Evaluating the Cooling Efficiency of Polymer Injection Molds by Computer Simulation Using Conformal Channels
Abstract
:1. Introduction
2. Materials and Methods
2.1. Conventional Cooling Channels
2.2. Experimental Design of Conformal Cooling Channels
2.3. Simulations
Property | Units | Polycarbonate | Water (Coolant) | Steel |
---|---|---|---|---|
Density | kg/mm3 | 1.20 × 10−6 | 1.00 × 10−6 | 7.56 × 10−6 |
Specific Heat | J/(kg·K) | 1200 | 1000 | 700 |
Conductivity | W/(mm·K) | 0.00022 | 0.007 | 0.03 |
Variable | Units | Polycarbonate | Steel |
---|---|---|---|
Melt temperature | °C | 220 | 220 |
Coolant temperature water | °C | 30 | 30 |
Filling time | s | 2 | 2 |
Packing time | s | 15 | 5 |
Packing pressure | bar | 90% of injection pressure | 90% of injection pressure |
Cooling time | s | 75 | 20 |
3. Results
3.1. Simulation
3.2. Experimental Design (ANOVA Analysis)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Salgado, N.V.; Restrepo, B.M.; Correa, J.C.M.; Lozano, A.B. Metodología para la Manufactura y Análisis de Moldes de Inyección de Plásticos; Instituto Tecnológico Metropolitano de Medellín: Medellín, Colombia, 2020. [Google Scholar]
- Feng, S.; Kamat, A.M.; Pei, Y. Design and fabrication of conformal cooling channels in molds: Review and progress updates. Int. J. Heat Mass Transf. 2021, 171, 121082. [Google Scholar] [CrossRef]
- Kanbur, B.B.; Zhou, Y.; Shen, S.; Wong, K.H.; Chen, C.; Shocket, A.; Duan, F. Metal Additive Manufacturing of Plastic Injection Molds with Conformal Cooling Channels. Polymers 2022, 14, 424. [Google Scholar] [CrossRef]
- Simiyu, L.W.; Mutua, J.M.; Muiruri, P.I.; Ikua, B.W. Optimization of polygonal cross-sectioned conformal cooling channels in injection molding. Int. J. Interact. Des. Manuf. 2023, 1–17. [Google Scholar] [CrossRef]
- Wang, Y.; Lee, C. Design and Optimization of Conformal Cooling Channels for Increasing Cooling Efficiency in Injection Molding. Appl. Sci. 2023, 13, 7437. [Google Scholar] [CrossRef]
- Kuo, C.-C.; Tasi, Q.-Z.; Hunag, S.-H.; Tseng, S.-F. Development of an Injection Mold with High Energy Efficiency of Vulcanization for Liquid Silicone Rubber Injection Molding of the Fisheye Optical Lens. Polymers 2023, 15, 2869. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, V.-T.; Minh, P.S.; Uyen, T.M.T.; Do, T.T.; Ha, N.C.; Nguyen, V.T.T. Conformal Cooling Channel Design for Improving Temperature Distribution on the Cavity Surface in the Injection Molding Process. Polymers 2023, 15, 2793. [Google Scholar] [CrossRef]
- Kanbur, B.B.; Zhou, Y.; Shen, S.; Wong, K.H.; Chen, C.; Shocket, A.; Duan, F. Metal additive manufacturing of conformal cooling channels in plastic injection molds with high number of design variables. Mater. Today Proc. 2022, 70, 541–547. [Google Scholar] [CrossRef]
- He, H.; Xing, Y.; Wang, R.; Lu, Y.; Zhang, L.; Li, F. Optimization design of cooling system for injection molding mold of non-pneumatic tire. Therm. Sci. Eng. Prog. 2023, 42, 101866. [Google Scholar] [CrossRef]
