Waste Paper as a Valuable Resource: An Overview of Recent Trends in the Polymeric Composites Field
Abstract
:1. Introduction
2. Waste Paper: A Cellulose-Rich Material
3. Waste Paper-Polymeric Composites
3.1. Systematic Review
3.2. Main Polymers Used in WP Composites and Their Properties
3.2.1. Polyethylene (PE) Composites
3.2.2. Polypropylene (PP) Composites
3.2.3. Poly(Lactic acid) (PLA) Composites
3.2.4. Rubber Composites
3.2.5. Epoxy Composites
3.2.6. Polyester Composites
3.2.7. Polyurethane (PU) Composites
3.2.8. Polyvinyl Alcohol (PVA) Composites
3.2.9. Other Composites
Matrix | Filler | Modifier | Processing | Main Mechanical Properties | Reference |
---|---|---|---|---|---|
PU | WP (20 v/v%) | N/A | Hot-pressing | Tensile strength: 7.8 MPa Tensile modulus: 741 Mpa | [96] |
PVA | WP/wood/ sisal (25:30:35 wt.%) | N/A | Compression molded | Flexural strength: ~7.8 Mpa | [42] |
Starch | WP/rice husk (70:10 wt.%) | N/A | Compression molded | Compression strength: 202 Mpa Impact strength: 130 J | [104] |
Starch | WP-cellulose (20 wt.%) | N/A | Hot-pressing | Tensile strength: 29.8 Mpa Tensile modulus: 1396 Mpa | [18] |
PETG | WP (10 wt.%) | KH550 1 (1 wt.%) | High-speed mixer and hot-pressing | Tensile strength: ~55 Mpa Flexural strength: ~41 Mpa | [105] |
Cassava starch/rubber | WP/sugar cane (20 w/v%: 25 g) | N/A | Compression molded | Impact strength: ~0.1 J/mm Hardness (Shore D): ~66 | [41] |
Guar gum | WP-nano cellulose (4 wt.%) | N/A | Film-forming solution | Tensile strength: 6.3 Mpa Tensile modulus: 19.1 Mpa | [22] |
4. Prospects
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development; United Nations Publication: New York, NY, USA, 2015. [Google Scholar]
- Cepi. Monitoring Report 2021—European Declaration on Paper Recycling 2021–2030; Cepi: Brussels, Belgium, 2021. [Google Scholar]
- Garrote, G.; Eugenio, M.E.; Díaz, M.J.; Ariza, J.; López, F. Hydrothermal and pulp processing of Eucalyptus. Bioresour. Technol. 2003, 88, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Chinga-Carrasco, G.; Yu, Y.; Diserud, O. Quantitative electron microscopy of cellulose nanofibril structures from eucalyptus and pinus radiata kraft pulp fibers. Microsc. Microanal. 2011, 17, 563–571. [Google Scholar] [CrossRef]
- Campano, C.; Miranda, R.; Merayo, N.; Negro, C.; Blanco, A. Direct production of cellulose nanocrystals from old newspapers and recycled newsprint. Carbohydr. Polym. 2017, 173, 489–496. [Google Scholar] [CrossRef] [PubMed]
- Miranda, R.; Blanco, A. Environmental awareness and paper recycling. Cellul. Chem. Technol. 2010, 44, 431–449. [Google Scholar]
- Dubey, A.K.; Gupta, P.K.; Garg, N.; Naithani, S. Bioethanol production from waste paper acid pretreated hydrolyzate with xylose fermenting Pichia stipitis. Carbohydr. Polym. 2012, 88, 825–829. [Google Scholar] [CrossRef]
- Annamalai, N.; Al Battashi, H.; Anu, S.N.; Al Azkawi, A.; Al Bahry, S.; Sivakumar, N. Enhanced Bioethanol Production from Waste Paper Through Separate Hydrolysis and Fermentation. Waste Biomass Valorization 2020, 11, 121–131. [Google Scholar] [CrossRef]
- Sundriyal, S.; Shrivastav, V.; Kaur, A.; Dubey, P.; Mishra, S.; Deep, A.; Dhakate, S. Waste Office Papers as a Cellulosic Material Reservoir to Derive Highly Porous Activated Carbon for Solid-State Electrochemical Capacitor. IEEE Trans. Nanotechnol. 2021, 20, 481–488. [Google Scholar] [CrossRef]
- Shimada, M.; Hamabe, H.; Iida, T.; Kawarada, K.; Okayama, T. The properties of activated carbon made from waste newsprint paper. J. Porous Mater. 1999, 6, 191–196. [Google Scholar] [CrossRef]
- Zhang, X.; Li, S.; Xu, C.; Li, J.; Wang, Z. Study on the mechanical and thermal properties of poly(lactic acid)/office waste paper fiber composites. J. Appl. Polym. Sci. 2020, 137, 1–11. [Google Scholar] [CrossRef]
- Suryadiansyah; Ismail, H.; Azhari, B. Waste paper filled polypropylene composites: The comparison effect of ethylene diamine dilaurate as a new compatibilizer with maleic anhydride polypropylene. J. Reinf. Plast. Compos. 2007, 26, 51–67. [Google Scholar] [CrossRef]
- Hofstätter, T.; Pedersen, D.B.; Tosello, G.; Hansen, H.N. State-of-the-art of fiber-reinforced polymers in additive manufacturing technologies. J. Reinf. Plast. Compos. 2017, 36, 1061–1073. [Google Scholar] [CrossRef]
- Zhou, Y.; Fan, M.; Chen, L. Interface and bonding mechanisms of plant fibre composites: An overview. Compos. Part B Eng. 2016, 101, 31–45. [Google Scholar] [CrossRef] [Green Version]
