6−H6 in guaiacyl units (G) |
Iβ | 128.2/6.25 | Cβ−Hβ in p-hydroxycinnamyl alcohol end groups (I) |
Iα | 128.4/6.44 | Cα−Hα in p-hydroxycinnamyl alcohol end groups (I) |
PB2,6 | 131.2/7.67 | C2,6−H2,6 in p-hydroxybenzoate substructures (PB) |
Jβ | 126.1/6.76 | Cβ−Hβ in cinnamaldehyde end groups (J) |
H2,6 | 127.9/7.19 | C2,6−H2,6 in p-hydroxyphenyl units (H) |
Appendix B
References
- Xu, Y.Y.; Ren, T.T.; Wu, J.N.; Meng, G.H.; Yang, S.C.; Cui, L.; Liu, Z.Y.; Guo, X.H. Ultrasound-assisted formic acid–choline chloride deep eutectic solvent pretreatment of cotton straw to extracted lignin. J. Appl. Polym. Sci. 2023, 140, 54082–54094. [Google Scholar] [CrossRef]
- Dodge, L.A.; Kalinoski, R.M.; Das, L.; Bursavich, J.; Muley, P.; Boldor, D.; Shi, J. Sequential Extraction and Characterization of Lignin-Derived Compounds from Thermochemically Processed Biorefinery Lignins. Energy Fuels 2019, 33, 4322–4330. [Google Scholar] [CrossRef]
- Bagh, F.S.G.; Ray, S.; Peng, T. Optimizing conditions for using deep eutectic solvents to extract lignin from black liquor. Wood Sci. Technol. 2022, 56, 759–792. [Google Scholar] [CrossRef]
- Balk, M.; Sofia, P.; Neffe, A.T.; Tirelli, N. Lignin, the Lignification Process, and Advanced, Lignin-Based Materials. Int. J. Mol. Sci. 2023, 24, 11668. [Google Scholar] [CrossRef] [PubMed]
- Cheong, Y.T.; Chua, A.S.M.; Ngoh, G.C. Strategizing Assistive Heating Techniques on Delignification of Empty Fruit Bunch with Incorporation of Deep Eutectic Solvent. Waste Biomass Valorization 2023, 14, 2801–2814. [Google Scholar] [CrossRef]
- Weng, S.X.; Zhang, G.X.; Hu, Y.; Bo, C.Y.; Song, F.; Feng, G.D.; Hu, L.H.; Zhou, Y.H.; Jia, P.Y. Lignin Degradation via Chlorine Dioxide at Room Temperature: Chemical Groups and Structural Characterization. Int. J. Mol. Sci. 2023, 24, 1479. [Google Scholar] [CrossRef]
- Achinivu, E.C. Protic Ionic Liquids for Lignin Extraction—A Lignin Characterization Study. Int. J. Mol. Sci. 2018, 19, 428. [Google Scholar] [CrossRef]
- Shi, F.X.; Wang, Y.J.; Davaritouchaee, M.; Yao, Y.Q.; Kang, K. Directional Structure Modification of Poplar Biomass-Inspired High Efficacy of Enzymatic Hydrolysis by Sequential Dilute Acid-Alkali Treatment. ACS Omega 2020, 538, 24780–24789. [Google Scholar] [CrossRef]
- Li, X.-Y.; Guo, T.-S.; Li, M.-F.; Peng, F. Comparison of structure, thermal stability, and pyrolysis products of lignin extracted with ChCl-formic acid/lactic acid systems. J. Mater. Res. Technol. 2021, 14, 841–850. [Google Scholar] [CrossRef]
- Zhang, L.L.; Lu, H.L.; Yu, J.; Wang, Z.G.; Fan, Y.M.; Zhou, X.F. Dissolution of Lignocelluloses with a High Lignin Content in a N-Methylmorpholine-N-oxide Monohydrate Solvent System via Simple Glycerol-Swelling and Mechanical Pretreatments. J. Agric. Food Chem. 2017, 65, 9587–9594. [Google Scholar] [CrossRef]
- Li, P.H.; Zhang, Z.H.; Zhang, X.X.; Li, K.Y.; Jin, Y.C.; Wu, W.J. DES: Their effect on lignin and recycling performance. RSC Adv. 2023, 13, 3241–3254. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.L.; Li, R.J.; Xu, P.; Li, T.; Deng, R.; Chen, S.; Zhang, Q. The cornerstone of realizing lignin value-addition: Exploiting the native structure and properties of lignin by extraction methods. Chem. Eng. J. 2020, 402, 126237–126260. [Google Scholar] [CrossRef]
