The Potential of Edible Films, Sheets, and Coatings Based on Fruits and Vegetables in the Context of Sustainable Food Packaging Development
Abstract
:1. Introduction
2. Fundamentals of Edible Films, Sheets, and Coatings
3. Confusing Nomenclature
Common Name | Form of Fruit/Vegetable Used | Form of the Final Product | References |
---|---|---|---|
Açaí | puree | film | [75,76] |
Acerola (Barbados cherry) | puree | film | [77,78,79,80] |
film/coating | [81] | ||
film/heat-sealed sachet | [82] | ||
alcoholic extract from whole fruit | film | [83] | |
flour (freeze-dried powdered whole fruit) | [84] | ||
Apple | puree | film | [85,86,87,88,89,90] |
coating | [88,91] | ||
film/film wrap/coating | [73] | ||
film/film wrap | [92,93] | ||
leather | [55,56,58,60,71,94] | ||
pomace (convective dried powdered peel) | film | [95] | |
coating | [43] | ||
Apricot | puree | film | [47] |
clarified juice | pestil/leather/sheet | [59] | |
pestil/leather | [61] | ||
Banana | puree | film | [96] |
[97] | |||
[98] | |||
flour (convective dried powdered fruit without peel) | film | [41,99,100,101] | |
film heat-sealed sachet | [102,103,104] | ||
Broccoli | puree | film | [90] |
Cabbage | NA | vegetable paper | [65] |
Carrot | pomace (convective dried powdered solid residue generated by the processing of whole vegetables during juice production) | film | [105] |
puree | film/film wrap | [93] | |
film | [89,90,106] | ||
coating | [107] | ||
carrot paper | [108] | ||
pomace (convective dried powdered solid residue derived from minimally processed carrots) | film | [109] | |
pomace (convective dried powdered solid residue generated by the processing of whole vegetables during juice production) | film/coating | [110] | |
film/film packaging/coating | [111] | ||
Cashew apple | alcoholic extract from whole fruit | film | [83] |
Celery | puree | wrapping paper | [68] |
Chinese chive | puree | packaging paper | [70] |
Courgette | pomace (convective dried powdered solid residue generated by the processing of whole vegetables during juice production) | film | [105] |
film/film packaging/coating | [111] | ||
film/coating | [110] | ||
Cranberry | pomace extract | film | [112] |
Cucumber | pomace (convective dried powdered solid residue generated by the processing of whole vegetables during juice production) | film | [105] |
film/film packaging/coating | [111] | ||
film/coating | [110] | ||
Durian fruit | puree | leather | [113] |
Fennel | homogenized residue | film | [114] |
Grapes | pomace extract | film | [115,116] |
clarified juice | pestil/leather/sheet | [59] | |
pestil/leather | [61,63,64,117,118] | ||
Guava | puree | film | [119] |
Hibiscus | puree | film | [89] |
film/film wrap | [93] | ||
Indian gooseberry | puree/extract | film/coating | [120] |
Jackfruit | ND | leather | [121] |
puree | [122] | ||
Jocote | puree | film/film packaging | [78] |
Kiwi | puree | leather | [123,124] |
Lettuce | pomace (convective dried powdered solid residue generated by the processing of whole vegetables during juice production) | film | [105] |
film/film packaging/coating | [111] | ||
film/coating | [110] | ||
residue | paper | [67] | |
Longan | puree | leather | [54] |
Mango | puree | leather | [125] |
film | [78,126] | ||
film/film wrap | [127,128] | ||
film/heat-sealed sachet | [82,129] | ||
Mint | pomace (convective dried powdered solid residue generated by the processing of whole vegetables during juice production) | film | [105] |
film/film packaging/coating | [111] | ||
film/coating | [110] | ||
Mulberry | clarified juice | pestil/leather/sheet | [59] |
pestil/leather | [61] | ||
Orange | pomace (convective dried powdered solid residue generated by the processing of whole vegetables during juice production) | film | [105] |
film/film packaging/coating | [111] | ||
film/coating | [110] | ||
Papaya | puree | leather | [130] |
film | [131] | ||
heat-sealed sachet | [132] | ||
Passion fruit | pomace (convective dried powdered solid residue generated by the processing of whole vegetables during juice production) | film | [105] |
film/film packaging/coating | [111] | ||
film/coating | [110] | ||
Peach | puree | film | [47,90] |
Pear | juice concentrate | leather | [133] |
puree | film | [47] | |
wrapping paper | [69] | ||
Pineapple | puree | leather | [134,135] |
Plum | clarified juice | pestil/leather | [61] |
Pomegranate | juice | film | [136] |
juice concentrate | leather/pestil | [137,138] | |
Potato | pomace (convective dried powdered peel) | film/film packaging/coating | [111] |
Pumpkin | residue extract | film/film packaging | [139] |
pomace (convective dried powdered solid residue generated by the processing of whole vegetables during juice production) | film/coating | [110] | |
NA | paper | [66] | |
Quince | puree | leather | [58] |
Rocket | pomace (convective dried powdered solid residue generated by the processing of whole vegetables during juice production) | film | [105] |
film/film packaging/coating | [111] | ||
film/coating | [110] | ||
Rosehip | puree | leather | [140,141] |
Spinach | pomace (convective dried powdered solid residue generated by the processing of whole vegetables during juice production) | film | [142] |
film/film packaging/coating | [111] | ||
film/coating | [110] | ||
Strawberry | puree | leather | [123,143] |
alcoholic extract from whole fruit | film | [83] | |
Sugar beetroot | puree | film | [144] |
residue extract | [145] | ||
residue | [72] | ||
Taro | pomace (convective dried powdered solid residue generated by the processing of whole vegetables during juice production) | film | [105] |
film/film packaging/coating | [111] | ||
film/coating | [110] | ||
Tomato | puree | film | [146,147] |
coating | [91] | ||
Watermelon | pomace (convective dried powdered solid residue generated by the processing of whole vegetables during juice production) | film | [105] |
film/film packaging/coating | [111] | ||
film/coating | [110] |
4. Fruits and Vegetables as a Source of Functional Compounds of Edible Materials
4.1. Binding Agents
4.2. Plasticizers
4.3. Reinforcement Fillers and Crosslinkers
4.4. Nutritional Additives
4.5. Sensory Additives
4.6. Antimicrobial Additives
4.7. Antioxidant Additives
4.8. Thermal Stabilizers
4.9. Barrier Additives
5. Doubts and Questions—Tips for Further Commercialization
6. Sustainability–Advantages of Fruit- and Vegetable-Based Films, Sheets, and Coatings
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Allegri, C.; Turconi, G.; Cena, H. Dietary attitudes and diseases of comfort. Eat. Weight Disord. 2011, 16, e226–e235. [Google Scholar] [CrossRef] [PubMed]
- You, W.; Donnelly, F. Physician care access plays a significant role in extending global and regional life expectancy. Eur. J. Intern. Med. 2022, 103, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Aksan, A.-M.; Chakraborty, S. Life expectancy across countries: Convergence, divergence and fluctuations. World Dev. 2023, 168, 106263. [Google Scholar] [CrossRef]
- Yahia, E.M.; García-Solís, P.; Celis, M.E.M. Chapter 2–Contribution of Fruits and Vegetables to Human Nutrition and Health. In Postharvest Physiology and Biochemistry of Fruits and Vegetables; Yahia, E.M., Ed.; Woodhead Publishing: Sawston, UK, 2019; pp. 19–45. [Google Scholar]
- WHO. Noncommunicable Diseases. 2017. Available online: http://www.who.int/mediacentre/factsheets/fs355/en/ (accessed on 1 October 2023).