- Zheng, B.; Hu, C.; Guan, L.; Gu, J.; Guo, H.; Zhang, W. Structural characterization and analysis of high-strength laminated composites from recycled newspaper and HDPE. Polymers 2019, 11, 1311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huda, M.S.; Drzal, L.T.; Mohanty, A.K.; Misra, M. Chopped glass and recycled newspaper as reinforcement fibers in injection molded poly(lactic acid) (PLA) composites: A comparative study. Compos. Sci. Technol. 2006, 66, 1813–1824. [Google Scholar] [CrossRef]
- Nashar, D.E.E.; Abd-El-Messieh, S.L.; Basta, A.H. Newsprint paper waste as a fiber reinforcement in rubber composites. J. Appl. Polym. Sci. 2004, 91, 3410–3420. [Google Scholar] [CrossRef]
- Takagi, H.; Nakagaito, A.N.; Bistamam, M.S.A. Extraction of cellulose nanofiber from waste papers and application to reinforcement in biodegradable composites. J. Reinf. Plast. Compos. 2013, 32, 1542–1546. [Google Scholar] [CrossRef]
- Rahman, M.O.; Hussain, A.; Basri, H. A critical review on waste paper sorting techniques. Int. J. Environ. Sci. Technol. 2014, 11, 551–564. [Google Scholar] [CrossRef] [Green Version]
- Kumar, V.; Pathak, P.; Bhardwaj, N.K. Waste paper: An underutilized but promising source for nanocellulose mining. Waste Manag. 2020, 102, 281–303. [Google Scholar] [CrossRef]
- Park, H.; Cruz, D.; Tiller, P.; Johnson, D.K.; Mittal, A.; Jameel, H.; Venditti, R.; Park, S. Effect of ash in paper sludge on enzymatic hydrolysis. Biomass Bioenergy 2022, 165, 106567. [Google Scholar] [CrossRef]
- Palanichamy, P.; Venkatachalam, S.; Gupta, S. Improved recovery of cellulose nanoparticles from printed wastepaper and its reinforcement in guar gum films. Biomass Convers. Biorefinery 2022. [Google Scholar] [CrossRef]
- Lam, D.N.; Thien, D.V.H.; Nguyen, C.N.; Nguyen, N.T.T.; Van Viet, N.; Van-Pham, D.T. Thermally stable cellulose nanospheres prepared from office waste paper by complete removal of hydrolyzed sulfate groups. Carbohydr. Polym. 2022, 297, 120009. [Google Scholar] [CrossRef]
- Woodward, J.; Stephan, L.M.; Koran, L.J.; Wong, K.K.Y.; Saddler, J.N. Enzymatic Separation of High-Quality Uninked Pulp Fibers from Recycled Newspaper. Nat. Biotechnol. 1994, 12, 905–908. [Google Scholar] [CrossRef]
- Mohamed, M.A.; Salleh, W.N.W.; Jaafar, J.; Asri, S.E.A.M.; Ismail, A.F. Physicochemical properties of “green” nanocrystalline cellulose isolated from recycled newspaper. RSC Adv. 2015, 5, 29842–29849. [Google Scholar] [CrossRef]
- Migneault, S.; Koubaa, A.; Riedl, B.; Nadji, H.; Deng, J.; Zhang, S.Y. Binderless fiberboard made from primary and secondary pulp and paper sludge. Wood Fiber Sci. 2011, 43, 180–193. [Google Scholar]
- Pawar, A.A.; Kim, H. Sustainable, hydrophobic, and reusable paper waste aerogel as an effective and versatile oil absorbent. J. Environ. Chem. Eng. 2022, 10, 107356. [Google Scholar] [CrossRef]
- Yue, X.; Wu, H.; Zhang, T.; Yang, D.; Qiu, F. Superhydrophobic waste paper-based aerogel as a thermal insulating cooler for building. Energy 2022, 245, 123287. [Google Scholar] [CrossRef]
- Pham, T.H.; Jung, S.H.; Kim, Y.J.; Kim, T.Y. Adsorptive removal and recovery of organic pollutants from wastewater using waste paper-derived carbon-based aerogel. Chemosphere 2021, 268, 129319. [Google Scholar] [CrossRef]
- Aghmashhadi, O.Y.; Asadpour, G.; Garmaroody, E.R.; Zabihzadeh, M.; Rocha-Meneses, L.; Kikas, T. The effect of deinking process on bioethanol production from waste banknote paper. Processes 2020, 8, 1563. [Google Scholar] [CrossRef]
- Nair, A.S.; Sivakumar, N. Enhanced production of biodiesel by Rhodosporidium toruloides using waste office paper hydrolysate as feedstock: Optimization and characterization. Fuel 2022, 327, 125174. [Google Scholar] [CrossRef]
- Rodriguez, C.; Alaswad, A.; El-Hassan, Z.; Olabi, A.G. Mechanical pretreatment of waste paper for biogas production. Waste Manag. 2017, 68, 157–164. [Google Scholar] [CrossRef] [Green Version]
- Al Battashi, H.; Al-Kindi, S.; Gupta, V.K.; Sivakumar, N. Polyhydroxyalkanoate (PHA) Production Using Volatile Fatty Acids Derived from the Anaerobic Digestion of Waste Paper. J. Polym. Environ. 2021, 29, 250–259. [Google Scholar] [CrossRef]
- Wang, M.; Liu, C.; Albolkany, M.K.; Zhao, M.; Zhu, C.; Liu, B. Gram-Scale Synthesis of Porous Graphene via Printing Paper Pyrolysis as Supercapacitor Electrodes. Energy Technol. 2021, 9, 1025. [Google Scholar] [CrossRef]
- Singu, D.C.; Joseph, B.; Velmurugan, V.; Ravuri, S.; Grace, A.N. Combustion Synthesis of Graphene from Waste Paper for High Performance Supercapacitor Electrodes. Int. J. Nanosci. 2018, 17, 1–5. [Google Scholar] [CrossRef]
- He, J.; Wang, D.; Long, L.; Huang, Y.; Cui, C.; Yi, J.; Yang, S.; Wang, Y. Preparation of Carboxymethylcellulose from Waste Paper. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2021, 36, 562–568. [Google Scholar] [CrossRef]