- Takada, M.; Okazaki, Y.; Kawamoto, H.; Sagawa, T. Solubilization of sulfuric acid lignin by ball mill treatment with excess amounts of organic compounds. RSC Adv. 2023, 13, 1059–1065. [Google Scholar] [CrossRef]
- Almeida, R.O.; Moreira, A.; Moreira, D.; Pina, M.E.; Carvalho, M.G.V.S.; Rasteiro, M.G.; Gamelas, J.A.F. High-performance delignification of invasive tree species wood with ionic liquid and deep eutectic solvent for the production of cellulose-based polyelectrolytes. RSC Adv. 2022, 12, 3979–3989. [Google Scholar] [CrossRef] [PubMed]
- Klapiszewski, Ł.; Szalaty, T.J.; Kubiak, A.; Skrzypczak, A.; Dobrowolska, A.; Czaczyk, K.; Jesionowski, T. The controlled oxidation of kraft lignin in mild conditions using ionic liquid as a crucial point in fabrication of antibacterial hybrid materials. J. Mol. Liq. 2018, 274, 370–378. [Google Scholar] [CrossRef]
- Yu, H.T.; Xue, Z.M.; Shi, R.F.; Zhou, F.Y.; Mu, T.C. Lignin dissolution and lignocellulose pretreatment by carboxylic acid based deep eutectic solvents. Ind. Crops Prod. 2022, 184, 115049–115057. [Google Scholar] [CrossRef]
- Zhou, M.; Fakayode, O.A.; Ahmed Yagoub, A.E.; Ji, Q.; Zhou, C. Lignin fractionation from lignocellulosic biomass using deep eutectic solvents and its valorization. Renew. Sustain. Energy Rev. 2022, 156, 111986–112009. [Google Scholar] [CrossRef]
- Lou, R.; Ma, R.S.; Lin, K.-t.; Ahamed, A.; Zhang, X. Facile Extraction of Wheat Straw by Deep Eutectic Solvent (DES) to Produce Lignin Nanoparticles. ACS Sustain. Chem. Eng. 2019, 7, 10248–10256. [Google Scholar] [CrossRef]
- Wang, J.; Baker, S.N. Pyrrolidinium salt based binary and ternary deep eutectic solvents: Green preparations and physiochemical property characterizations. Green. Process. Synth. 2018, 7, 353–359. [Google Scholar] [CrossRef]
- Zhang, H.; Vicent-Luna, J.M.; Tao, S.X.; Calero, S.; Jiménez Riobóo, R.J.; Ferrer, M.L.; del Monte, F.; Gutiérrez, M.C. Transitioning from Ionic Liquids to Deep Eutectic Solvents. ACS Sustain. Chem. Eng. 2022, 10, 1232–1245. [Google Scholar] [CrossRef]
- Chen, Z.; Ragauskas, A.; Wan, C.X. Lignin extraction and upgrading using deep eutectic solvents. Ind. Crops Prod. 2020, 147, 112241–112248. [Google Scholar] [CrossRef]
- Hansen, B.B.; Spittle, S.; Chen, B.; Poe, D.; Zhang, Y.; Klein, J.M.; Horton, A.; Adhikari, L.; Zelovich, T.; Doherty, B.W.; et al. Deep Eutectic Solvents: A Review of Fundamentals and Applications. Chem. Rev. 2020, 121, 1232–1285. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.K.; Xue, Z.M.; Mu, T.C. Deep eutectic solvents as a green toolbox for synthesis. Cell Rep. Phys. Sci. 2022, 3, 100809–100831. [Google Scholar] [CrossRef]
- Afonso, J.; Mezzetta, A.; Marrucho, I.M.; Guazzelli, L. History repeats itself again: Will the mistakes of the past for ILs be repeated for DESs? From being considered ionic liquids to becoming their alternative: The unbalanced turn of deep eutectic solvents. Green. Chem. 2022, 25, 59–105. [Google Scholar] [CrossRef]