- FAO. Global Food Losses and Food Waste—Extent, Causes and Prevention. 2011. Available online: http://www.fao.org/docrep/014/mb060e/mb060e00.pdf (accessed on 1 October 2023).
- FAO. Global Initiative on Food Loss and Waste Reduction. 2015. Available online: http://www.fao.org/3/a-i4068e.pdf (accessed on 1 October 2023).
- Li, H.; Zhou, M.; Mohammed, A.E.A.Y.; Chen, L.; Zhou, C. From fruit and vegetable waste to degradable bioplastic films and advanced materials: A review. Sustain. Chem. Pharm. 2022, 30, 100859. [Google Scholar] [CrossRef]
- De Laurentiis, V.; Corrado, S.; Sala, S. Quantifying household waste of fresh fruit and vegetables in the EU. Waste Manag. 2018, 77, 238–251. [Google Scholar] [CrossRef]
- Esparza, I.; Jiménez-Moreno, N.; Bimbela, F.; Ancín-Azpilicueta, C.; Gandía, L.M. Fruit and vegetable waste management: Conventional and emerging approaches. J. Environ. Manag. 2020, 265, 110510. [Google Scholar] [CrossRef]
- Mokrane, S.; Buonocore, E.; Capone, R.; Franzese, P.P. Exploring the Global Scientific Literature on Food Waste and Loss. Sustainability 2023, 15, 4757. [Google Scholar] [CrossRef]
- Bhatia, L.; Jha, H.; Sarkar, T.; Sarangi, P.K. Food Waste Utilization for Reducing Carbon Footprints towards Sustainable and Cleaner Environment: A Review. Int. J. Environ. Res. Public Health 2023, 20, 2318. [Google Scholar] [CrossRef]
- Liu, Z.; de Souza, T.S.P.; Holland, B.; Dunshea, F.; Barrow, C.; Suleria, H.A.R. Valorization of Food Waste to Produce Value-Added Products Based on Its Bioactive Compounds. Processes 2023, 11, 840. [Google Scholar] [CrossRef]
- Safdie, S. Global Food Waste in 2023. 2023. Available online: https://greenly.earth/en-gb/blog/ecology-news/global-food-waste-in-2022 (accessed on 1 October 2023).
- Plazzotta, S.; Manzocco, L.; Nicoli, M.C. Fruit and vegetable waste management and the challenge of fresh-cut salad. Trends Food Sci. Technol. 2017, 63, 51–59. [Google Scholar] [CrossRef]
- Laufenberg, G.; Kunz, B.; Nystroem, M. Transformation of vegetable waste into value added products:: (A) the upgrading concept; (B) practical implementations. Bioresour. Technol. 2003, 87, 167–198. [Google Scholar] [CrossRef] [PubMed]
- Directive 2008/98/EC of the European Parliament and of the Council on waste and repealing certain Directives. Off. J. Eur. Union 2008, L 312/3, 3–30.
- Galus, S. Development of Edible Coatings in the Preservation of Fruits and Vegetables. In Polymers for Agri-Food Applications; Gutiérrez, T.J., Ed.; Springer: Berlin/Heidelberg, Germany, 2019; pp. 377–390. [Google Scholar]
- Karimi Sani, I.; Masoudpour-Behabadi, M.; Alizadeh Sani, M.; Motalebinejad, H.; Juma, A.S.M.; Asdagh, A.; Eghbaljoo, H.; Khodaei, S.M.; Rhim, J.W.; Mohammadi, F. Value-added utilization of fruit and vegetable processing by-products for the manufacture of biodegradable food packaging films. Food Chem. 2023, 405, 134964. [Google Scholar] [CrossRef] [PubMed]
- Demirbas, A. Waste management, waste resource facilities and waste conversion processes. Energy Convers. Manag. 2011, 52, 1280–1287. [Google Scholar] [CrossRef]
- Schneider, F. The evolution of food donation with respect to waste prevention. Waste Manag. 2013, 33, 755–763. [Google Scholar] [CrossRef]
- Piccinno, F.; Hischier, R.; Seeger, S.; Som, C. Life Cycle Assessment of a New Technology to Extract, Functionalize and Orient Cellulose Nanofibers from Food Waste. ACS Sustain. Chem. Eng. 2015, 3, 1047–1055. [Google Scholar] [CrossRef]
- Han, S.-K.; Shin, H.-S. Biohydrogen production by anaerobic fermentation of food waste. Int. J. Hydrogen Energy 2004, 29, 569–577. [Google Scholar] [CrossRef]
- Trajkovska Petkoska, A.; Daniloski, D.; D’Cunha, N.M.; Naumovski, N.; Broach, A.T. Edible packaging: Sustainable solutions and novel trends in food packaging. Food Res. Int. 2021, 140, 109981. [Google Scholar] [CrossRef]
- Merino, D.; Quilez-Molina, A.I.; Perotto, G.; Bassani, A.; Spigno, G.; Athanassiou, A. A second life for fruit and vegetable waste: A review on bioplastic films and coatings for potential food protection applications. Green Chem. 2022, 24, 4703–4727. [Google Scholar] [CrossRef]
- Falguera, V.; Quintero, J.P.; Jiménez, A.; Muñoz, J.A.; Ibarz, A. Edible films and coatings: Structures, active functions and trends in their use. Trends Food Sci. Technol. 2011, 22, 292–303. [Google Scholar] [CrossRef]
- Khalid, M.Y.; Arif, Z.U. Novel biopolymer-based sustainable composites for food packaging applications: A narrative review. Food Packag. Shelf Life 2022, 33, 100892. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, B.; Li, C.; Xu, Y.; Luo, Y.; Liang, D.; Huang, C. Comprehensive Review of Polysaccharide-Based Materials in Edible Packaging: A Sustainable Approach. Foods 2021, 10, 1845. [Google Scholar] [CrossRef] [PubMed]
- Hamed, I.; Jakobsen, A.N.; Lerfall, J. Sustainable edible packaging systems based on active compounds from food processing byproducts: A review. Compr. Rev. Food Sci. Food Saf. 2022, 21, 198–226. [Google Scholar] [CrossRef] [PubMed]
- Galus, S.; Arik Kibar, E.A.; Gniewosz, M.; Kraśniewska, K. Novel Materials in the Preparation of Edible Films and Coatings—A Review. Coatings 2020, 10, 674. [Google Scholar] [CrossRef]
- Allen, L.; Nelson, A.I.; Steinberg, M.P.; McGill, J.N. Edible corn-carbohydrate food coatings. II. Evaluation of fresh meat products. Food Technol. 1963, 17, 104–108. [Google Scholar]
- Tavassoli-Kafrani, E.; Shekarchizadeh, H.; Masoudpour-Behabadi, M. Development of edible films and coatings from alginates and carrageenans. Carbohydr. Polym. 2016, 137, 360–374. [Google Scholar] [CrossRef]
- Dias, A.B.; Müller, C.M.O.; Larotonda, F.D.S.; Laurindo, J.B. Biodegradable films based on rice starch and rice flour. J. Cereal Sci. 2010, 51, 213–219. [Google Scholar] [CrossRef]
- Mellinas, C.; Valdés, A.; Ramos, M.; Burgos, N.; Garrigós, M.d.C.; Jiménez, A. Active edible films: Current state and future trends. J. Appl. Polym. Sci. 2016, 133, 42631. [Google Scholar] [CrossRef]