- Minh, P.S.; Dang, H.-S.; Ha, N.C. Optimization of 3D Cooling Channels in Plastic Injection Molds by Taguchi-Integrated Principal Component Analysis (PCA). Polymers 2023, 15, 1080. [Google Scholar] [CrossRef]
- Gotlih, J.; Brezocnik, M.; Pal, S.; Drstvensek, I.; Karner, T.; Brajlih, T. A Holistic Approach to Cooling System Selection and Injection Molding Process Optimization Based on Non-Dominated Sorting. Polymers 2022, 14, 4842. [Google Scholar] [CrossRef]
- Chang, H.; Zhang, G.; Sun, Y.; Lu, S. Using Sequence-Approximation Optimization and Radial-Basis-Function Network for Brake-Pedal Multi-Target Warping and Cooling. Polymers 2022, 14, 2578. [Google Scholar] [CrossRef]
- Jahan, S.A.; El-Mounayri, H. Optimal Conformal Cooling Channels in 3D Printed Dies for Plastic Injection Molding. Procedia Manuf. 2016, 5, 888–900. [Google Scholar] [CrossRef]
- Tan, C.; Wang, D.; Ma, W.; Chen, Y.; Chen, S.; Yang, Y.; Zhou, K. Design and additive manufacturing of novel conformal cooling molds. Mater. Des. 2020, 196, 109147. [Google Scholar] [CrossRef]
- Kirchheim, A.; Katrodiya, Y.; Zumofen, L.; Ehrig, F.; Wick, C. Dynamic conformal cooling improves injection molding: Hybrid molds manufactured by laser powder bed fusion. Int. J. Adv. Manuf. Technol. 2021, 114, 107–116. [Google Scholar] [CrossRef]
- Kuo, C.-C.; Xu, Y.-X. A simple method of improving warpage and cooling time of injection molded parts simultaneously. Int. J. Adv. Manuf. Technol. 2022, 122, 619–637. [Google Scholar] [CrossRef]
- Kuo, C.-C.; Wu, J.-Q. Development of a low-cost epoxy resin mold with high cooling efficiency. Int. J. Adv. Manuf. Technol. 2021, 113, 2065–2086. [Google Scholar] [CrossRef]
- Kuo, C.-C.; Nguyen, T.-D.; Zhu, Y.-J.; Lin, S.-X. Rapid Development of an Injection Mold with High Cooling Performance Using Molding Simulation and Rapid Tooling Technology. Micromachines 2021, 12, 311. [Google Scholar] [CrossRef]
- Kuo, C.-C.; Chen, W.-H. Improving Cooling Performance of Injection Molding Tool with Conformal Cooling Channel by Adding Hybrid Fillers. Polymers 2021, 13, 1224. [Google Scholar] [CrossRef]
- Kuo, C.-C.; Jiang, Z.-F.; Yang, M.-X.; You, B.J.; Zhong, W.-C. Effects of cooling channel layout on the cooling performance of rapid injection mold. Int. J. Adv. Manuf. Technol. 2021, 114, 2697–2710. [Google Scholar] [CrossRef]
- Oh, S.-H.; Ha, J.-W.; Park, K. Adaptive Conformal Cooling of Injection Molds Using Additively Manufactured TPMS Structures. Polymers 2022, 14, 181. [Google Scholar] [CrossRef]
- Zink, B.; Kovács, N.K.; Kovács, J.G. Thermal analysis based method development for novel rapid tooling applications. Int. Commun. Heat Mass Transf. 2019, 108, 104297. [Google Scholar] [CrossRef]
- Kuo, C.-C.; Zhu, Y.-J. Characterization of Epoxy-Based Rapid Mold with Profiled Conformal Cooling Channel. Polymers 2022, 14, 3017. [Google Scholar] [CrossRef]