- Abranches, D.O.; Coutinho, J.A.P. Everything You Wanted to Know about Deep Eutectic Solvents but Were Afraid to Be Told. Annu. Rev. Chem. Biomol. Eng. 2023, 14, 141–163. [Google Scholar] [CrossRef]
- Nolan, M.D.; Mezzetta, A.; Guazzelli, L.; Scanlan, E.M. Radical-mediated thiol–ene ‘click’ reactions in deep eutectic solvents for bioconjugation. Green Chem. 2022, 24, 1456–1462. [Google Scholar] [CrossRef]
- Xu, P.; Zheng, G.-W.; Zong, M.-H.; Li, N.; Lou, W.-Y. Recent progress on deep eutectic solvents in biocatalysis. Bioresour. Bioprocess. 2017, 37, 1814–1823. [Google Scholar] [CrossRef]
- Arnaboldi, S.; Mezzetta, A.; Grecchi, S.; Longhi, M.; Emanuele, E.; Rizzo, S.; Arduini, F.; Micheli, L.; Guazzelli, L.; Mussini, P.R. Natural-based chiral task-specific deep eutectic solvents: A novel, effective tool for enantiodiscrimination in electroanalysis. Electrochim. Acta 2021, 380, 138189–138197. [Google Scholar] [CrossRef]
- Emami, S.; Shayanfar, A. Deep eutectic solvents for pharmaceutical formulation and drug delivery applications. Pharm. Dev. Technol. 2020, 25, 779–796. [Google Scholar] [CrossRef]
- Francisco, M.; van den Bruinhorst, A.; Kroon, M.C. Low-Transition-Temperature Mixtures (LTTMs): A New Generation of Designer Solvents. Angew. Chem. Int. Ed. 2013, 52, 3074–3085. [Google Scholar] [CrossRef]
- Li, T.T.; Lyu, G.J.; Liu, Y.; Lou, R.; Lucia, L.A.; Yang, G.H.; Chen, J.C.; Saeed, H.A.M. Deep Eutectic Solvents (DESs) for the Isolation of Willow Lignin (Salix matsudana cv. Zhuliu). Int. J. Mol. Sci. 2017, 18, 2266. [Google Scholar] [CrossRef]
- Alvarez-Vasco, C.; Ma, R.S.; Quintero, M.; Guo, M.; Geleynse, S.; Ramasamy, K.K.; Wolcott, M.; Zhang, X. Unique low-molecular-weight lignin with high purity extracted from wood by deep eutectic solvents (DES): A source of lignin for valorization. Green Chem. 2016, 18, 5133–5141. [Google Scholar] [CrossRef]
- Hou, X.T.; Li, Z.X.; Yao, Z.L.; Zhao, L.X.; Luo, J.; Shen, R.X. Research advances on deep eutectic solvent pretreatment of lignocellulosic biomass. Chin. Sci. Bull. 2022, 67, 2736–2748. [Google Scholar] [CrossRef]
- Liu, J.K.; Qi, L.T.; Yang, G.H.; Xue, Y.; He, M.; Lucia, L.A.; Chen, J.C. Enhancement of Lignin Extraction of Poplar by Treatment of Deep Eutectic Solvent with Low Halogen Content. Polymers 2020, 12, 1599. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.Y.; Wang, A.L.; Yan, C.C.; Liu, S.W.; Li, L.; Wu, Q.; Liu, Y.; Liu, Y.X.; Nie, G.K.; Nie, S.X.; et al. Study on the Solubility of Industrial Lignin in Choline Chloride-Based Deep Eutectic Solvents. Sustainability 2023, 15, 7118. [Google Scholar] [CrossRef]
- Liang, X.Q.; Zhu, Y.; Qi, B.K.; Li, S.Q.; Luo, J.Q.; Wan, Y. H Structure-property-performance relationships of lactic acid-based deep eutectic solvents with different hydrogen bond acceptors for corn stover pretreatment. Bioresour. Technol. 2021, 336, 125312–125320. [Google Scholar] [CrossRef]