- Synowiec, A.; Gniewosz, M.; Kraśniewska, K.; Przybył, J.L.; Bączek, K.; Węglarz, Z. Antimicrobial and antioxidant properties of pullulan film containing sweet basil extract and an evaluation of coating effectiveness in the prolongation of the shelf life of apples stored in refrigeration conditions. Innov. Food Sci. Emerg. Technol. 2014, 23, 171–181. [Google Scholar] [CrossRef]
- Cerqueira, M.A.; Bourbon, A.I.; Pinheiro, A.C.; Martins, J.T.; Souza, B.W.S.; Teixeira, J.A.; Vicente, A.A. Galactomannans use in the development of edible films/coatings for food applications. Trends Food Sci. Technol. 2011, 22, 662–671. [Google Scholar] [CrossRef]
- Galus, S.; Gaouditz, M.; Kowalska, H.; Debeaufort, F. Effects of Candelilla and Carnauba Wax Incorporation on the Functional Properties of Edible Sodium Caseinate Films. Int. J. Mol. Sci. 2020, 21, 9349. [Google Scholar] [CrossRef] [PubMed]
- Choi, W.S.; Singh, S.; Lee, Y.S. Characterization of edible film containing essential oils in hydroxypropyl methylcellulose and its effect on quality attributes of ‘Formosa’ plum (Prunus salicina L.). LWT 2016, 70, 213–222. [Google Scholar] [CrossRef]
- Etxabide, A.; Urdanpilleta, M.; Guerrero, P.; de la Caba, K. Effects of cross-linking in nanostructure and physicochemical properties of fish gelatins for bio-applications. React. Funct. Polym. 2015, 94, 55–62. [Google Scholar] [CrossRef]
- Chaichi, M.; Hashemi, M.; Badii, F.; Mohammadi, A. Preparation and characterization of a novel bionanocomposite edible film based on pectin and crystalline nanocellulose. Carbohydr. Polym. 2017, 157, 167–175. [Google Scholar] [CrossRef] [PubMed]
- Orsuwan, A.; Shankar, S.; Wang, L.-F.; Sothornvit, R.; Rhim, J.-W. Preparation of antimicrobial agar/banana powder blend films reinforced with silver nanoparticles. Food Hydrocoll. 2016, 60, 476–485. [Google Scholar] [CrossRef]
- Janowicz, M.; Kadzińska, J.; Bryś, J.; Ciurzyńska, A.; Karwacka, M.; Galus, S. Physical and Chemical Properties of Vegetable Films Based on Pumpkin Purée and Biopolymers of Plant and Animal Origin. Molecules 2023, 28, 4626. [Google Scholar]
- Shin, S.-H.; Chang, Y.; Lacroix, M.; Han, J. Control of microbial growth and lipid oxidation on beef product using an apple peel-based edible coating treatment. LWT 2017, 84, 183–188. [Google Scholar] [CrossRef]
- Galus, S.; Lenart, A. Effect of protein concentration on kinetics of water vapour adsorption by coatings prepared on the basis of whey protein isolate. Food Sci. Technol. Qual. 2011, 4, 66–73. [Google Scholar] [CrossRef]
- Porta, R.; Mariniello, L.; Di Pierro, P.; Sorrentino, A.; Giosafatto, C.V.L. Transglutaminase Crosslinked Pectin- and Chitosan-based Edible Films: A Review. Crit. Rev. Food Sci. Nutr. 2011, 51, 223–238. [Google Scholar] [CrossRef]
- Rodríguez, G.M.; Sibaja, J.C.; Espitia, P.J.P.; Otoni, C.G. Antioxidant active packaging based on papaya edible films incorporated with Moringa oleifera and ascorbic acid for food preservation. Food Hydrocoll. 2020, 103, 105630. [Google Scholar] [CrossRef]
- McHugh, T.H.; Huxsoll, C.C.; Krochta, J.M. Permeability Properties of Fruit Puree Edible Films. J. Food Sci. 1996, 61, 88–91. [Google Scholar] [CrossRef]
- Diamante, L.M.; Bai, X.; Busch, J. Fruit Leathers: Method of Preparation and Effect of Different Conditions on Qualities. Int. J. Food Sci. 2014, 2014, 139890. [Google Scholar] [CrossRef] [PubMed]
- Chan, J.R.; Harvey, T.; Cavaletto, C.G. Dehydration and storage stability of papaya leather. J. Food Sci. 1978, 43, 1723–1725. [Google Scholar] [CrossRef]
- Moyls, A.L. Drying of Apple Purees. J. Food Sci. 1981, 46, 939–942. [Google Scholar] [CrossRef]
- Bains, M.S.; Ramaswamy, H.S.; Lo, K.V. Tray drying of apple puree. J. Food Eng. 1989, 9, 195–201. [Google Scholar] [CrossRef]
- Wandi, I.R.; Man, Y.B.C. Durian leather: Development, properties and storage stability. J. Food Qual. 1996, 19, 479–489. [Google Scholar] [CrossRef]
- Vijayanand, P.; Yadav, A.R.; Balasubramanyam, N.; Narasimham, P. Storage Stability of Guava Fruit Bar Prepared Using a New Process. LWT–Food Sci. Technol. 2000, 33, 132–137. [Google Scholar] [CrossRef]
- Jaturonglumlert, S.; Kiatsiriroat, T. Heat and mass transfer in combined convective and far-infrared drying of fruit leather. J. Food Eng. 2010, 100, 254–260. [Google Scholar] [CrossRef]
- Valenzuela, C.; Aguilera, J.M. Effects of maltodextrin on hygroscopicity and crispness of apple leathers. J. Food Eng. 2015, 144, 1–9. [Google Scholar] [CrossRef]
- Quintero Ruiz, N.A.; Demarchi, S.M.; Massolo, J.F.; Rodoni, L.M.; Giner, S.A. Evaluation of quality during storage of apple leather. LWT 2012, 47, 485–492. [Google Scholar] [CrossRef]
- Kaya, S.; Kahyaoglu, T. Thermodynamic properties and sorption equilibrium of pestil (grape leather). J. Food Eng. 2005, 71, 200–207. [Google Scholar] [CrossRef]
- Torres, C.A.; Romero, L.A.; Diaz, R.I. Quality and sensory attributes of apple and quince leathers made without preservatives and with enhanced antioxidant activity. LWT Food Sci. Technol. 2015, 62, 996–1003. [Google Scholar] [CrossRef]
- Cagindi, O.; Otles, S. Comparison of some properties on the different types of pestil: A traditional product in Turkey. Int. J. Food Sci. Technol. 2005, 40, 897–901. [Google Scholar] [CrossRef]
- Demarchi, S.M.; Quintero Ruiz, N.A.; Concellón, A.; Giner, S.A. Effect of temperature on hot-air drying rate and on retention of antioxidant capacity in apple leathers. Food Bioprod. Process. 2013, 91, 310–318. [Google Scholar] [CrossRef]
- Kamiloglu, S.; Capanoglu, E. In vitro gastrointestinal digestion of polyphenols from different molasses (pekmez) and leather (pestil) varieties. Int. J. Food Sci. Technol. 2014, 49, 1027–1039. [Google Scholar] [CrossRef]
- FAO. Fruit Leather. Available online: http://www.fao.org/in-action/inpho/library/detail/en/c/2405/ (accessed on 1 October 2023).