- Joshi, G.; Rana, V.; Naithani, S.; Varshney, V.K.; Sharma, A.; Rawat, J.S. Chemical modification of waste paper: An optimization towards hydroxypropyl cellulose synthesis. Carbohydr. Polym. 2019, 223, 115082. [Google Scholar] [CrossRef]
- Joshi, G.; Naithani, S.; Varshney, V.K.; Bisht, S.S.; Rana, V. Potential use of waste paper for the synthesis of cyanoethyl cellulose: A cleaner production approach towards sustainable environment management. J. Clean. Prod. 2017, 142, 3759–3768. [Google Scholar] [CrossRef]
- Oliva, C.; Huang, W.; El Badri, S.; Lee, M.A.L.; Ronholm, J.; Chen, L.; Wang, Y. Concentrated sulfuric acid aqueous solution enables rapid recycling of cellulose from waste paper into antimicrobial packaging. Carbohydr. Polym. 2020, 241, 116256. [Google Scholar] [CrossRef]
- Nwabor, O.F.; Singh, S.; Ontong, J.C.; Vongkamjan, K.; Voravuthikunchai, S.P. Valorization of Wastepaper Through Antimicrobial Functionalization with Biogenic Silver Nanoparticles, a Sustainable Packaging Composite. Waste Biomass Valorization 2021, 12, 3287–3301. [Google Scholar] [CrossRef]
- Riyajan, S.A. A packaging material from a waste paper/sugar cane stalk composite: Preparation and properties. Food Packag. Shelf Life 2020, 26, 100568. [Google Scholar] [CrossRef]
- Gobikannan, T.; Berihun, H.; Aklilu, E.; Pawar, S.J.; Akele, G.; Agazie, T.; Bihonegn, S. Development and Characterization of Sisal Fiber and Wood Dust Reinforced Polymeric Composites. J. Nat. Fibers 2021, 18, 1924–1933. [Google Scholar] [CrossRef]
- Sfarra, S.; Perilli, S.; Ambrosini, D.; Paoletti, D.; Nardi, I.; de Rubeis, T.; Santulli, C. A proposal of a new material for greenhouses on the basis of numerical, optical, thermal and mechanical approaches. Constr. Build. Mater. 2017, 155, 332–347. [Google Scholar] [CrossRef]
- Tajvidi, M.; Ebrahimi, G. Water uptake and mechanical characteristics of natural filler-polypropylene composites. J. Appl. Polym. Sci. 2003, 88, 941–946. [Google Scholar] [CrossRef]
- Yuan, X.; Zhang, Y.; Zhang, X. Maleated Polypropylene as a Coupling Agent for Polypropylene-Waste Newspaper Flour Composites. J. Appl. Polym. Sci. 1999, 71, 333–337. [Google Scholar] [CrossRef]
- Hamzeh, Y.; Ashori, A.; Mirzaei, B. Effects of Waste Paper Sludge on the Physico-Mechanical Properties of High Density Polyethylene/Wood Flour Composites. J. Polym. Environ. 2011, 19, 120–124. [Google Scholar] [CrossRef]
- Das, S. Mechanical properties of waste paper/jute fabric reinforced polyester resin matrix hybrid composites. Carbohydr. Polym. 2017, 172, 60–67. [Google Scholar] [CrossRef]
- Gatenholm, P.; Hedenberg, P.; Klason, C. Recycling of Mixed Plastics Using Cellulosic Reinforcement. Plast. Rubber Pap. Recycl. 1995, 609, 367–377. [Google Scholar] [CrossRef]
- Saini, A.; Yadav, C.; Bera, M.; Gupta, P.; Maji, P.K. Maleic anhydride grafted linear low-density polyethylene/waste paper powder composites with superior mechanical behavior. J. Appl. Polym. Sci. 2017, 134, 1–9. [Google Scholar] [CrossRef]
- Duşunceli, N.; Surme, S. Mechanical Properties of Polymer-Matrix Cellulose-Based Composite Materials. In Composite Materials: Applications in Engineering, Biomedicine and Food Science; Springer International Publishing: Cham, Switzerland, 2020; Volume 54, pp. 275–280. [Google Scholar]
- Bajer, K.; Kaczmarek, H.; Dzwonkowski, J.; Stasiek, A.; Oldak, D. Photochemical and Thermal Stability of Degradable PE/Paper Waste Composites Obtained by Extrusion. J. Appl. Polym. Sci. 2006, 103, 2197–2206. [Google Scholar] [CrossRef]
- James, A.R.; Sbarski, I.; Masood, S.H.; Kosior, E. Thermal and melt rheological behaviour of composites produced from waste paper and plastic. J. Polym. Eng. 2007, 27, 55–74. [Google Scholar] [CrossRef]
- Valente, M.; Quitadamo, A. Polymeric Matrix Composites at Reduced Environmental Impact. Polym. Eng. Sci. 2017, 2, 651–656. [Google Scholar] [CrossRef] [Green Version]
- Merkel, K.; Rydarowski, H. FTIR study and mechanical properties of cellulose fiber-reinforced thermoplastic composites. J. Biobased Mater. Bioenergy 2012, 6, 399–409. [Google Scholar] [CrossRef]
- Elloumi, A.; Makhlouf, M.; Elleuchi, A.; Bradai, C. The potential of deinking paper sludge for recycled HDPE reinforcement. Polym. Compos. 2018, 39, 616–623. [Google Scholar] [CrossRef]
- Peşman, E.; Tufan, M. The effects of CaCo3 coated wood free paper usage as filler on water absorption, mechanical and thermal properties of cellulose-high density polyethylene composites. Medziagotyra 2016, 22, 530–535. [Google Scholar] [CrossRef] [Green Version]
