Investigation of Dielectric, Mechanical, and Thermal Properties of Epoxy Composites Embedded with Quartz Fibers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Composite Property Estimation
2.3. Composite Sample Preparation
2.4. Characterization
3. Results and Discussion
3.1. Chemical Structure by FTIR
3.2. SEM Morphology
3.3. Electrical Properties
3.4. Mechanical Properties
3.5. Thermal Degradation (Weight Loss)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Clarricoats, P.J.B.; Rizk, M.S.A.S.; Parini, C.G. Performance of radome-covered reflector antennas. IEE Proc. H Microw. Opt. Antennas 1982, 129, 153–160. [Google Scholar] [CrossRef]
- Zhou, L.; Liu, Z.; Tang, L.; Pei, Y. Design and characterization for a high-temperature dual-band radome wall structure for airborne applications. Mater. Des. 2017, 114, 264–270. [Google Scholar] [CrossRef]
- Munk, B.A.; Coveyou, T.J. Composite materials: Reactively loaded radomes. Proc. Annu. Southeast. Symp. Syst. Theory 1987, 86, 255–260. [Google Scholar]
- Zhou, X.; Liu, X.; Cui, Z.; Gu, J.; Lin, S.; Zhuang, Q. Design and development of HMS@ZIF-8/fluorinated polybenzoxazole composite films with excellent low-kperformance, mechanical properties and thermal stability. J. Mater. Chem. C Mater. 2020, 8, 7476–7484. [Google Scholar] [CrossRef]
- Nelo, M.; Liimatainen, H.; Väätäjä, M.; Ukkola, J.; Juuti, J.; Jantunen, H. Solid air—Low temperature manufacturing of ultra-low permittivity composite materials for future telecommunication systems. Front. Mater. 2019, 6, 94. [Google Scholar] [CrossRef]
- Lin, B.; Wang, H.; Wei, J.; Sui, T. Diamond wheel grinding characteristics of 3D orthogonal quartz fiber reinforced silica ceramic matrix composite. Chin. J. Aeronaut. 2021, 34, 404–414. [Google Scholar] [CrossRef]
- Haris, M.Y.M.; Aris, K.D.M.; Zulkifli, M.; Razak, T.A.A.; Zuhudi, N.Z.M. Vacuum Infusion Simulation for Radome Manufacturing Using Woven Flax Fibre and Glass Fibre. J. Adv. Res. Fluid. Mech. Therm. Sci. 2021, 88, 49–56. [Google Scholar] [CrossRef]
- Othman, S.; Khalid, N.K.A.; Seman, F.C. Transmission characteristics of ring periodic array for radome applications. ARPN J. Eng. Appl. Sci. 2016, 11, 3812–3815. [Google Scholar]
- Chung, D.D.L. Polymer-matrix composites for microelectronics. Polym. Compos. 2000, 8, 219–230. [Google Scholar] [CrossRef]
- Tang, L.; Zhang, J.; Tang, Y.; Kong, J.; Liu, T.; Gu, J. Polymer matrix wave-transparent composites: A review. J. Mater. Sci. Technol. 2021, 75, 225–251. [Google Scholar] [CrossRef]
- Nair, R.U.; Jha, R.M. Electromagnetic performance analysis of a novel monolithic radome for airborne applications. IEEE Trans. Antennas Propag. 2009, 57, 3664–3668. [Google Scholar] [CrossRef]
- Xue, C.; Qin, Y.; Fu, H. Thermal Stability, Mechanical Properties and Ceramization Mechanism of Epoxy Resin/Kaolin/Quartz Fiber Ceramifiable Composites. Polymers 2022, 14, 3372. [Google Scholar] [CrossRef]
- Zhou, L.; Pei, Y.; Fang, D. Dual-Band A-Sandwich Radome Design for Airborne Applications. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 218–221. [Google Scholar] [CrossRef]
- Jiang, W.; Zhang, X.; Chen, D.; Ma, Y.; Yang, W. High performance low-k and wave-transparent cyanate ester resins modified with a novel bismaleimide hollow polymer microsphere. Compos. B Eng. 2021, 222, 109041. [Google Scholar] [CrossRef]
- Jianjun, Y.; Wensuo, M.; Zuobin, G.; Chenhui, J.; Xianqing, L. Electromagnetic wave-transparent model for 2D woven composites ellipsoid radome. Mech. Adv. Mater. Struct. 2023, 30, 2517–2523. [Google Scholar] [CrossRef]