- Kaya, A.; Fahrettin, G.; Medeni, M. Moisture sorption isotherms of grape pestil and foamed grape pestil. Food/Nahrung 2002, 46, 73–75. [Google Scholar] [CrossRef]
- Kaya, S.; Maskan, A. Water vapor permeability of pestil (a fruit leather) made from boiled grape juice with starch. J. Food Eng. 2003, 57, 295–299. [Google Scholar] [CrossRef]
- Sun, X.; Wang, X.; Liu, H.; Lian, Z.; Li, M.; Lv, H.; Zhong, T.; Ma, Z. Study on the properties of vegetable paper based on cabbage. Acad. Period. Farm Prod. Process. 2010, 4, 4–7. [Google Scholar]
- Zhang, Y.; Fu, L. Optimization of adhesives formula of pumpkin paper by response surface methodology. Mod. Food Sci. Technol. 2010, 6, 609–613. [Google Scholar]
- Wang, S.; Wang, H.; Li, W.; Sun Sh Wang, L. Study on the processing technology edible lettuce paper. Food Res. Dev. 2013, 10, 60–64. [Google Scholar]
- Wang, A.; Wu, L.; Wang, X.; Zhu, J. Method for Preparing Edible Wrapping Paper by Taking Celeries as Raw Materials. Chinese Patent CN 102071599 B, 29 August 2012. [Google Scholar]
- Wang, A.; Wu, L.; Wang, X.; Zhu, J. Method for Preparing Edible Wrapping Paper by Taking Corn-Peel Dietary Fibers as Raw Materials. Chinese Patent CN 102071595 B, 27 June 2012. [Google Scholar]
- Sun, J.; Yiyan, C.H. Preparation Technology of Chines Chive Packaging Paper. Chinese Patent CN 102943407 A, 27 February 2013. [Google Scholar]
- González-Herrera, S.M.; Rutiaga-Quiñones, O.M.; Aguilar, C.N.; Ochoa-Martínez, L.A.; Contreras-Esquivel, J.C.; López, M.G.; Rodríguez-Herrera, R. Dehydrated apple matrix supplemented with agave fructans, inulin, and oligofructose. LWT Food Sci. Technol. 2016, 65, 1059–1065. [Google Scholar] [CrossRef]
- Liu, B.; Zhang, J.; Liu, L.; Hotchkiss, A.T. Preparation and Properties of Water and Glycerol-plasticized Sugar Beet Pulp Plastics. J. Polym. Environ. 2011, 19, 559–567. [Google Scholar] [CrossRef]
- McHugh, T.H.; Senesi, E. Apple Wraps: A Novel Method to Improve the Quality and Extend the Shelf Life of Fresh-cut Apples. J. Food Sci. 2000, 65, 480–485. [Google Scholar] [CrossRef]
- Otoni, C.G.; Avena-Bustillos, R.J.; Azeredo, H.M.C.; Lorevice, M.V.; Moura, M.R.; Mattoso, L.H.C.; McHugh, T.H. Recent Advances on Edible Films Based on Fruits and Vegetables-A Review. Compr. Rev. Food Sci. Food Saf. 2017, 16, 1151–1169. [Google Scholar] [CrossRef]
- Espitia, P.J.; Avena-Bustillos, R.J.; Du, W.X.; Chiou, B.S.; Williams, T.G.; Wood, D.; McHugh, T.H.; Soares, N.F. Physical and antibacterial properties of açaí edible films formulated with thyme essential oil and apple skin polyphenols. J. Food Sci. 2014, 79, M903–M910. [Google Scholar] [CrossRef]
- Espitia, P.J.P.; Avena-Bustillos, R.J.; Du, W.-X.; Teófilo, R.F.; Soares, N.F.F.; McHugh, T.H. Optimal antimicrobial formulation and physical–mechanical properties of edible films based on açaí and pectin for food preservation. Food Packag. Shelf Life 2014, 2, 38–49. [Google Scholar] [CrossRef]
- Azeredo, H.M.C.; Miranda, K.W.E.; Ribeiro, H.L.; Rosa, M.F.; Nascimento, D.M. Nanoreinforced alginate–acerola puree coatings on acerola fruits. J. Food Eng. 2012, 113, 505–510. [Google Scholar] [CrossRef]
- Dantas, E.; Costa, S.; Cruz, L.; Bramont, W.; Costa, A.; Padilha, F.; Druzian, J.; Machado, B. Characterization and evaluation of the antioxidant properties of biodegradable films incorporated with tropical fruit pulps. Cienc. Rural 2014, 45, 142–148. [Google Scholar] [CrossRef]
- Farias, M.; Fakhouri, F.; Piler Carvalho, C.; Ascheri, J.L. Physicochemical characterization of edible starch films with barbados cherry (Malphigia emarginata D.C.). Química Nova 2011, 35, 546–552. [Google Scholar] [CrossRef]
- Oliveira de souza, C.; Silva, L.; Druzian, J. Comparative studies on the characterization of biodegradable cassava starch films containing mango and acerola pulps. Química Nova 2011, 35, 262–267. [Google Scholar] [CrossRef]
- Azeredo, H.M.C.; Miranda, K.W.E.; Rosa, M.F.; Nascimento, D.M.; de Moura, M.R. Edible films from alginate-acerola puree reinforced with cellulose whiskers. LWT Food Sci. Technol. 2012, 46, 294–297. [Google Scholar] [CrossRef]
- Oliveira de souza, C.; Silva, L.; Silva, J.; López, J.; Veiga-Santos, P.; Druzian, J. Mango and Acerola Pulps as Antioxidant Additives in Cassava Starch Bio-based Film. J. Agric. Food Chem. 2011, 59, 2248–2254. [Google Scholar] [CrossRef] [PubMed]
- Eça, K.S.; Machado, M.T.; Hubinger, M.D.; Menegalli, F.C. Development of Active Films from Pectin and Fruit Extracts: Light Protection, Antioxidant Capacity, and Compounds Stability. J. Food Sci. 2015, 80, C2389–C2396. [Google Scholar] [CrossRef] [PubMed]
- Amaral, D.P.; Andrade, K.; Barbosa, F.; Carvalho, C.W.P.; Takeiti, C.Y.; Ascheri, J.L.R.; Fakhouri, F.M. Thermal analysis and mechanical properties of cassava starch edible films added of barbados cherry. In Proceedings of the 43rd IUPAC World Polymer Congress, Glashow, UK, 11–16 July 2010. [Google Scholar]
- Du, W.-X.; Olsen, C.W.; Avena-Bustillos, R.J.; McHugh, T.H.; Levin, C.E.; Friedman, M. Storage Stability and Antibacterial Activity against Escherichia coli O157:H7 of Carvacrol in Edible Apple Films Made by Two Different Casting Methods. J. Agric. Food Chem. 2008, 56, 3082–3088. [Google Scholar] [CrossRef] [PubMed]
- Du, W.X.; Olsen, C.W.; Avena-Bustillos, R.J.; McHugh, T.H.; Levin, C.E.; Friedman, M. Effects of allspice, cinnamon, and clove bud essential oils in edible apple films on physical properties and antimicrobial activities. J. Food Sci. 2009, 74, M372–M378. [Google Scholar] [CrossRef]