- Ciobanu, R.C.; Batrinescu, G.; Ursan, G.A.; Caramitu, A.R.; Marinescu, V.; Bors, A.M.; Lingvay, I. Mechanical and morphostructural characteristics of composite materials performed by recycling mixed waste of plastic and paper. Mater. Plast. 2019, 56, 475–478. [Google Scholar] [CrossRef]
- Chen, C.; Yihe, Z.; Wanjia, H.; Cheng, Q.; Yongfan, L.; Na, Z. Incorporation of Xuan-paper waste residue in red mud/waste polyethylene composites. J. Hazard. Mater. 2020, 399, 123051. [Google Scholar] [CrossRef]
- Zheng, B.; Guan, L.; Zhang, W.; Gu, J.; Tu, D.; Hu, C. Production and characterization of large-scale recycled newspaper enhanced HDPE composite laminates. Polymers 2020, 12, 851. [Google Scholar] [CrossRef] [Green Version]
- Zheng, B.; Zhang, W.; Guan, L.; Gu, J.; Tu, D.; Hu, C. Enhanced water resistance of recycled newspaper/high density polyethylene composite laminates via hydrophobic modification of newspaper laminas. Polymers 2021, 13, 421. [Google Scholar] [CrossRef]
- Shettigar, Y.P.; Kumar, N.; Aveen, K.P.; Hebbale, A.M.; Karinka, S. Mechanical characterization of Waste Plastic and Waste Paper Composites (WPWPC). Mater. Today Proc. 2022, 52, 2154–2159. [Google Scholar] [CrossRef]
- Zeng, G.S.; Xu, C.; Liu, Y.J.; Qu, J.P. Rheological Behavior and Cell Morphology of Foamed Waste Paper Pulp/ High Density Polyethylene Composites. Appl. Mech. Mater. 2012, 200, 316–320. [Google Scholar] [CrossRef]
- Zhang, X.; Di, J.; Xu, L.; Lv, J.; Duan, J.; Zhu, X.; Li, X.; Bo, X. High-value utilization method of digital printing waste paper fibers-Co-blending filled HDPE composites and performance improvement. Polym. Test. 2022, 116, 107790. [Google Scholar] [CrossRef]
- Zander, N.E.; Park, J.H.; Boelter, Z.R.; Gillan, M.A. Recycled Cellulose Polypropylene Composite Feedstocks for Material Extrusion Additive Manufacturing. ACS Omega 2019, 4, 13879–13888. [Google Scholar] [CrossRef] [Green Version]
- Iyer, K.A.; Lechanski, J.; Torkelson, J.M. Green polypropylene/waste paper composites with superior modulus and crystallization behavior: Optimizing specific energy in solid-state shear pulverization for filler size reduction and dispersion. Compos. Part A Appl. Sci. Manuf. 2016, 83, 47–55. [Google Scholar] [CrossRef]
- Qiao, X.; Zhang, Y.; Zhang, Y.; Zhu, Y. Ink-eliminated waste paper sludge flour-filled polypropylene composites with different coupling agent treatments. J. Appl. Polym. Sci. 2003, 89, 513–520. [Google Scholar] [CrossRef]
- Qiao, X.; Zhang, Y.; Zhang, Y. Ink-eliminated paper sludge flour as filler for polypropylene. Polym. Polym. Compos. 2003, 11, 321–326. [Google Scholar] [CrossRef]
- Qiao, X.; Zhang, Y.; Zhang, Y. Maleic anhydride grafted polypropylene as a coupling agent for polypropylene composites filled with ink-eliminated waste paper sludge flour. J. Appl. Polym. Sci. 2004, 91, 2320–2325. [Google Scholar] [CrossRef]
- Bogataj, V.; Fajs, P.; Peñalva, C.; Omahen, M.; Čop, M.; Henttonen, A. Utilization of recycled polypropylene, cellulose and newsprint fibres for production of green composites. Detritus 2019, 7, 36–43. [Google Scholar] [CrossRef]
- Peşman, E.; Güleç, T. The effects of ink presence on mechanical, physical, morphological and thermal properties of office and newspaper fiber-polypropylene composites. Medziagotyra 2019, 25, 195–201. [Google Scholar] [CrossRef] [Green Version]
- Xiaolin, Z.; Xiangfeng, B.; Rumin, W. Study on mechanical properties and water absorption behaviour of wastepaper fibre/recycled polypropylene composites. Polym. Polym. Compos. 2013, 21, 395–402. [Google Scholar] [CrossRef]
- Danesh, M.A.; ZiaeiTabari, H.; Hosseinpourpia, R.; Nazarnezhad, N.; Shams, M. Investigation of the morphological and thermal properties of waste newsprint/recycled polypropylene/nanoclay composite. BioResources 2012, 7, 936–945. [Google Scholar]
- Shakeri, A.; Ghasemian, A. Water absorption and thickness swelling behavior of polypropylene reinforced with hybrid recycled newspaper and glass fiber. Appl. Compos. Mater. 2010, 17, 183–193. [Google Scholar] [CrossRef]
- Vacková, T.; Kroisová, D.; Špatenka, P. Water desorption kinetics of polymer composites with cellulose fibers as filler. J. Macromol. Sci. Part B Phys. 2009, 48, 68–76. [Google Scholar] [CrossRef]
- Schneider, J.P.; Myers, G.E.; Clemons, C.M.; English, B.W. Biofibers as reinforcing fillers in thermoplastic composites. J. Vinyl Addit. Technol. 1995, 1, 103–108. [Google Scholar] [CrossRef]
- Cioffi, M.G.A.; de Oliveira, D.M.; de Bomfim, A.S.C.; de Carvalho Benini, K.C.C.; Cioffi, M.O.H.; Voorwald, H.J.C. Thermo-Mechanical Properties of Polypropylene Composites Filled with Recycled Office Waste Paper. J. Nat. Fibers 2022, 19, 1–13. [Google Scholar] [CrossRef]