- Satlewal, A.; Agrawal, R.; Bhagia, S.; Sangoro, J.; Ragauskas, A.J. Natural deep eutectic solvents for lignocellulosic biomass pretreatment: Recent developments, challenges and novel opportunities. Biotechnol. Adv. 2018, 36, 2032–2050. [Google Scholar] [CrossRef]
- Shen, X.-J.; Chen, T.; Wang, H.-M.; Mei, Q.; Yue, F.; Sun, S.; Wen, J.-L.; Yuan, T.-Q.; Sun, R.-C. Structural and Morphological Transformations of Lignin Macromolecules during Bio-Based Deep Eutectic Solvent (DES) Pretreatment. ACS Sustain. Chem. Eng. 2020, 8, 2130–2137. [Google Scholar] [CrossRef]
- Chen, Z.; Bai, X.G.; Lusing, A.; Zhang, H.W.; Wan, C.X. Insights into Structural Changes of Lignin toward Tailored Properties during Deep Eutectic Solvent Pretreatment. ACS Sustain. Chem. Eng. 2020, 8, 9783–9793. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, X.Y.L.; Liu, Y.Y.; Wu, K.J.; Zhu, Y.M.; Lu, H.F.; Liang, B. Insights into the relationships between physicochemical properties, solvent performance, and applications of deep eutectic solvents. Environ. Sci. Pollut. Res. 2021, 28, 35537–35563. [Google Scholar] [CrossRef]
- Salehi, H.S.; Ramdin, M.; Moultos, O.A.; Vlugt, T.J.H. Computing solubility parameters of deep eutectic solvents from Molecular Dynamics simulations. Fluid Phase Equilib. 2019, 497, 10–18. [Google Scholar] [CrossRef]
- Jessop, P.G.; Heldebrant, D.J.; Li, X.W.; Eckert, C.A.; Liotta, C.L. Green chemistry: Reversible nonpolar-to-polar solvent. Nature 2005, 436, 1102. [Google Scholar] [CrossRef] [PubMed]
- Anugwom, I.; Rujana, L.; Wärnå, J.; Hedenström, M.; Mikkola, J.P. In quest for the optimal delignification of lignocellulosic biomass using hydrated, SO2 switched DBU MEASIL switchable ionic liquid. Chem. Eng. J. 2016, 297, 256–264. [Google Scholar] [CrossRef]
- Khokarale, S.G.; Le-That, T.; Mikkola, J.P. Carbohydrate Free Lignin: A Dissolution-Recovery Cycle of Sodium Lignosulfonate in a Switchable Ionic Liquid System. ACS Sustain. Chem. Eng. 2016, 4, 7032–7040. [Google Scholar] [CrossRef]
- Phan, L.; Chiu, D.; Heldebrant, D.J.; Huttenhower, H.; John, E.; Li, X.; Pollet, P.; Wang, R.; Eckert, C.A.; Liotta, C.L.; et al. Switchable Solvents Consisting of Amidine/Alcohol or Guanidine/Alcohol Mixtures. Ind. Eng. Chem. Res. 2008, 47, 539–545. [Google Scholar] [CrossRef]
- Anugwom, I.; Eta, V.; Virtanen, P.; Mäki-Arvela, P.; Hedenström, M.; Ma, Y.B.; Hummel, M.; Sixta, H.; Mikkola, J.-P. Towards optimal selective fractionation for Nordic woody biomass using novel amine–organic superbase derived switchable ionic liquids (SILs). Biomass Bioenergy 2014, 70, 373–381. [Google Scholar] [CrossRef]
- Zhang, J.; Li, S.; Yao, L.; Yi, Y.; Shen, L.; Li, Z.; Qiu, H. Responsive switchable deep eutectic solvents: A review. Chin. Chem. Lett. 2022, 34, 107750–107762. [Google Scholar] [CrossRef]
- Qi, L.T.; Li, D.B.; Yang, G.H.; Xue, Y.; Chen, J.C. Construction and prospects of a switching DES pretreatment system for selective separation of plant fibre lignin. Trans. China Pulp Pap. 2022, 37, 111–120. [Google Scholar] [CrossRef]