- Kitayama, S.; Miyakawa, H.; Takano, M.; Aiba, S. Multi-objective optimization of injection molding process parameters for short cycle time and warpage reduction using conformal cooling channel. Int. J. Adv. Manuf. Technol. 2017, 88, 1735–1744. [Google Scholar] [CrossRef]
- Torres-Alba, A.; Mercado-Colmenero, J.M.; Caballero-Garcia, J.D.D.; Martin-Doñate, C. A Hybrid Cooling Model Based on the Use of Newly Designed Fluted Conformal Cooling Channels and Fastcool Inserts for Green Molds. Polymers 2021, 13, 3115. [Google Scholar] [CrossRef] [PubMed]
- Chaabene, A.; Chatti, S.; Ben Slama, M. Optimization of the Cooling of a Thermoplastic Injection Mold. Ann. “Dunarea Jos” Univ. Galati. Fascicle XII Weld. Equip. Technol. 2021, 32, 61–70. [Google Scholar] [CrossRef]
- Singh, G.; Missiaen, J.M.; Bouvard, D.; Chaix, J.M. Additive manufacturing of 17–4 PH steel using metal injection molding feedstock: Analysis of 3D extrusion printing, debinding and sintering. Addit. Manuf. 2021, 47, 102287. [Google Scholar] [CrossRef]
- ISO/ASTM52900-15; Standard Terminology for Additive Manufacturing—General Principles—Terminology. ASTM International: West Conshohocken, PA, USA, 2015. [CrossRef]
- Singh, P.; Balla, V.K.; Gokce, A.; Atre, S.V.; Kate, K.H. Additive manufacturing of Ti-6Al-4V alloy by metal fused filament fabrication (MF3): Producing parts comparable to that of metal injection molding. Prog. Addit. Manuf. 2021, 6, 593–606. [Google Scholar] [CrossRef]
- Strano, M.; Rane, K.; Farid, M.A.; Mussi, V.; Zaragoza, V.; Monno, M. Extrusion-based additive manufacturing of forming and molding tools. Int. J. Adv. Manuf. Technol. 2021, 117, 2059–2071. [Google Scholar] [CrossRef]
- Ngo, T.D.; Kashani, A.; Imbalzano, G.; Nguyen, K.T.Q.; Hui, D. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Compos. Part B Eng. 2018, 143, 172–196. [Google Scholar] [CrossRef]
- Shinde, M.S.; Ashtankar, K.M. Additive manufacturing-assisted conformal cooling channels in mold manufacturing processes. Adv. Mech. Eng. 2017, 9, 1687814017699764. [Google Scholar] [CrossRef]
- Kuo, C.C.; Chen, W.H.; Zhang, J.W.; Tsai, D.A.; Cao, Y.L.; Juang, B.Y. A new method of manufacturing a rapid tooling with different cross-sectional cooling channels. Int. J. Adv. Manuf. Technol. 2017, 92, 3481–3487. [Google Scholar] [CrossRef]
- Mazur, M.; Leary, M.; McMillan, M.; Elambasseril, J.; Brandt, M. SLM additive manufacture of H13 tool steel with conformal cooling and structural lattices. Rapid Prototyp. J. 2016, 22, 504–518. [Google Scholar] [CrossRef]
- Kanbur, B.B.; Suping, S.; Duan, F. Design and optimization of conformal cooling channels for injection molding: A review. Int. J. Adv. Manuf. Technol. 2020, 106, 3253–3271. [Google Scholar] [CrossRef]
- Jahan, S.A.; Wu, T.; Zhang, Y.; Zhang, J.; Tovar, A.; Elmounayri, H. Thermo-mechanical Design Optimization of Conformal Cooling Channels using Design of Experiments Approach. Procedia Manuf. 2017, 10, 898–911. [Google Scholar] [CrossRef]