- Du, W.X.; Olsen, C.W.; Avena-Bustillos, R.J.; Friedman, M.; McHugh, T.H. Physical and antibacterial properties of edible films formulated with apple skin polyphenols. J. Food Sci. 2011, 76, M149–M155. [Google Scholar] [CrossRef]
- Rojas-Graü, M.A.; Raybaudi-Massilia, R.M.; Soliva-Fortuny, R.C.; Avena-Bustillos, R.J.; McHugh, T.H.; Martín-Belloso, O. Apple puree-alginate edible coating as carrier of antimicrobial agents to prolong shelf-life of fresh-cut apples. Postharvest Biol. Technol. 2007, 45, 254–264. [Google Scholar] [CrossRef]
- Zhu, L.; Olsen, C.; McHugh, T.; Friedman, M.; Jaroni, D.; Ravishankar, S. Apple, carrot, and hibiscus edible films containing the plant antimicrobials carvacrol and cinnamaldehyde inactivate Salmonella Newport on organic leafy greens in sealed plastic bags. J. Food Sci. 2014, 79, M61–M66. [Google Scholar] [CrossRef]
- Mc Hugh, T.H.; Olsen, C.W. Tensile properties of fruit and vegetable edible films. In United States-Japan Cooperative Program in Natural Resources, Food & Ag Panel Meeting, Section Food & Non-Food Processing; Healthy Processed Foods Research: Albany, CA, USA, 2004; pp. 104–108. [Google Scholar]
- Du, W.X.; Avena-Bustillos, R.J.; Woods, R.; Breksa, A.P.; McHugh, T.H.; Friedman, M.; Levin, C.E.; Mandrell, R. Sensory evaluation of baked chicken wrapped with antimicrobial apple and tomato edible films formulated with cinnamaldehyde and carvacrol. J. Agric. Food Chem. 2012, 60, 7799–7804. [Google Scholar] [CrossRef]
- Ravishankar, S.; Zhu, L.; Olsen, C.W.; McHugh, T.H.; Friedman, M. Edible apple film wraps containing plant antimicrobials inactivate foodborne pathogens on meat and poultry products. J. Food Sci. 2009, 74, M440–M445. [Google Scholar] [CrossRef]
- Ravishankar, S.; Jaroni, D.; Zhu, L.; Olsen, C.; McHugh, T.; Friedman, M. Inactivation of Listeria monocytogenes on ham and bologna using pectin-based apple, carrot, and hibiscus edible films containing carvacrol and cinnamaldehyde. J. Food Sci. 2012, 77, M377–M382. [Google Scholar] [CrossRef]
- Valenzuela, C.; Aguilera, J.M. Effects of different factors on stickiness of apple leathers. J. Food Eng. 2015, 149, 51–60. [Google Scholar] [CrossRef]
- Shin, S.-H.; Kim, S.-J.; Lee, S.-H.; Park, K.-M.; Han, J. Apple Peel and Carboxymethylcellulose-Based Nanocomposite Films Containing Different Nanoclays. J. Food Sci. 2014, 79, E342–E353. [Google Scholar] [CrossRef]
- Martelli, M.R.; Barros, T.T.; de Moura, M.R.; Mattoso, L.H.; Assis, O.B. Effect of chitosan nanoparticles and pectin content on mechanical properties and water vapor permeability of banana puree films. J. Food Sci. 2013, 78, N98–N104. [Google Scholar] [CrossRef]
- Martelli, M.d.R.; Barros, T.T.d.; Assis, O.B.G. Filmes de polpa de banana produzidos por batelada: Propriedades mecânicas e coloração. Polímeros 2014, 24, 137–142. [Google Scholar] [CrossRef]
- Martelli Tosi, M.; Barros-Alexandrino, T.; Assis, O.B.G. Produção de Filmes Plásticos a Partir de Polpa de Frutas Sobremaduras. Rev. Bras. De Prod. Agroindustriais 2015, 17, 301–308. [Google Scholar] [CrossRef]
- Orsuwan, A.; Sothornvit, R. Development and characterization of banana flour film incorporated with montmorillonite and banana starch nanoparticles. Carbohydr. Polym. 2017, 174, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Pelissari, F.M.; Andrade-Mahecha, M.M.; Sobral, P.J.d.A.; Menegalli, F.C. Optimization of process conditions for the production of films based on the flour from plantain bananas (Musa paradisiaca). LWT Food Sci. Technol. 2013, 52, 1–11. [Google Scholar] [CrossRef]
- Pelissari, F.M.; Andrade-Mahecha, M.M.; Sobral, P.J.d.A.; Menegalli, F.C. Comparative study on the properties of flour and starch films of plantain bananas (Musa paradisiaca). Food Hydrocoll. 2013, 30, 681–690. [Google Scholar] [CrossRef]
- Pitak, N.; Rakshit, S.K. Physical and antimicrobial properties of banana flour/chitosan biodegradable and self sealing films used for preserving Fresh-cut vegetables. LWT Food Sci. Technol. 2011, 44, 2310–2315. [Google Scholar] [CrossRef]
- Sothornvit, R.; Pitak, N. Oxygen permeability and mechanical properties of banana films. Food Res. Int. 2007, 40, 365–370. [Google Scholar] [CrossRef]
- Orsuwan, A.; Sothornvit, R. Effect of banana and plasticizer types on mechanical, water barrier, and heat sealability of plasticized banana-based films. J. Food Process. Preserv. 2018, 42, e13380. [Google Scholar] [CrossRef]
- Andrade, R.M.; Ferreira, M.S.; Gonçalves, É.C. Development and Characterization of Edible Films Based on Fruit and Vegetable Residues. J. Food Sci. 2016, 81, E412–E418. [Google Scholar] [CrossRef]
- Wang, X.; Sun, X.; Liu, H.; Li, M.; Ma, Z. Barrier and mechanical properties of carrot puree films. Food Bioprod. Process. 2011, 89, 149–156. [Google Scholar] [CrossRef]
- Wang, X.; Kong, D.; Ma, Z.; Zhao, R. Effect of carrot puree edible films on quality preservation of fresh-cut carrots. Ir. J. Agric. Food Res. 2015, 54, 64–71. [Google Scholar] [CrossRef]
- Xuerong, W.; Jianquan, K.; Zongdao, C. Preparation of edible carrot paper. Food Ferment. Ind. 2003, 29, 63–65. [Google Scholar]
- Iahnke, A.O.e.S.; Costa, T.M.H.; Rios, A.d.O.; Flôres, S.H. Residues of minimally processed carrot and gelatin capsules: Potential materials for packaging films. Ind. Crops Prod. 2015, 76, 1071–1078. [Google Scholar] [CrossRef]