- Anugwom, I.; Maki-Arvela, P.; Virtanen, P.; Willfor, S.; Sjoholm, R.; Mikkola, J.P. Selective extraction of hemicelluloses from spruce using switchable ionic liquids. Carbohydr. Polym. 2012, 87, 2005–2011. [Google Scholar] [CrossRef]
- Hao, Y.Q.; Shimoyama, Y. Controlled polarity of CO2 switchable solution with DBU and alcohols. Fluid Phase Equilib. 2019, 494, 115–124. [Google Scholar] [CrossRef]
- Shu, F.; Guo, Y.J.; Huang, L.; Zhou, M.G.; Zhang, G.Y.; Yu, H.; Zhang, J.H.; Yang, F.X. Production of lignin-containing nanocellulose from poplar using ternary deep eutectic solvents pretreatment. Ind. Crops Prod. 2021, 177, 114404–114413. [Google Scholar] [CrossRef]
- Xiong, B.L.; Ma, S.; Chen, B.L.; Feng, Y.C.; Peng, Z.Q.; Tang, X.; Yang, S.L.; Sun, Y.; Lin, L.; Zeng, X.H.; et al. Formic acid-facilitated hydrothermal pretreatment of raw biomass for co-producing xylo-oligosaccharides, glucose, and lignin. Ind. Crops Prod. 2023, 193, 116195–116202. [Google Scholar] [CrossRef]
- Sosa, F.H.B.; Abranches, D.O.; da Costa Lopes, A.M.; Coutinho, J.A.P.; da Costa, M.C. Kraft Lignin Solubility and Its Chemical Modification in Deep Eutectic Solvents. ACS Sustain. Chem. Eng. 2020, 8, 18577–18589. [Google Scholar] [CrossRef]
- Soares, B.; Tavares, D.J.P.; Amaral, J.L.; Silvestre, A.J.D.; Freire, C.S.R.; Coutinho, J.A.P. Enhanced Solubility of Lignin Monomeric Model Compounds and Technical Lignins in Aqueous Solutions of Deep Eutectic Solvents. ACS Sustain. Chem. Eng. 2017, 5, 4056–4065. [Google Scholar] [CrossRef]
- Cheng, J.Y.; Huang, C.; Zhan, Y.N.; Han, S.M.; Wang, J.; Meng, X.Z.; Yoo, C.G.; Fang, G.G.; Ragauskas, A.J. Effective biomass fractionation and lignin stabilization using a diol DES system. Chem. Eng. J. 2022, 443, 136395–136404. [Google Scholar] [CrossRef]
- Park, C.-W.; Han, S.-Y.; Bandi, R.; Dadigala, R.; Lee, E.-A.; Kim, J.-K.; Cindradewi, A.W.; Kwon, G.-J.; Lee, S.-H. Esterification of Lignin Isolated by Deep Eutectic Solvent Using Fatty Acid Chloride, and Its Composite Film with Poly(lactic acid). Polymers 2021, 13, 2149. [Google Scholar] [CrossRef]
- Pe, J.A.; Mun, J.S.; Mun, S.P. Thermal Characterization of Kraft Lignin Prepared from Mixed Hardwoods. Bioresources 2023, 18, 926–936. [Google Scholar] [CrossRef]
- Wang, H.-M.; Wang, B.; Wen, J.-L.; Yuan, T.-Q.; Sun, R.-C. Structural Characteristics of Lignin Macromolecules from Different Eucalyptus Species. ACS Sustain. Chem. Eng. 2017, 5, 11618–11627. [Google Scholar] [CrossRef]
- Khan, A.S.; Ibrahim, T.H.; Rashid, Z.; Khamis, M.I.; Nancarrow, P.; Jabbar, N.A. COSMO-RS based screening of ionic liquids for extraction of phenolic compounds from aqueous media. J. Mol. Liq. 2021, 328, 115387–115413. [Google Scholar] [CrossRef]
- Muhammad, N.; Gonfa, G.; Rahim, A.; Ahmad, P.; Iqbal, F.; Sharif, F.; Khan, A.S.; Khan, F.U.; Khan, Z.U.L.H.; Rehman, F.; et al. Investigation of ionic liquids as a pretreatment solvent for extraction of collagen biopolymer from waste fish scales using COSMO-RS and experiment. J. Mol. Liq. 2017, 232, 258–264. [Google Scholar] [CrossRef]