- Venkatesh, G.; Kumar, Y.R. Thermal Analysis for Conformal Cooling Channel. Mater. Today Proc. 2017, 4, 2592–2598. [Google Scholar] [CrossRef]
- Shen, S.; Kanbur, B.B.; Zhou, Y.; Duan, F. Thermal and mechanical analysis for conformal cooling channel in plastic injection molding. Mater. Today Proc. 2019, 28, 396–401. [Google Scholar] [CrossRef]
- Torres-Alba, A.; Mercado-Colmenero, J.M.; Caballero-Garcia, J.d.D.; Martin-Doñate, C. Application of new triple hook-shaped conformal cooling channels for cores and sliders in injection molding to reduce residual stress and warping in complex plastic optical parts. Polymers 2021, 13, 2944. [Google Scholar] [CrossRef]
- Singh, D.; Joshi, K.; Patil, B. Comparative Economic Analysis of Injection-Moulded Component with Conventional and Conformal Cooling Channels. J. Inst. Eng. (India) Ser. C 2022, 103, 307–317. [Google Scholar] [CrossRef]
- Shen, S.; Kanbur, B.B.; Zhou, Y.; Duan, F. Thermal and Mechanical Assessments of the 3D-Printed Conformal Cooling Channels: Computational Analysis and Multi-objective Optimization. J. Mater. Eng. Perform. 2020, 29, 8261–8270. [Google Scholar] [CrossRef]
- Nita, A.; Oanta, E. Improving the quality of the molded polymeric parts by reducing the residual stress. In Proceedings of the 2nd International Conference on Manufacturing Engineering, Quality and Production Systems, Constantza, Romania, 3–5 September 2010; pp. 77–82. [Google Scholar]
- De Oliveira, J.A.P. Análise Numérica de Tensões Induzidas pelo Escoamento não Isotérmico de um Polímero no Preenchimento de Cavidades de Paredes Finas. Ph.D. Thesis, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil, 2012. [Google Scholar]
- Östergren, A. Prediction of Residual Stresses in Injection Moulded Parts. Master’s Thesis, Chalmers University of Technology, Göteborg, Sweden, 2013. [Google Scholar]
- Gorenc, B.; Tinyou, R.; Syam, A. Steel Designers’ Handbook, 8th ed.; University of New South Wales Press: Sydney, Australia, 2005. [Google Scholar]
- Tim, F.O.; Georg, M.; Jairo, F. Ciencia de los Polímeros para Ingenieros; Editorial Guaduales Limitada: Cúcuta, Colombia, 2010. [Google Scholar]
- Liang, J.Z.; Ness, J.N. The calculation of cooling time in injection moulding. J. Mater. Process. Technol. 1996, 57, 62–64. [Google Scholar] [CrossRef]
- BASF Plastics. Estimating Cooling Times in Injection Moulding. Estimating Cooling Times in Injection Moulding. Available online: https://pmtools-na.basf.com/quickcost/cooling_time_est.pdf (accessed on 2 April 2023).
- Nickle Development Institute. High-Performance Stainless Steels; Nickle Development Institute: Toronto, ON, Canada, 2010. [Google Scholar]
- Guevara-Morales, A.; Figueroa-López, U. Residual stresses in injection molded products. J. Mater. Sci. 2014, 49, 4399–4415. [Google Scholar] [CrossRef]
- Rosato, D.V.; Rosato, M.G. Injection Molding Handbook; Springer: New York, NY, USA, 2012; Available online: https://books.google.com.co/books?id=4VHxBwAAQBAJ (accessed on 15 June 2023).