- Fai, A.E.C.; Alves de Souza, M.R.; de Barros, S.T.; Bruno, N.V.; Ferreira, M.S.L.; Gonçalves, É.C.B.d.A. Development and evaluation of biodegradable films and coatings obtained from fruit and vegetable residues applied to fresh-cut carrot (Daucus carota L.). Postharvest Biol. Technol. 2016, 112, 194–204. [Google Scholar] [CrossRef]
- Ferreira, M.S.; Fai, A.E.C.; Andrade, C.T.; Picciani, P.H.; Azero, E.G.; Goncalves, E.C. Edible films and coatings based on biodegradable residues applied to acerolas (Malpighia punicifolia L.). J. Sci. Food Agric. 2016, 96, 1634–1642. [Google Scholar] [CrossRef]
- Park, S.; Zhao, Y.Y. Development and characterization of edible films from cranberry pomace extracts. J. Food Sci. 2006, 71, E95–E101. [Google Scholar] [CrossRef]
- Jaswir, I.; Man, Y.; Selamat, J.; Ahmad, F.; Sugisawa, H. Retention of volatile components of durian fruit leather during processing and storage. J. Food Process. Preserv. 2008, 32, 740–750. [Google Scholar] [CrossRef]
- Mariniello, L.; Giosafatto, C.V.; Moschetti, G.; Aponte, M.; Masi, P.; Sorrentino, A.; Porta, R. Fennel waste-based films suitable for protecting cultivations. Biomacromolecules 2007, 8, 3008–3014. [Google Scholar] [CrossRef] [PubMed]
- Deng, Q.; Zhao, Y. Physicochemical, nutritional, and antimicrobial properties of wine grape (cv. Merlot) pomace extract-based films. J. Food Sci. 2011, 76, E309–E317. [Google Scholar] [CrossRef]
- Xu, Y.; Scales, A.; Jordan, K.; Kim, C.; Sismour, E. Starch nanocomposite films incorporating grape pomace extract and cellulose nanocrystal. J. Appl. Polym. Sci. 2017, 134, 44438. [Google Scholar] [CrossRef]
- Maskan, A.; Kaya, S.; Maskan, M. Effect of concentration and drying processes on color change of grape juice and leather (Pestil). J. Food Eng. 2002, 54, 75–80. [Google Scholar] [CrossRef]
- Maskan, A.; Kaya, S.; Maskan, M. Hot air and sun drying of grape leather (pestil). J. Food Eng. 2002, 54, 81–88. [Google Scholar] [CrossRef]
- Lorevice, M.V.; de Moura, M.R.; Aouada, F.A.; Mattoso, L.H. Development of novel guava puree films containing chitosan nanoparticles. J. Nanosci. Nanotechnol. 2012, 12, 2711–2717. [Google Scholar] [CrossRef]
- Suppakul, P.; Boonlert, R.; Buaphet, W.; Sonkaew, P.; Luckanatinvong, V. Efficacy of Superior Antioxidant Indian Gooseberry Extract-Incorporated Edible Indian Gooseberry Puree/Methylcellulose Composite Films on Enhancing the Shelf Life of Roasted Cashew Nut. Food Control 2016, 69, 51–60. [Google Scholar] [CrossRef]
- Bala, B.K.; Ashraf, M.; Uddin, M.A.; Janjai, S. Experimental and neural network prediction of the performance of a solar tunnel drier for drying jackfruit bulbs and leather. J. Food Process Eng. 2005, 28, 552–566. [Google Scholar] [CrossRef]
- Man, Y.b.C.; Sin, K.K. Processing and consumer acceptance of fruit leather from the unfertilised floral parts of jackfruit. J Sci Food Agric. 1997, 75, 102–108. [Google Scholar] [CrossRef]
- Concha-Meyer, A.A.; D’Ignoti, V.; Saez, B.; Diaz, R.I.; Torres, C.A. Effect of Storage on the Physico-Chemical and Antioxidant Properties of Strawberry and Kiwi Leathers. J. Food Sci. 2016, 81, C569–C577. [Google Scholar] [CrossRef] [PubMed]
- Vatthanakul, S.; Jangchud, A.; Jangchud, K.; Therdthai, N.; Wilkinson, B. Gold kiwifruit leather product development using Quality function deployment approach. Food Qual. Prefer. 2010, 21, 339–345. [Google Scholar] [CrossRef]
- Azeredo, H.M.C.; Brito, E.S.; Moreira, G.E.G.; Farias, V.L.; Bruno, L.M. Effect of drying and storage time on the physico-chemical properties of mango leathers. Int. J. Food Sci. Technol. 2006, 41, 635–638. [Google Scholar] [CrossRef]
- Azeredo, H.M.; Mattoso, L.H.; Wood, D.; Williams, T.G.; Avena-Bustillos, R.J.; McHugh, T.H. Nanocomposite edible films from mango puree reinforced with cellulose nanofibers. J. Food Sci. 2009, 74, N31–N35. [Google Scholar] [CrossRef]
- Sothornvit, R.; Rodsamran, P. Effect of a mango film on quality of whole and minimally processed mangoes. Postharvest Biol. Technol. 2008, 47, 407–415. [Google Scholar] [CrossRef]
- Sothornvit, R.; Rodsamran, P. Mango film coated for fresh-cut mango in modified atmosphere packaging. Int. J. Food Sci. Technol. 2010, 45, 1689–1695. [Google Scholar] [CrossRef]
- Reis, L.C.B.; de Souza, C.O.; da Silva, J.B.A.; Martins, A.C.; Nunes, I.L.; Druzian, J.I. Active biocomposites of cassava starch: The effect of yerba mate extract and mango pulp as antioxidant additives on the properties and the stability of a packaged product. Food Bioprod. Process. 2015, 94, 382–391. [Google Scholar] [CrossRef]
- Addai, Z.; Abdullah, A.; Sahilah, A.M.; Musa, K.H. Evaluation of fruit leather made from two cultivars of papaya. Ital. J. Food Sci. 2016, 28, 73–82. [Google Scholar] [CrossRef]
- Otoni, C.G.; Moura, M.R.d.; Aouada, F.A.; Camilloto, G.P.; Cruz, R.S.; Lorevice, M.V.; Soares, N.d.F.F.; Mattoso, L.H.C. Antimicrobial and physical-mechanical properties of pectin/papaya puree/cinnamaldehyde nanoemulsion edible composite films. Food Hydrocoll. 2014, 41, 188–194. [Google Scholar] [CrossRef]
- Tulamandi, S.; Rangarajan, V.; Rizvi, S.S.H.; Singhal, R.S.; Chattopadhyay, S.K.; Saha, N.C. A biodegradable and edible packaging film based on papaya puree, gelatin, and defatted soy protein. Food Packag. Shelf Life 2016, 10, 60–71. [Google Scholar] [CrossRef]
- Huang, X.; Hsieh, F.-H. Physical Properties, Sensory Attributes, and Consumer Preference of Pear Fruit Leather. J. Food Sci. 2005, 70, E177–E186. [Google Scholar] [CrossRef]
- Phimpharian, C.; Jangchud, A.; Jangchud, K.; Therdthai, N.; Prinyawiwatkul, W.; No, H.K. Physicochemical characteristics and sensory optimisation of pineapple leather snack as affected by glucose syrup and pectin concentrations. Int. J. Food Sci. Technol. 2011, 46, 972–981. [Google Scholar] [CrossRef]