- Xing, Z.; Yang, F.; Yang, J.; Zhu, X. Low-RCS Ka-band receiving and transmitting satellite communication antennas co-designed with high-performance absorbent frequency-selective radomes. J. Electromagn. Waves Appl. 2023, 37, 190–206. [Google Scholar] [CrossRef]
- Agrawal, A.; Satapathy, A. Mechanical, thermal and dielectric behavior of hybrid filler polypropylene composites. Compos. Commun. 2017, 5, 36–39. [Google Scholar] [CrossRef]
- Wang, L.; Liu, C.; Shen, S.; Xu, M.; Liu, X. Low dielectric constant polymers for high speed communication network. Adv. Ind. Eng. Polym. Res. 2020, 3, 138–148. [Google Scholar] [CrossRef]
- Cherukattu Gopinathapanicker, J.; Inamdar, A.; Anand, A.; Joshi, M.; Kandasubramanian, B. Radar Transparent, Impact-Resistant, and High-Temperature Capable Radome Composites Using Polyetherimide-Toughened Cyanate Ester Resins for High-Speed Aircrafts through Resin Film Infusion. Ind. Eng. Chem. Res. 2020, 59, 7502–7511. [Google Scholar] [CrossRef]
- Choi; Kim, J.G.; Seo, I.S.; Lee, D.G. Design of the hybrid composite face with electromagnetic wave transmission characteristics of low-observable radomes. Compos. Struct. 2012, 94, 3394–3400. [Google Scholar] [CrossRef]
- Yuan; Kong, X.; Wang, Q.; Wu, C. Intelligent radome design using multilayer metamaterial structures to realize energy isolation and asymmetric propagation of electromagnetic wave. arXiv 2020, arXiv:2003.02594. [Google Scholar]
- Maier, G. Low dielectric constant polymers for microelectronics. Prog. Polym. Sci. 2001, 26, 3–65. [Google Scholar] [CrossRef]
- Polydoropoulou, P.V.; Katsiropoulos, C.V.; Pantelakis, S.G.; Raimondo, M.; Guadagno, L. A critical assessment of multifunctional polymers with regard to their potential use in structural applications. Compos. B Eng. 2019, 157, 150–162. [Google Scholar] [CrossRef]
- Gu, J.; Dong, W.; Tang, Y.; Guo, Y.; Tang, L.; Kong, J.; Tadakamalla, S.; Wang, B.; Guo, Z. Ultralow dielectric, fluoride-containing cyanate ester resins with improved mechanical properties and high thermal and dimensional stabilities. J. Mater. Chem. C Mater. 2017, 5, 6929–6936. [Google Scholar] [CrossRef]
- Gu, J.; Dong, W.; Xu, S.; Tang, Y.; Ye, L.; Kong, J. Development of wave-transparent, light-weight composites combined with superior dielectric performance and desirable thermal stabilities. Compos. Sci. Technol. 2017, 144, 185–192. [Google Scholar] [CrossRef]
- Latrach; Rmili, H.; Sabatier, C.; Seguenot, E.; Toutain, S. Design of a new type of metamaterial radome for low frequencies. Microw. Opt. Technol. Lett. 2010, 52, 1119–1123. [Google Scholar] [CrossRef]
- Wallenberger, F.T. Commercial and experimental glass fibers. In Fiberglass and Glass Technology: Energy-Friendly Compositions and Applications; Springer: Boston, MA, USA, 2010. [Google Scholar] [CrossRef]
- Elmahdy, A.; Verleysen, P. Mechanical behavior of basalt and glass textile composites at high strain rates: A comparison. Polym. Test. 2020, 81, 106224. [Google Scholar] [CrossRef]
- Wu, Y.; Xiao, Y.; Zou, C.; Sha, X.; Gao, L.; Li, S. High-temperature resistance and wave-transmitting quartz-fibre/polyimide composite. Plast. Rubber Compos. 2022, 51, 489–496. [Google Scholar] [CrossRef]
- Bakir, M. Quartz Fiber Radome and Substrate for Aerospace Applications. Eskişehir Tech. Univ. J. Sci. Technol. A Appl. Sci. Eng. 2023, 24, 48–56. [Google Scholar] [CrossRef]