Configuration | Diameter (D)–Size (S) (mm) | Step (P) (mm) | Wall Distance (L) (mm) | Experiment Number |
---|---|---|---|---|
Circular | 4 | 8 | 6 | 1 |
12 | 2 | |||
16 | 6 | 3 | ||
12 | 4 | |||
6 | 8 | 6 | 5 | |
12 | 6 | |||
16 | 6 | 7 | ||
12 | 8 | |||
Square | 4 | 8 | 6 | 9 |
12 | 10 | |||
16 | 6 | 11 | ||
12 | 12 | |||
6 | 8 | 6 | 13 | |
12 | 14 | |||
16 | 6 | 15 | ||
12 | 16 |
Configuration | Test | Steel Mold | Polycarbonate Mold | ||
---|---|---|---|---|---|
Cooling Efficiency Difference (%) | Warpage Max. (mm) | Cooling Efficiency Difference (%) | Warpage Max. (mm) | ||
Circular | D4-P8-L6 | 10.15 | 0.616 | 28.02 | 1.56 |
D4-P8-L12 | 18.92 | 0.644 | 36.66 | 1.94 | |
D4-P16-L6 | 10.43 | 0.625 | 34.27 | 1.81 | |
D4-P16-L12 | 15.91 | 0.655 | 33.86 | 1.95 | |
D6-P8-L6 | 10.05 | 0.611 | 23.51 | 1.47 | |
D6-P8-L12 | 15.92 | 0.637 | 35.15 | 2.001 | |
D6-P16-L6 | 9.59 | 0.611 | 30.12 | 1.60 | |
D6-P16-L12 | 15.96 | 0.647 | 36.97 | 1.90 | |
Square | S4-P8-L6 | 8.43 | 0.616 | 20.71 | 1.58 |
S4-P8-L12 | 16.22 | 0.643 | 34.93 | 1.96 | |
S4-P16-L6 | 8.74 | 0.617 | 27.99 | 1.79 | |
S4-P16-L12 | 17.94 | 0.652 | 38.12 | 1.91 | |
S6-P8-L6 | 7.06 | 0.611 | 14.20 | 1.48 | |
S6-P8-L12 | 14.07 | 0.636 | 34.57 | 2.05 | |
S6-P16-L6 | 7.60 | 0.618 | 21.69 | 1.58 | |
S6-P16-L12 | 15.18 | 0.643 | 38.56 | 1.95 |
Source | DF | Adj SS | Adj MS | F-Value | p-Value |
---|---|---|---|---|---|
Model | 6 | 0.002090 | 0.000348 | 43.53 | 0.116 |
Linear | 3 | 0.002057 | 0.000686 | 85.71 | 0.079 |
L | 1 | 0.001800 | 0.001800 | 225.00 | 0.042 |
P | 1 | 0.000113 | 0.000113 | 14.06 | 0.166 |
D | 1 | 0.000144 | 0.000144 | 18.06 | 0.147 |
2-Way Interactions | 3 | 0.000033 | 0.000011 | 1.35 | 0.547 |
LxP | 1 | 0.000018 | 0.000018 | 2.25 | 0.374 |
LxD | 1 | 0.000002 | 0.000002 | 0.25 | 0.705 |
PxD | 1 | 0.000013 | 0.000013 | 1.56 | 0.430 |
Error | 1 | 0.000008 | 0.000008 | ||
Total | 7 | 0.002098 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vargas-Isaza, C.; Benitez-Lozano, A.; Rodriguez, J. Evaluating the Cooling Efficiency of Polymer Injection Molds by Computer Simulation Using Conformal Channels. Polymers 2023, 15, 4044. https://doi.org/10.3390/polym15204044
Vargas-Isaza C, Benitez-Lozano A, Rodriguez J. Evaluating the Cooling Efficiency of Polymer Injection Molds by Computer Simulation Using Conformal Channels. Polymers. 2023; 15(20):4044. https://doi.org/10.3390/polym15204044
Chicago/Turabian StyleVargas-Isaza, Carlos, Adrian Benitez-Lozano, and Johnnatan Rodriguez. 2023. "Evaluating the Cooling Efficiency of Polymer Injection Molds by Computer Simulation Using Conformal Channels" Polymers 15, no. 20: 4044. https://doi.org/10.3390/polym15204044
APA StyleVargas-Isaza, C., Benitez-Lozano, A., & Rodriguez, J. (2023). Evaluating the Cooling Efficiency of Polymer Injection Molds by Computer Simulation Using Conformal Channels. Polymers, 15(20), 4044. https://doi.org/10.3390/polym15204044