- Sharma, P.; Ramchiary, M.; Samyor, D.; Das, A.B. Study on the phytochemical properties of pineapple fruit leather processed by extrusion cooking. LWT Food Sci. Technol. 2016, 72, 534–543. [Google Scholar] [CrossRef]
- Azeredo, H.M.; Morrugares-Carmona, R.; Wellner, N.; Cross, K.; Bajka, B.; Waldron, K.W. Development of pectin films with pomegranate juice and citric acid. Food Chem. 2016, 198, 101–106. [Google Scholar] [CrossRef]
- Tontul, I.; Topuz, A. Effects of different drying methods on the physicochemical properties of pomegranate leather (pestil). LWT Food Sci. Technol. 2017, 80, 294–303. [Google Scholar] [CrossRef]
- Yılmaz, F.M.; Yüksekkaya, S.; Vardin, H.; Karaaslan, M. The effects of drying conditions on moisture transfer and quality of pomegranate fruit leather (pestil). J. Saudi Soc. Agric. Sci. 2017, 16, 33–40. [Google Scholar] [CrossRef]
- Caetano, K.; Hessel, C.; Tondo, E.; Flôres, S.; Cladera-Olivera, F. Application of active cassava starch films incorporated with oregano essential oil and pumpkin residue extract on ground beef. J. Food Saf. 2017, 37, e12355. [Google Scholar] [CrossRef]
- Demarchi, S.M.; Quintero Ruiz, N.A.; Giner, S.A. Sorptional behaviour of rosehip leather formulations added with sucrose or polydextrose. Biosyst. Eng. 2014, 118, 83–94. [Google Scholar] [CrossRef]
- Quintero Ruiz, N.A.; Demarchi, S.M.; Giner, S.A. Effect of hot air, vacuum and infrared drying methods on quality of rose hip (Rosa rubiginosa) leathers. Int. J. Food Sci. Technol. 2014, 49, 1799–1804. [Google Scholar] [CrossRef]
- Rhim, J.W.; Wang, L.F. Mechanical and water barrier properties of agar/κ-carrageenan/konjac glucomannan ternary blend biohydrogel films. Carbohydr. Polym. 2013, 96, 71–81. [Google Scholar] [CrossRef]
- Torley, P.; Boer, J.; Bhandari, B.; Kasapis, S.; Shrinivas, P.; Jiang, B. Application of the synthetic polymer approach to the glass transition of fruit leathers. J. Food Eng. 2008, 86, 243–250. [Google Scholar] [CrossRef]
- Rouilly, A.; Geneau-Sbartaï, C.; Rigal, L. Thermo-mechanical processing of sugar beet pulp. III. Study of extruded films improvement with various plasticizers and cross-linkers. Bioresour. Technol. 2009, 100, 3076–3081. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.; Ghasemlou, M.; Kamdem, D.P. Development and compatibility assessment of new composite film based on sugar beet pulp and polyvinyl alcohol intended for packaging applications. J. Appl. Polym. Sci. 2015, 132, 41354. [Google Scholar] [CrossRef]
- Du, W.X.; Olsen, C.W.; Avena-Bustillos, R.J.; McHugh, T.H.; Levin, C.E.; Friedman, M. Antibacterial activity against E. coli O157:H7, physical properties, and storage stability of novel carvacrol-containing edible tomato films. J. Food Sci. 2008, 73, M378–M383. [Google Scholar] [CrossRef] [PubMed]
- Du, W.X.; Olsen, C.W.; Avena-Bustillos, R.J.; McHugh, T.H.; Levin, C.E.; Mandrell, R.; Friedman, M. Antibacterial effects of allspice, garlic, and oregano essential oils in tomato films determined by overlay and vapor-phase methods. J. Food Sci. 2009, 74, M390–M397. [Google Scholar] [CrossRef] [PubMed]
- Amin, U.; Khan, M.U.; Majeed, Y.; Rebezov, M.; Khayrullin, M.; Bobkova, E.; Shariati, M.A.; Chung, I.M.; Thiruvengadam, M. Potentials of polysaccharides, lipids and proteins in biodegradable food packaging applications. Int. J. Biol. Macromol. 2021, 183, 2184–2198. [Google Scholar] [CrossRef]
- Dodevska, M.; Sobajic, S.; Djordjevic, B. Fibre and polyphenols of selected fruits, nuts and green leafy vegetables used in Serbian diet. J. Serbian Chem. Soc. 2014, 80, 62. [Google Scholar] [CrossRef]
- Martin, C.L.; Clemens, J.; Moshfegh, A.J. Items designated as fortified: Food and Nutrient Database for Dietary Studies (FNDDS), 2015–2016. J. Food Compos. Anal. 2019, 84, 103255. [Google Scholar] [CrossRef]
- Heiberg, N.; Måge, F.; Haffner, K. Chemical Composition of Ten Blackcurrant (Ribes nigrum L.) Cultivars. Acta Agric. Scand. Sect. B Soil Plant Sci. 1992, 42, 251–254. [Google Scholar] [CrossRef]
- Li, B.; Andrews, K.; Pehrsson, P. Individual Sugars, Soluble, and Insoluble Dietary Fiber Contents of 70 High Consumption Foods. J. Food Compos. Anal. 2002, 15, 715–723. [Google Scholar] [CrossRef]
- Ramulu, P.; Rao, P. Total, insoluble and soluble dietary fiber contents of Indian fruits. J. Food Compos. Anal. 2003, 16, 677–685. [Google Scholar] [CrossRef]
- Jirukkakul, N. The study of edible film production from unriped banana flour and riped banana puree. Int. Food Res. J. 2016, 23, 95–101. [Google Scholar]
- Sothornvit, R.; Krochta, J.M. Plasticizer effect on oxygen permeability of beta-lactoglobulin films. J. Agric. Food Chem. 2000, 48, 6298–6302. [Google Scholar] [CrossRef] [PubMed]
- Castro, C.D.P.D.C.; Dias, C.G.B.T.; Faria, J.D.A.F. Production and evaluation of recycled polymers from açaí fibers. Mater. Res. 2010, 13, 159–163. [Google Scholar] [CrossRef]
- Bose, I.; Singh, R.; Negi, S.; Tiwari, K. Utilization of edible film and coating material obtained from fruits and vegetables residue: A review. AIP Conf. Proc. 2023, 2521, 020015. [Google Scholar]
- Karwacka, M.; Ciurzyńska, A.; Galus, S.; Janowicz, M. Freeze-dried snacks obtained from frozen vegetable by-products and apple pomace Selected properties, energy consumption and carbon footprint. Innov. Food Sci. Emerg. Technol. 2022, 77, 102949. [Google Scholar] [CrossRef]