- Khajeh, A.; Mustapha, F.; Sultan, M.T.H.; Bánhegyi, G.; Karácsony, Z.; Baranyai, V. The Effect of Thermooxidative Aging on the Durability of Glass Fiber-Reinforced Epoxy. Adv. Mater. Sci. Eng. 2015, 2015, 372354. [Google Scholar] [CrossRef]
- Wallenberger, F.T. Structural Silicate and Silica Glass Fibers. In Advanced Inorganic Fibers: Process-Structure-Properties-Applications; Springer: Boston, MA, USA, 2000; pp. 129–168. [Google Scholar] [CrossRef]
- Shah, J.R.; Thanki, S. Investigation of the Tensile Properties in Continuous Glass Fiber-Reinforced Thermoplastic Composite Developed Using Fused Filament Fabrication. J. Test. Eval. 2023, 51. [Google Scholar] [CrossRef]
- Pan, L.; Ali, A.; Wang, Y.; Zheng, Z.; Lv, Y. Characterization of effects of heat treated anodized film on the properties of hygrothermally aged AA5083-based fiber-metal laminates. Compos. Struct. 2017, 167, 112–122. [Google Scholar] [CrossRef]
- Zong, L.; Zhou, S.; Sun, R.; Kempel, L.C.; Hawley, M.C. Dielectric analysis of a crosslinking epoxy resin at a high microwave frequency. J. Polym. Sci. B Polym. Phys. 2004, 42, 2871–2877. [Google Scholar] [CrossRef]
- Botelho, E.C.; Nohara, E.L.; Rezende, M.C. Lightweight structural composites with electromagnetic applications. In Multifunctionality of Polymer Composites: Challenges and New Solutions; Elsevier: Amsterdam, The Netherlands, 2015. [Google Scholar] [CrossRef]
- Rajamanikandan, T.; Banumathi, S.; Karthikeyan, B.; Palanisamy, R.; Bajaj, M.; Zawbaa, H.M.; Kamel, S. Investigation of dielectric and mechanical properties of Lignocellulosic Rice Husk Fibril for high and medium voltage electrical insulation applications. J. Mater. Res. Technol. 2023, 22, 865–878. [Google Scholar] [CrossRef]
- Birsan, G.; Bria, V.; Bunea, M.; Circiumaru, A. An experimental investigation of thermal properties of fabric reinforced epoxy composites. Mater. Plast. 2020, 57, 159–168. [Google Scholar] [CrossRef]
- Gonon, P.; Sylvestre, A.; Teysseyre, J.; Prior, C. Combined effects of humidity and thermal stress on the dielectric properties of epoxy-silica composites. Mater. Sci. Eng. B 2001, 83, 158–164. [Google Scholar] [CrossRef]
- Rulf, B. Transmission of microwaves through layered dielectrics—Theory, experiment, and application. Am. J. Phys. 1988, 56, 76–80. [Google Scholar] [CrossRef]
- Sebastian, M.T. Dielectric Materials for Wireless Communication; Elsevier: Amsterdam, The Netherlands, 2008. [Google Scholar] [CrossRef]
- Joshi, S.C.; Bhudolia, S.K. Microwave-thermal technique for energy and time efficient curing of carbon fiber reinforced polymer prepreg composites. J. Compos. Mater. 2014, 48, 3035–3048. [Google Scholar] [CrossRef]
- Giere, A.; Zheng, Y.; Maune, H.; Sazegar, M.; Paul, F.; Zhou, X.; Binder, J.R.; Muller, S.; Jakoby, R. Tunable dielectrics for microwave applications. In Proceedings of the 2008 17th IEEE International Symposium on the Applications of Ferroelectrics, Santa Re, NM, USA, 23–28 February 2008. [Google Scholar] [CrossRef]
- Peters, S.T. Handbook of Composites, 2nd ed.; Springer Science & Business Media: Carlifornia, CA, USA, 1998. [Google Scholar]
- Fujimoto, D.; Mizuno, Y.; Takano, N.; Sase, S.; Negishi, H.; Sugimura, T. Low-transmission-loss modified cyanate ester materials for high-frequency applications. In Proceedings of the 2nd International IEEE Conference on Polymers and Adhesives in Microelectronics and Photonics. POLYTRONIC 2002. Conference Proceedings (Cat. No.02EX599), Zalaegerszeg, Hungary, 23–26 June 2002. [Google Scholar] [CrossRef]