- Mölder, T.; Trass, O. Grinding of waste paper and rice hulls with the Szego Mill for use as plastics fillers. Int. J. Miner. Process. 1996, 44–45, 583–595. [Google Scholar] [CrossRef]
- Zhang, X.; Li, S.; Li, J.; Fu, B.; Di, J.; Xu, L.; Zhu, X. Reinforcing effect of nanocrystalline cellulose and office waste paper fibers on mechanical and thermal properties of poly (lactic acid) composites. J. Appl. Polym. Sci. 2021, 138, 50462. [Google Scholar] [CrossRef]
- Zhang, X.; Di, J.; Li, J.; Li, S.; Duan, J.; Lv, J.; Zhu, X.; Xu, L.; Chang, X. Effects of different interfacial modifiers on the properties of digital printing waste paper fiber/nanocrystalline cellulose/poly(lactic acid) composites. Polym. Eng. Sci. 2022, 62, 781–792. [Google Scholar] [CrossRef]
- Tao, Y.; Liu, M.; Han, W.; Li, P. Waste office paper filled polylactic acid composite filaments for 3D printing. Compos. Part B Eng. 2021, 221, 108998. [Google Scholar] [CrossRef]
- Xu, C.; Zhang, X.; Jin, X.; Nie, S.; Yang, R. Study on Mechanical and Thermal Properties of Poly(Lactic acid)/Poly(Butylene adipate-co-terephthalate)/Office Wastepaper Fiber Biodegradable Composites. J. Polym. Environ. 2019, 27, 1273–1284. [Google Scholar] [CrossRef]
- Su, J.; Jiang, Z.; Fang, C.; Zheng, Y.; Yang, M.; Pei, L.; Huang, Z. The Reinforcing Effect of Waste Corrugated Paper Fiber on Polylactic Acid. Polymers 2022, 14, 3562. [Google Scholar] [CrossRef]
- Levit, M.R.; Farrel, R.E.; Gross, R.A.; McCarthy, S.P. Composites based on poly(lactic acid) and cellulosic fibrous materials: Mechanical properties and biodegradability. J. Eng. Appl. Sci. 1996, 2, 1387–1391. [Google Scholar]
- Oladele, I.O.; Abegunde, O.O.; Masud, A.O. Flexural, water absorption and wear responses of green composites from bio-resources. Afr. J. Sci. Technol. Innov. Dev. 2018, 10, 805–810. [Google Scholar] [CrossRef]
- Mungpayaban, H.; Rindhatayathon, P.; Ninlaphruk, S.; Rueanngoen, A.; Ekgasit, S.; Pengprecha, S. X-ray protective materials from barium sulfate/amorphous cellulose/natural rubber composites. Radiat. Phys. Chem. 2022, 194, 110011. [Google Scholar] [CrossRef]
- Oluwole, O.I.; Avwerosuoghene, O.M. Effects of cassava starch and natural rubber as binders on the flexural and water absorption properties of recycled paper pulp based composites. Int. J. Eng. Technol. Innov. 2015, 5, 255–263. [Google Scholar]
- Ismail, H.; Rusli, A.; Azura, A.R. Study of fatigue life and filler interaction of paper sludge filled epoxidized natural rubber (ENR) and maleated natural rubber (MNR) composites. J. Polym. Environ. 2007, 15, 67–74. [Google Scholar] [CrossRef]
- Madani, M.; Basta, A.H.; Abdo, A.E.S.; El-Saied, H. Utilization of waste paper in the manufacture of natural rubber composite for radiation shielding. Prog. Rubber Plast. Recycl. Technol. 2004, 20, 287–310. [Google Scholar] [CrossRef]
- Yüce, H.; Genç, G.; Sönmez, S.; Özden, Ö.; Akgül, A.; Çetiner, B.N. Printability of bio-composite sheets made from paper mill and cardboard mill waste sludge. Pigment Resin Technol. 2022, 51, 541–549. [Google Scholar] [CrossRef]
- Stănescu, M.M.; Bolcu, D. A Study of Some Mechanical Properties of Composite Materials with a Dammar-Based Hybrid Matrix and Reinforced by Waste Paper. Polymers 2020, 12, 1688. [Google Scholar] [CrossRef]
- De Rosa, I.M.; Santulli, C.; Sarasini, F. Mechanical characterization of untreated waste office paper/woven jute fabric hybrid reinforced epoxy composites. J. Appl. Polym. Sci. 2011, 119, 1366–1373. [Google Scholar] [CrossRef]
- Yadav, P.; Nema, A.; Varghese, S.; Nema, S.K. Newspaper-reinforced plastic composite laminates: Mechanical and water uptake characteristics. Polym. Eng. Sci. 1999, 39, 1550–1557. [Google Scholar] [CrossRef]
- Das, S. Mechanical and water swelling properties of waste paper reinforced unsaturated polyester composites. Constr. Build. Mater. 2017, 138, 469–478. [Google Scholar] [CrossRef]
- Das, S.; Basak, S.; Bhowmick, M.; Chattopadhyay, S.K.; Ambare, M.G. Waste paper as a cheap source of natural fibre to reinforce polyester resin in production of bio-composites. J. Polym. Eng. 2016, 36, 441–447. [Google Scholar] [CrossRef]
- Yenidoǧan, S.; Koçak, D.; Sesli, Y.; Sancak, E. Investigation of mechanical, thermal and morphological properties of biaxial glass fiber/waste paper reinforced polyester composites. Sci. Eng. Compos. Mater. 2009, 16, 197–208. [Google Scholar] [CrossRef]