- Antich, P.; Vázquez, A.; Mondragon, I.; Bernal, C. Mechanical behavior of high impact polystyrene reinforced with short sisal fibers. Compos. Part A Appl. Sci. Manuf. 2006, 37, 139–150. [Google Scholar] [CrossRef]
- Carina, D.; Sharma, S.; Jaiswal, A.K.; Jaiswal, S. Seaweeds polysaccharides in active food packaging: A review of recent progress. Trends Food Sci. Technol. 2021, 110, 559–572. [Google Scholar] [CrossRef]
- Spagnuolo, D.; Di Martino, A.; Zammuto, V.; Armeli Minicante, S.; Spanò, A.; Manghisi, A.; Gugliandolo, C.; Morabito, M.; Genovese, G. Conventional vs. Innovative Protocols for the Extraction of Polysaccharides from Macroalgae. Sustainability 2022, 14, 5750. [Google Scholar] [CrossRef]
- Ciurzynska, A.; Falacinska, J.; Kowalska, H.; Kowalska, J.; Galus, S.; Marzec, A.; Domian, E. The Effect of Pre-Treatment (Blanching, Ultrasound and Freezing) on Quality of Freeze-Dried Red Beets. Foods 2021, 10, 132. [Google Scholar] [CrossRef]
- Gupta, S.; Ravishankar, S. A comparison of the antimicrobial activity of garlic, ginger, carrot, and turmeric pastes against Escherichia coli O157:H7 in laboratory buffer and ground beef. Foodborne Pathog Dis 2005, 2, 330–340. [Google Scholar] [CrossRef]
- Han, R.M.; Li, D.D.; Chen, C.H.; Liang, R.; Tian, Y.X.; Zhang, J.P.; Skibsted, L.H. Phenol acidity and ease of oxidation in isoflavonoid/β-carotene antioxidant synergism. J. Agric. Food Chem. 2011, 59, 10367–10372. [Google Scholar] [CrossRef]
- Gurusiddaiah, S.; Nayaka, M.; Dharmesh, S.; Salimath, V. Free and bound phenolic antioxidants in Amla (Emblica officinalis) and turmeric (Curcuma longa). J. Food Compos. Anal. 2006, 19, 446–452. [Google Scholar] [CrossRef]
- Wu, J.; Chen, S.; Ge, S.; Miao, J.; Li, J.; Zhang, Q. Preparation, properties and antioxidant activity of an active film from silver carp (Hypophthalmichthys molitrix) skin gelatin incorporated with green tea extract. Food Hydrocoll. 2013, 32, 42–51. [Google Scholar] [CrossRef]
- Tongnuanchan, P.; Benjakul, S.; Prodpran, T. Physico-chemical properties, morphology and antioxidant activity of film from fish skin gelatin incorporated with root essential oils. J. Food Eng. 2013, 117, 350–360. [Google Scholar] [CrossRef]
- Sistrunk, W.A. Peach Quality Assessment: Fresh and Processed. In Evaluation of Quality of Fruits and Vegetables; Pattee, H.E., Ed.; Springer: Dordrecht, The Netherlands, 1985; pp. 1–46. [Google Scholar]
- Ciurzyńska, A.; Galus, S.; Karwacka, M.; Janowicz, M. The sorption properties, structure and shrinkage of freeze-dried multi-vegetable snack bars in the aspect of the environmental water activity. LWT 2022, 171, 114090. [Google Scholar] [CrossRef]
- Janowicz, M.; Kadzińska, J.; Ciurzyńska, A.; Szulc, K.; Galus, S.; Karwacka, M.; Nowacka, M. The Structure-Forming Potential of Selected Polysaccharides and Protein Hydrocolloids in Shaping the Properties of Composite Films Using Pumpkin Purée. Appl. Sci. 2023, 13, 6959. [Google Scholar] [CrossRef]
- Kilcast, D.S.P. The Stability and Shelf-Life of Food; Woodhead Publishing Limited: Sawston, UK; CRC Press: Boca Raton, FL, USA, 2000. [Google Scholar]
- Hernalsteens, S. Edible films and coatings made up of fruits and vegetables. In Biopolymer Membranes and Films: Health, Food, Environment, and Energy Applications; Elsevier: Amsterdam, The Netherlands, 2020; pp. 575–588. [Google Scholar]
Specification | Average Content [g/100 g FW] | ||||||||
---|---|---|---|---|---|---|---|---|---|
Fruits | Water | Total Protein | Fat | Total Carbohydrates | Total Sugars * | Starch | Dietary Fiber | ||
Total | Soluble ** | Insoluble *** | |||||||
Apple | 85.56 | 0.26 | 0.17 | 13.81 | 10.39 | 0.05 | 2.21 | 0.67 | 1.54 |
Strawberry | 90.95 | 0.67 | 0.30 | 7.68 | 4.89 | 0.04 | 2.30 | 0.70 | 1.60 |
Sour cherry | 86.13 | 1.00 | 0.30 | 12.18 | 8.49 | 0.00 | 1.50 | 0.60 | 0.90 |
Blackcurrant | 81.96 | 1.40 | 0.41 | 15.38 | 9.00 | 0.00 | 7.90 | NA | NA |
Raspberry | 85.75 | 1.20 | 0.65 | 11.94 | 4.42 | 0.00 | 5.50 | 2.88 | 2.62 |
Vegetables | |||||||||
White cabbage | 92.18 | 1.28 | 0.10 | 5.80 | 3.20 | 0.00 | 2.50 | NA | NA |
Carrot | 88.29 | 0.93 | 0.24 | 9.58 | 4.74 | 1.43 | 2.88 | 0.49 | 2.39 |
Onion | 89.11 | 1.10 | 0.10 | 9.34 | 4.24 | 0.00 | 1.93 | 0.71 | 1.22 |
Tomato | 94.52 | 0.88 | 0.20 | 3.89 | 2.63 | 0.00 | 1.34 | 0.15 | 1.19 |
Red beet | 87.58 | 1.61 | 0.17 | 9.56 | 6.76 | 0.10 | 2.80 | NA | NA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Janowicz, M.; Galus, S.; Ciurzyńska, A.; Nowacka, M. The Potential of Edible Films, Sheets, and Coatings Based on Fruits and Vegetables in the Context of Sustainable Food Packaging Development. Polymers 2023, 15, 4231. https://doi.org/10.3390/polym15214231
Janowicz M, Galus S, Ciurzyńska A, Nowacka M. The Potential of Edible Films, Sheets, and Coatings Based on Fruits and Vegetables in the Context of Sustainable Food Packaging Development. Polymers. 2023; 15(21):4231. https://doi.org/10.3390/polym15214231
Chicago/Turabian StyleJanowicz, Monika, Sabina Galus, Agnieszka Ciurzyńska, and Małgorzata Nowacka. 2023. "The Potential of Edible Films, Sheets, and Coatings Based on Fruits and Vegetables in the Context of Sustainable Food Packaging Development" Polymers 15, no. 21: 4231. https://doi.org/10.3390/polym15214231
APA StyleJanowicz, M., Galus, S., Ciurzyńska, A., & Nowacka, M. (2023). The Potential of Edible Films, Sheets, and Coatings Based on Fruits and Vegetables in the Context of Sustainable Food Packaging Development. Polymers, 15(21), 4231. https://doi.org/10.3390/polym15214231