- Xue, Y.; Li, W.D.; Yang, G.H.; Lin, Z.Y.; Qi, L.T.; Zhu, P.H.; Yu, J.H.; Chen, J.C. Strength Enhancement of Regenerated Cellulose Fibers by Adjustment of Hydrogen Bond Distribution in Ionic Liquid. Polymers 2022, 14, 2030. [Google Scholar] [CrossRef]
- Meesattham, S.; Kim-Lohsoontorn, P. Low-temperature alcohol-assisted methanol synthesis from CO2 and H2: The effect of alcohol type. Int. J. Hydrogen Energy 2022, 47, 22691–22703. [Google Scholar] [CrossRef]
- Li, Y.-X.; Hou, S.-X.; Wei, Q.-Y.; Ma, X.-S.; Qu, Y.-S. Effect of Alkali and 1,4-Butanediol Contents on the Extraction of Lignin and Lignin-Based Activated Carbon. ACS Omega 2021, 6, 34386–34394. [Google Scholar] [CrossRef] [PubMed]
- Soares, B.; Silvestre, A.J.D.; Pinto, P.C.R.; Freire, C.S.R.; Coutinho, J.A.P. Hydrotropy and Cosolvency in Lignin Solubilization with Deep Eutectic Solvents. ACS Sustain. Chem. Eng. 2019, 7, 12485–12493. [Google Scholar] [CrossRef]
- Wang, N.; Wang, B.; Si, H.; Hu, S.X.; Chen, L.; Liao, Y.; Wang, L.; Zhang, Y.F.; Jiang, J.G. Comparative investigation of the structural characteristics of tobacco stalk lignin during the DES and alkaline deconstruction toward sustainable materials. Front. Bioeng. Biotechnol. 2022, 10, 994760–994771. [Google Scholar] [CrossRef]
- Olgun, Ç.; Ateş, S. Characterization and Comparison of Some Kraft Lignins Isolated from Different Sources. Forests 2023, 14, 882. [Google Scholar] [CrossRef]
- Xiong, S.-J.; Zhou, S.-J.; Wang, H.-H.; Wang, H.-M.; Yu, S.; Zheng, L.; Yuan, T.-Q. Fractionation of technical lignin and its application on the lignin/poly-(butylene adipate-co-terephthalate) bio-composites. Int. J. Biol. Macromol. 2022, 209, 1065–1074. [Google Scholar] [CrossRef]
- Gairola, S.; Sinha, S.; Singh, I. Thermal stability of extracted lignin from novel millet husk crop residue. Int. J. Biol. Macromol. 2023, 242, 124725–124735. [Google Scholar] [CrossRef]
- Yeo, J.Y.; Chin, B.L.F.; Tan, J.K.; Loh, Y.S. Comparative studies on the pyrolysis of cellulose, hemicellulose, and lignin based on combined kinetics. J. Energy Inst. 2017, 92, 27–37. [Google Scholar] [CrossRef]
- Li, C.C.; Huang, C.X.; Zhao, Y.; Zheng, C.J.; Su, H.X.; Zhang, L.Y.; Luo, W.R.; Zhao, H.; Wang, S.F.; Huang, L.-J. Effect of Choline-Based Deep Eutectic Solvent Pretreatment on the Structure of Cellulose and Lignin in Bagasse. Processes 2021, 9, 384. [Google Scholar] [CrossRef]
- Choi, M.-H.; Yang, S.-H.; Park, W.-K.; Shin, H.-J. Bamboo Lignin Fractions with In Vitro Tyrosinase Inhibition Activity Downregulate Melanogenesis in B16F10 Cells via PKA/CREB Signaling Pathway. Int. J. Mol. Sci. 2022, 23, 7462. [Google Scholar] [CrossRef] [PubMed]
- Passoni, V.; Scarica, C.; Levi, M.; Turri, S.; Griffini, G. Fractionation of Industrial Softwood Kraft Lignin: Solvent Selection as a Tool for Tailored Material Properties. ACS Sustain. Chem. Eng. 2016, 4, 2232–2242. [Google Scholar] [CrossRef]