- Calegari, E.P.; Porto, J.S.; Angrizani, C.C.; de Oliveira, B.F.; da Cunha Duarte, L.; Amico, S.C. Reuse of waste paper and rice hulls as filler in polymeric matrix composites. Rev. Mater. 2017, 22, 1–7. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, X.; Wang, D.; Fang, C.; Lei, W.; Huang, Z.; Song, Y.; He, X.; Huang, Y. Preparation and characterization of waterborne polyurethane/cellulose nanocrystal composite membrane from recycling waste paper. J. Renew. Mater. 2020, 8, 631–645. [Google Scholar] [CrossRef]
- Lei, W.; Zhou, X.; Fang, C.; Song, Y.; Li, Y. Eco-friendly waterborne polyurethane reinforced with cellulose nanocrystal from office waste paper by two different methods. Carbohydr. Polym. 2019, 209, 299–309. [Google Scholar] [CrossRef]
- Lei, W.; Pei, H.; Fang, C.; Zhou, X.; Zhang, X.; Pu, M. Influence of nanocrystalline cellulose extracted from different precursors on properties of polyurethane elastomer composites. Compos. Sci. Technol. 2022, 218, 109159. [Google Scholar] [CrossRef]
- Motaung, T.E. Recent applications and innovations of cellulose based materials: A critical review. Cellul. Chem. Technol. 2021, 55, 1–12. [Google Scholar] [CrossRef]
- Phookum, T.; Siripongpreda, T.; Rodthongkum, N.; Ummartyotin, S. Development of cellulose from recycled office waste paper-based composite as a platform for the colorimetric sensor in food spoilage indicator. J. Polym. Res. 2021, 28, 416. [Google Scholar] [CrossRef]
- De Adhikari, A.; Oraon, R.; Tiwari, S.K.; Lee, J.H.; Nayak, G.C. Effect of waste cellulose fibres on the charge storage capacity of polypyrrole and graphene/polypyrrole electrodes for supercapacitor application. RSC Adv. 2015, 5, 27347–27355. [Google Scholar] [CrossRef]
- Kale, R.D.; Maurya, Y.; Potdar, T. Paper-reinforced sodium alginate/carboxyl methyl cellulose-based bio-composite films. J. Plast. Film Sheeting 2018, 34, 179–195. [Google Scholar] [CrossRef]
- Yusuf, T.A.; Dan-Laaka, L.E.; Ogwuche, P.O. Characterization of selected properties of composites of waste paper with untreated bamboo stem fibre and rice husk. Acta Polytech. 2017, 57, 295–303. [Google Scholar] [CrossRef] [Green Version]
- Huang, L.; An, S.; Li, C.; Huang, C.; Wang, S.; Zhang, X.; Xu, M.; Chen, J.; Zhou, L. Performance of waste-paper/PETG wood-plastic composites. AIP Adv. 2018, 8, 055204. [Google Scholar] [CrossRef]
- Sang, W.; Cui, S.; Wang, X.; Liu, B.; Li, X.; Sun, K.; Peng, H.; Ma, G. Preparation and properties of multifunctional polyaspartic acid/waste paper fiber-based superabsorbent composites. J. Environ. Chem. Eng. 2022, 10, 108405. [Google Scholar] [CrossRef]
- Villanueva, A.; Wenzel, H. Paper waste—Recycling, incineration or landfilling? A review of existing life cycle assessments. Waste Manag. 2007, 27, S29–S46. [Google Scholar] [CrossRef]
- Liu, M.; Tan, S.; Zhang, M.; He, G.; Chen, Z.; Fu, Z.; Luan, C. Waste paper recycling decision system based on material flow analysis and life cycle assessment: A case study of waste paper recycling from China. J. Environ. Manag. 2020, 255, 109859. [Google Scholar] [CrossRef]
Waste Paper | Cellulose (%) | Hemicellulose (%) | Lignin (%) | Ashes (%) | Extractives (%) | References |
---|---|---|---|---|---|---|
Office Paper | 61.8 | 12.6 | 9.2 | 11.3 | 5.7 | [22] |
79.2 | 3.5 | 2.0 | - | - | [23] | |
Newspaper | 37.2 | 20.3 | 34.5 | 1.5 | - | [24] |
55.2 | 15.3 | 29.5 | - | - | [25] | |
Paper sludge | 30.5 | 11.8 | 3.1 | 43.7 | 0 | [21] |
44.6 | 6.7 | 22.6 | 30.2 | 2.9 | [26] |
Terms | Web of Science | Scopus | Total of Documents | Years of Publication |
---|---|---|---|---|
“waste paper” | 640 | 3591 | 4231 | 1923–2022 |
“waste paper” and “composite” | 7 | 68 | 75 | 1995–2022 |
Article Title | Reference | Country | Journal | Citations 1 | Evolution of Citations 1 |
---|---|---|---|---|---|
Chopped glass and recycled newspaper as reinforcement fibers in injection molded poly(lactic acid) (PLA) composites: A comparative study | [16] | USA | Comp. Sci. Tech. | 397 | |
Water uptake and mechanical characteristics of natural filler-polypropylene composites | [44] | Iran | J. Appl. Pol. Sci. | 108 | |
Maleated Polypropylene as a Coupling Agent for Polypropylene-Waste Newspaper Flour Composites | [45] | China | J. Appl. Pol. Sci. | 61 | |
Effects of Waste Paper Sludge on the Physicomechanical Properties of High-Density Polyethylene/Wood Flour Composites | [46] | Iran | J. Polymer Envir. | 59 | |
Mechanical properties of waste paper/jute fabric reinforced polyester resin matrix hybrid composites | [47] | India | Carbohydrate Polymer | 53 |
Composites | Documents | Citations 1 | References |
---|---|---|---|
Polyethylene + waste paper | 19 | 148 | [15,43,46,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63] |
Polypropylene + waste paper | 17 | 351 | [12,44,45,64,65,66,67,68,69,70,71,72,73,74,75,76,77] |