- Nallayan, W.A.; Vijayakumar, K.R.; Rasheed, U.T. Comparison of the Effect of Curing on the Properties of E-Glass/Cyanate modified Epoxy Cross Plied Laminates. IOP Conf. Ser. Mater. Sci. Eng. 2017, 197, 012002. [Google Scholar] [CrossRef]
- Retailleau, F.; Allheily, V.; Merlat, L.; Henry, J.F.; Randrianalisoa, J.H. Experimental characterization of radiative transfer in semi-transparent composite materials with rough boundaries. J. Quant. Spectrosc. Radiat. Transf. 2020, 256, 107300. [Google Scholar] [CrossRef]
- Pal, T.; Pramanik, S.; Verma, K.D.; Naqvi, S.Z.; Manna, P.K.; Kar, K.K. Fly ash-reinforced polypropylene composites. Handb. Fly. Ash 2021, 9, 243–270. [Google Scholar] [CrossRef]
Phase | Density | Dielectric Constant | Dielectric Loss | Epoxy Content | EEW | Tensile Strength | Tg |
---|---|---|---|---|---|---|---|
(g/cc) | Ɛ | δ | % | g/g.eq | MPa | °C | |
Liquid | 1.25 | 3.9–4.3 | 0.02 | 23 | 185 | 300 | 215 |
Weave | Density | SiO2 | Dielectric Constant | Dielectric Loss | Tensile Strength | Softening Point |
---|---|---|---|---|---|---|
Type | (g/cc) | % | Ɛ | δ | GPa | °C |
Plain | 2.20 | 99.99 | 3.78 | 0.002 | 1.75 | 1600 |
Sample ID | EQ-20 | EQ-25 | EQ-30 | EQ-35 |
---|---|---|---|---|
Epoxy resin | 0.80 | 0.75 | 0.70 | 0.65 |
Quartz fiber | 0.20 | 0.25 | 0.30 | 0.35 |
Estimated Ɛr | 4.03 | 4.02 | 4.00 | 3.98 |
Estimated δ | 0.046 | 0.045 | 0.044 | 0.042 |
Resin | Fiber | Impregnation | Pressing | Curing Conditions | |
---|---|---|---|---|---|
Fraction | Fraction | min | bar | Cure | Post Cure |
0.80 to 0.65 | 0.20 to 0.35 | 30 | 10 | 140 °C and 12 h | 140 °C & 3 h |
Test | Equipment Used |
---|---|
Functional groups | FTIR- Perkin Elmar Spectrum 100 (Waltham, MA, USA) 400–4000 cm−1 |
Dielectric constant | PNA Network Analyzer 8326 Agilent Frequency used 2 GHz (Santa Clara, CA, USA) |
Dielectric loss | |
Tensile strength | Trapezium, AGX-Plus, Tokyo, Japan Test speed 2 mm/min, 50 KN |
Bending strength | |
Interlaminar shear strength | |
Morphology | SEM-JSM 6490 A, EOL Tokyo, Japan Accelerating voltage 20 KV |
Thermal degradation Weight loss (%) | TGA Q600 SDT, TA Instruments, SHIMADZU, Tokyo, Japan Heating rate = 20° C/min (N2 flow) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haider, I.; Gul, I.H.; Faraz, M.I.; Aziz, S.; Jaffery, S.H.I.; Khan, M.A.; Jung, D.-W. Investigation of Dielectric, Mechanical, and Thermal Properties of Epoxy Composites Embedded with Quartz Fibers. Polymers 2023, 15, 4133. https://doi.org/10.3390/polym15204133
Haider I, Gul IH, Faraz MI, Aziz S, Jaffery SHI, Khan MA, Jung D-W. Investigation of Dielectric, Mechanical, and Thermal Properties of Epoxy Composites Embedded with Quartz Fibers. Polymers. 2023; 15(20):4133. https://doi.org/10.3390/polym15204133
Chicago/Turabian StyleHaider, Imran, Iftikhar Hussain Gul, Muhammad Iftikhar Faraz, Shahid Aziz, Syed Husain Imran Jaffery, Muhammad Ali Khan, and Dong-Won Jung. 2023. "Investigation of Dielectric, Mechanical, and Thermal Properties of Epoxy Composites Embedded with Quartz Fibers" Polymers 15, no. 20: 4133. https://doi.org/10.3390/polym15204133
APA StyleHaider, I., Gul, I. H., Faraz, M. I., Aziz, S., Jaffery, S. H. I., Khan, M. A., & Jung, D. -W. (2023). Investigation of Dielectric, Mechanical, and Thermal Properties of Epoxy Composites Embedded with Quartz Fibers. Polymers, 15(20), 4133. https://doi.org/10.3390/polym15204133