- Zhang, M.; Tian, R.B.; Tang, S.Y.; Wu, K.J.; Wang, B.S.; Liu, Y.Y.; Zhu, Y.M.; Lu, H.F.; Liang, B. The structure and properties of lignin isolated from various lignocellulosic biomass by different treatment processes. Int. J. Biol. Macromol. 2023, 243, 125219–125228. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.L.; Ji, H.R.; Shi, X.Y.; Yang, X.; Zhang, X. Successive organic solvent fractionation and structural characterization of lignin extracted from hybrid poplar by deep eutectic solvent for improving the homogeneity and isolating narrow fractions. Renew. Energ. 2020, 157, 1025–1034. [Google Scholar] [CrossRef]
- Liu, Y.; Zheng, J.Y.; Xiao, J.X.; He, X.D.; Zhang, K.X.; Yuan, S.X.; Peng, Z.T.; Chen, Z.; Lin, X.Q. Enhanced Enzymatic Hydrolysis and Lignin Extraction of Wheat Straw by Triethylbenzyl Ammonium Chloride/Lactic Acid-Based Deep Eutectic Solvent Pretreatment. ACS Omega 2019, 4, 19829–19839. [Google Scholar] [CrossRef] [PubMed]
- Yuan, T.-Q.; Sun, S.-N.; Xu, F.; Sun, R.-C. Characterization of Lignin Structures and Lignin–Carbohydrate Complex (LCC) Linkages by Quantitative 13C and 2D HSQC NMR Spectroscopy. J. Agric. Food Chem. 2011, 59, 10604–10614. [Google Scholar] [CrossRef]
Syringic Acid | Vanillic Acid | Syringaldehyde | Ferulic Acid | Alkaline Lignin | |
---|---|---|---|---|---|
H2O | 8.20 ± 3.17 | 0.63 ± 0.01 | 0.52 ± 0.01 | 0.28 ± 0.28 | 0.88 ± 0.01 |
H2OCO2 | 6.12 ± 0.20 | 0.55 ± 0.01 | 0.99 ± 0.01 | 0.60 ± 0.01 | 1.44 ± 0.01 |
DBU | 22.79 ± 0.01 | 4.54 ± 0.85 | 1.17 ± 0.01 | 2.26 ± 0.01 | 1.91 ± 0.01 |
DBUCO2 | - | - | - | - | - |
HexOH | 34.80 ± 0.12 | 0.04 ± 0.01 | 3.12 ± 0.01 | 0.04 ± 0.01 | 9.72 ± 0.07 |
HexOHCO2 | 40.24 ± 0.01 | 0.04 ± 0.01 | 4.03 ± 0.01 | 0.03 ± 0.01 | 16.30 ± 0.12 |
DBU–HexOH | 12.12 ± 0.08 | 2.01 ± 0.01 | 2.24 ± 0.01 | 22.87 ± 1.46 | 10.88 ± 0.02 |
DBU–HexOHCO2 | - | - | - | - | - |
DBU–HexOH/H2O | 207.58 ± 0.07 | 21.95 ± 0.03 | 7.98 ± 0.02 | 58.12 ± 14.33 | 5.67 ± 0.04 |
DBU–HexOH/H2OCO2 | 230.57 ± 0.12 | 78.43 ± 0.18 | 11.64 ± 0.03 | 452.17 ± 1.42 | 4.44 ± 0.04 |
Mw (g/mol) | Mn (g/mol) | PDI | |
---|---|---|---|
Lit. MWL * | 6374 | 5542 | 1.15 |
CCL–lignin * | 4416 | 2349 | 1.88 |
CLL–lignin * | 1805 | 971 | 1.86 |
MWL | 7701 | 2959 | 2.60 |
SDES–MWL | 9823 | 3397 | 2.89 |
SDESCO2–MWL | 10,340 | 7672 | 1.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, D.; Qi, L.; Yang, M.; Gu, Y.; Xue, Y.; Chen, J.; He, M.; Yang, G. Switchable Deep Eutectic Solvents for Lignin Dissolution and Regeneration. Polymers 2023, 15, 4233. https://doi.org/10.3390/polym15214233
Li D, Qi L, Yang M, Gu Y, Xue Y, Chen J, He M, Yang G. Switchable Deep Eutectic Solvents for Lignin Dissolution and Regeneration. Polymers. 2023; 15(21):4233. https://doi.org/10.3390/polym15214233
Chicago/Turabian StyleLi, Debao, Letian Qi, Mengru Yang, Yujie Gu, Yu Xue, Jiachuan Chen, Ming He, and Guihua Yang. 2023. "Switchable Deep Eutectic Solvents for Lignin Dissolution and Regeneration" Polymers 15, no. 21: 4233. https://doi.org/10.3390/polym15214233
APA StyleLi, D., Qi, L., Yang, M., Gu, Y., Xue, Y., Chen, J., He, M., & Yang, G. (2023). Switchable Deep Eutectic Solvents for Lignin Dissolution and Regeneration. Polymers, 15(21), 4233. https://doi.org/10.3390/polym15214233