Polylactic acid + waste paper | 8 | 438 | [11,16,78,79,80,81,82,83] |
Rubber + waste paper | 6 | 31 | [17,84,85,86,87,88] |
Epoxy + waste paper | 6 | 55 | [61,74,89,90,91,92] |
Polyester + waste paper | 6 | 98 | [47,89,93,94,95,96] |
Polyurethane + waste paper | 4 | 44 | [96,97,98,99] |
Polyvinyl alcohol + waste paper | 2 | 09 | [42,74] |
Matrix | Filler | Modifier | Processing | Main Mechanical Properties | Reference |
---|---|---|---|---|---|
HDPE | WP (64.6 wt.%) | N/A | Hot-pressing (laminated) | Tensile strength: 101.5 MPa Flexural strength: 99.4 MPa | [15] |
HDPE | WP (64 wt.%) | N/A | Hot-pressing (laminated-star-like splicing 0°) | Tensile strength: 109 MPa Tensile modulus: 9836 MPa Flexural strength: 119 MPa | [59] |
HDPE | WP (78.5 wt.%) | Stearic acid (0.10 M) | Hot-pressing (laminated) | Tensile strength: ~65 MPa Tensile modulus: ~8500 MPa | [60] |
HDPE | WP/chopped basalt (5:5 wt.%) | N/A | Extrusion and injection | Tensile strength: 17.1 MPa Tensile modulus: 641.8 MPa | [43] |
HDPE | WP (60 wt.%) | MAPE 1 (3 wt.%) | Extrusion and injection | Flexural modulus: 3250 MPa | [46] |
HDPE | WP/Wood (10:30 wt.%) | MAPE (3 wt.%) | Turbomixer and hot-pressing | Tensile strength: 27.7 MPa Tensile modulus: 1417 MPa Hardness Shore D (RT): ~70 | [53] |
HDPE | WP (60 wt.%) | MAPE + plasticizer (10:8 wt.%) | Extrusion and injection | Tensile strength: 42.1 MPa Tensile modulus: 2612 MPa | [54] |
HDPE | WP/CaCO3 (40:9.2 wt.%) | MAPE (3 wt.%) | Extrusion and hot-pressing | Tensile strength: 18.3 MPa Flexural strength: 21.8 MPa | [56] |
HDPE | WP (15 wt.%) | N/A | Extrusion and injection | Tensile strength: 4.6 MPa | [57] |
HDPE | WP (35 wt.%) | KH570 2 (3 wt.%) | Twin rotary mixer and injection | Tensile strength: 26.6 MPa Flexural strength: 37.8 MPa Flexural modulus: 2349 MPa | [63] |
Recycled HDPE | WP (12.5 wt.%) | N/A | Extrusion and injection | Tensile strength: ~26 MPa Tensile modulus: ~1020 MPa Elongation at break: ~21% | [55] |
Recycled HDPE | WP-Xuan/red mud (60:40 wt.%) | N/A | Plate vulcanizing machine | Tensile strength: 15.9 MPa Flexural strength: 71.8 MPa | [58] |
PE | WP (50%) | N/A | Hot-pressing | Tensile strength: 12.9 MPa 3-point flexural strength: 23.8 MPa | [50] |
LDPE + HIPS | WP (30 wt.%) | MAPE (5 wt.%) | Extrusion and injection | Tensile strength: ~17.5 MPa Tensile modulus: ~1.7 GPa Impact strength: 19.9 kJ/m2 | [48] |
LLDPE-g-MA | WP (30 phr) | N/A | Micro compounder and injection | Tensile strength: 7.9 MPa | [49] |
Recycled LDPE + Epoxy (40:40%) | WP (20 wt.%) | N/A | Compression molded | Tensile strength: 10.1 MPa Tensile modulus: 422 MPa Flexural strength: 22.3 MPa | [61] |
Matrix | Filler | Modifier | Processing | Main Mechanical Properties | Reference |
---|---|---|---|---|---|
PP | WP (30 wt.%) | EDD 1 (2 wt.%) | Reomix polydrive and hot-pressing | Tensile strength: 29 MPa Flexural strength: 49 MPa Impact strength: 13.7 kJ/m2 | [12] |
PP | WP (15 wt.%) | N/A | Solid-state shear pulverization and hot-pressing | Tensile strength: ~32 MPa Tensile modulus: ~1700 MPa (Specific energy of 15 kJ/g) | [65] |
PP | WP (30 wt.%) | MAPP 2 (5 wt.%) | Extrusion and injection | Tensile strength: 24 MPa Impact strength: 31.4 J/m Hardness: 66.8 N/mm2 | [66] |
PP | WP (20 wt.%) | N/A | Extrusion and injection | Tensile strength: 23.9 MPa Impact strength: 74.4 J/m Hardness: 62.4 N/mm2 | [67] |
PP | WP (30 wt.%) | MAPP (20 wt.%) | Extrusion and injection | Tensile strength: 29.9 MPa Impact strength: 51.6 J/m Hardness: 71.7 N/mm2 | [68] |
PP | WP (25 wt.%) | MAPP (2 wt.%) | Torque mixer and hot-pressing | Tensile strength: ~25 MPa Tensile modulus: ~2.1 GPa | [44] |
PP | WP (50 wt.%) | MAPP (10 wt.%) | Two-roll mixer and hot-pressing | Flexural strength: 78.4 MPa Flexural modulus: 2916 MPa Impact strength: 17.1 kJ/m2 | [45] |
PP | WP (42 wt.%) | MAPP (5 wt.%) | Thermokinetic mixer and injection | Tensile strength: 48.9 MPa Impact strength: 27.2 J/m | [75] |
PP | WP (30 wt.%) | N/A | Thermokinetic mixer and injection | Tensile strength: 24.5 MPa Tensile modulus: 1.1 GPa Elongation at break: 8.2 % | [76] |
Recycled PP | WP (10 wt.%) | N/A | Extrusion and 3D printing | Tensile strength: ~19 MPa Tensile modulus: ~1450 MPa | [64] |
Recycled PP | WP (40 wt.%) | MAPP + impact modifier (3:5 wt.%) | Extrusion and injection | Tensile strength: 29 MPa Tensile modulus: 564 MPa Elongation at break: 9.0% | [69] |
Recycled PP | WP-ink office (50 wt.%) | N/A | Extrusion and hot-pressing | Tensile strength: 15.6 MPa Tensile modulus: 1.7 GPa Flexural strength: 26.9 MPa | [70] |
Recycled PP | WP (30 wt.%) | MAPP (2 wt.%) | Double-roller mixer and hot-pressing | Tensile strength: ~32 MPa Elongation at break: ~11% | [71] |
Recycled PP | WP/nano clay (30:2.5 wt.%) | MAPP (10 wt.%) | Mixer rotating and injection | Tensile strength: ~40.5 MPa Tensile modulus: ~1350 MPa | [72] |
Matrix | Filler | Modifier | Processing | Main Mechanical Properties | Reference |
---|---|---|---|---|---|
PLA | WP-cellulose (30 wt.%) | N/A | Extrusion and injection | Flexural strength: 106.2 MPa Impact strength: 23.5 J/m Storage modulus: 10.1 GPa | [16] |
PLA | WP (20 wt.%) | KH560 1 (2 wt.%) | Rotary mixer and injection | Tensile strength: 58.9 MPa Flexural strength: 82.6 MPa | [11] |
PLA | WP/nano cellulose (10:3 wt.%) | N/A | Extrusion and injection | Tensile strength: ~64 MPa Flexural strength: ~93.0 MPa Impact strength: ~10.5 kJ/m2 | [78] |
PLA | WP/nano cellulose (15:3 wt.%) | KH570 1 + PEG6000 2 (3:4 wt.%) | Extrusion and injection | Tensile strength: ~68 MPa Flexural strength: ~98 MPa Impact strength: ~11.5 kJ/m2 | [79] |
PLA | WP (10 wt.%) | KH570 (2 wt.%) | Extrusion and 3D printing | Tensile strength: ~50 MPa Elongation at break: ~6.2% | [80] |
PLA | WP-corrugated (25 wt.%) | N/A | Reactor mixing and injection | Tensile strength: 29.5 MPa Tensile modulus: 907.3 MPa Flexural strength: 41.8 MPa | [82] |
PLA + PBAT (68:20%) | WP (10 wt.%) | MAPLA + KH560 (2:2 wt.%) | Two-roll mixer and injection | Tensile strength: ~48 MPa Flexural strength: ~73.7 MPa Impact strength: ~15 kJ/m2 | [81] |
Matrix | Filler | Modifier | Processing | Main Mechanical Properties | Reference |
---|---|---|---|---|---|
Rubber | WP (40 wt.%) | Na2SiO3 + MgCl2 (20 wt.%) | Two-roll mixer and hot-pressing | Tensile strength: 13.5 MPa Elongation at break: 850% | [17] |
Rubber | WP/corn husk (70:8 wt.%) | N/A | Compacting machine | Flexural strength: ~0.9 MPa Flexural modulus: ~3.2 MPa | [84] |
Rubber | WP-cellulose/ BaSO4 (60 wt.%) | N/A | N/A | Tensile strength: 11.2 MPa Elongation at break: 595% | [85] |
Rubber | WP/rattan fiber (75:2) | KOH (1 M) | Compacting machine | Flexural strength: ~1.3 MPa Flexural modulus: ~38 MPa | [86] |
Rubber (ENR 50) | WP (10 phr) | MNR 1 | Hot-pressing | Fatigue life: 220 kc 2 | [87] |
Rubber | WP/paraffin/B4C (42:18:20 phr) | Magnetite (1:1) | Two-roll mixer and hot-pressing | Tensile strength: 7 MPa Tensile modulus: 1.9 MPa Elongation at break: 400% | [88] |
Matrix | Filler | Modifier | Processing | Main Mechanical Properties | Reference |
---|---|---|---|---|---|
Epoxy | WP/dammar (60 wt.%) | N/A | Casting | Tensile strength 20.8 MPa Tensile modulus: 24.7 MPa | [90] |
Epoxy | WP (37.5 wt.%) | N/A | Hand lay-up (laminated) | Tensile strength: ~92.5 MPa Flexural strength: ~121 MPa | [91] |
Epoxy | WP (40 wt.%) | N/A | 3-piece mold (laminated) | Tensile strength: ~56 MPa Tensile modulus: ~2.2 GPa | [92] |
Matrix | Filler | Modifier | Processing | Main Mechanical Properties | Reference |
---|---|---|---|---|---|
Polyester | WP (50 wt.%) | N/A | Hand lay-up (laminated) | Tensile strength: 70.2 MPa Interlaminar shear strength: ~7 MPa | [93] |
Polyester | WP/Jute (42 wt.%) | N/A | Hand lay-up (laminated) | Tensile strength: 60 MPa Interlaminar shear strength: ~6 MPa | [47] |
Polyester | WP (48 wt.%) | N/A | Hand lay-up (laminated) | Tensile strength: 68.6 MPa Tensile modulus: 5.9 GPa | [94] |
Polyester | WP/biaxial glass fiber | N/A | Hand lay-up (laminated) | Tensile strength: 80.6 MPa Tensile modulus: 1424 MPa Impact strength: 130.1 kJ/m2 | [95] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Oliveira, D.M.; de Bomfim, A.S.C.; Benini, K.C.C.d.C.; Cioffi, M.O.H.; Voorwald, H.J.C.; Rodrigue, D. Waste Paper as a Valuable Resource: An Overview of Recent Trends in the Polymeric Composites Field. Polymers 2023, 15, 426. https://doi.org/10.3390/polym15020426
de Oliveira DM, de Bomfim ASC, Benini KCCdC, Cioffi MOH, Voorwald HJC, Rodrigue D. Waste Paper as a Valuable Resource: An Overview of Recent Trends in the Polymeric Composites Field. Polymers. 2023; 15(2):426. https://doi.org/10.3390/polym15020426
Chicago/Turabian Stylede Oliveira, Daniel Magalhães, Anne Shayene Campos de Bomfim, Kelly Cristina Coelho de Carvalho Benini, Maria Odila Hilário Cioffi, Herman Jacobus Cornelis Voorwald, and Denis Rodrigue. 2023. "Waste Paper as a Valuable Resource: An Overview of Recent Trends in the Polymeric Composites Field" Polymers 15, no. 2: 426. https://doi.org/10.3390/polym15020426
APA Stylede Oliveira, D. M., de Bomfim, A. S. C., Benini, K. C. C. d. C., Cioffi, M. O. H., Voorwald, H. J. C., & Rodrigue, D. (2023). Waste Paper as a Valuable Resource: An Overview of Recent Trends in the Polymeric Composites Field. Polymers, 15(2), 426. https://doi.org/10.3390/polym15020426