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Abstract: This review focuses on polymeric waste-paper composites, including state-of-the-art
analysis with quantitative and qualitative discussions. Waste paper is a valuable cellulose-rich
material, produced mainly from office paper, newspaper, and paper sludge, which can be recycled
and returned to paper production or used in a new life cycle. A systematic literature review found
75 publications on this material over the last 27 years, with half of those published during the last
five years. These data represent an increasing trend in the number of publications and citations that
have shown an interest in this field. Most of them investigated the physicomechanical properties
of composites using different contents of raw waste paper or the treated, modified, and cellulose-
extracted types. The results show that polyethylene and polypropylene are the most used matrices,
but polylactic acid, a biodegradable/sourced polymer, has the most citations. The scientific relevance
of waste-paper composites as a subject includes the increasing trend of the number of publications
and citations over the years, as well as the gaps identified by keyword mapping and the qualitative
discussion of the papers. Therefore, biopolymers and biobased polymers could be investigated more,
as well as novel applications. The environmental impact in terms of stability and degradation should
also receive more attention regarding sustainability and life cycle analyses.

Keywords: waste paper; polymer; composite; recycling; mechanical properties

1. Introduction

Our world faces sustainable development challenges due to the scarcity of natural
resources and the environmental impacts of all human activities. The 2030 Agenda for
Sustainable Development consists of a plan guided by 17 sustainable development goals
(SDG) to improve people’s lives now and in the future in a global partnership. SDG number
12 (responsible consumption and production) aims to achieve sustainable development
through changes in consumption and production patterns through the efficient manage-
ment of natural resources and changes in waste disposal through prevention, reduction,
recycling, and reuse [1]. In 2020, 59.7% of the total amount of consumed paper was recycled
in the world, mainly in Europe (73.3%) and North America (68%) [2]. Moreover, waste
paper is considered the most recycled packaging in Europe (82%), followed by metals
(77.4%), glass (75.4%), and plastics (40.6%).

Cellulose, a natural polymer extracted mainly from Pinus or Eucalyptus, is the raw
material for paper production [3,4]. Paper is widely used in various products and purposes,
such as printing, copying, packaging, and hygiene [5]. Once used, waste papers, mainly
as office paper (printers, photocopiers, or drafts), old newspaper, and sludge paper (a
byproduct of paper production), can become fuel sources destined for landfills or recycling.
However, an enormous amount of waste paper (WP) is underused or inappropriately
discarded. Approximately 40.3% of this paper is consumed, leading to global environmental
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problems [6]. Therefore, over the last 100 years, several studies have sought alternatives
to increase the reusing or recycling of waste paper. Some examples are the production of
valuable compounds, such as bioethanol [7,8] and activated carbon [9,10], as well as a filler
in polymeric composites [11,12].

Natural fiber polymeric composites are increasingly used to manufacture more sus-
tainable, resistant, and lighter materials with good specific properties and performance
over a wide range of applications [13]. Because of their low cost, good performance, and
ecofriendly attributes, waste paper from vegetal sources emerges as a potential substitute
for (or combination with) synthetic fibers [14]. Several works reported that waste paper
could be used as a filler for polymeric composites in the form of paper sheets for laminated
composites [15], paper particles for injection molding [16], treated paper [17], modified
with coupling agents [12], and cellulose extracted from the paper [18]. Their use improves
the physicomechanical properties of the polymers and follows the environmental concepts
of the 2030 Agenda (SDG).

This review aims to report and discuss what has been performed in terms of waste-
paper valorization concerning polymeric composite applications. For this purpose, a
systematic review was conducted using the two primary databases: Scopus and Web of
Science. The analysis includes the number of publications, years, countries, keywords
mappings, and the most cited documents. Furthermore, the leading composite polymers
were identified, for which a bibliographic review was discussed under the document’s
primary results, novelty, and findings. Finally, the openings for future works are given to
guide the research and development of these composites and determine the gaps in the
scientific literature about waste-paper polymeric composites.

2. Waste Paper: A Cellulose-Rich Material

The paper production life cycle includes the extraction of the raw material from the
natural resource (pinus and eucalyptus reforestation trees) or the raw material from the
recycled waste paper: postconsumer-collected (Figure 1) [19]. The life cycle is closed
and environmentally correct when paper recycling is included in the system. The raw
material is transformed into a pulp that passes through a Kraft chemical process to remove
lignin, followed by a bleaching process to remove other amorphous components, such
as hemicellulose and the remaining lignin. Then, the paper production can be diverse,
including office paper, newspaper, packaging, toilet paper, and cardboard. After the
end-of-life of paper products, the waste is collected for landfill and incineration (initially)
or recycling (more recently). Then, the recycled paper is sorted and returned into the
“paper cycle” to produce a recycled pulp for paper production. Figure 1 shows the paper
production cycle considering the paper recycling coming back for paper production, which
should be achieved three-four times [20]. However, recycled paper can also be used
in a new product life cycle, such as in composite materials or in producing valuable
compounds (upcycling).

Table 1 presents the typical chemical composition of different types of waste paper,
such as office paper, newspaper, and sludge paper. Among these, office paper is the most
cellulose-rich waste-paper product due to its pulping (chemical processing), which removes
most of the amorphous compounds. In contrast, newspaper generally goes through a
different pulping process (mechanical or chemical/mechanical) in which a lower-strength
paper is produced [19]. Paper sludge is a byproduct, including solid waste from pulp and
paper production [21], generating waste paper with diverse chemical compositions.

Table 1. Chemical composition of different kinds of waste paper. 1

Waste
Paper

Cellulose
(%)

Hemicellulose
(%)

Lignin
(%)

Ashes
(%)

Extractives
(%) References

Office
Paper

61.8 12.6 9.2 11.3 5.7 [22]
79.2 3.5 2.0 - - [23]
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Table 1. Cont.

Waste
Paper

Cellulose
(%)

Hemicellulose
(%)

Lignin
(%)

Ashes
(%)

Extractives
(%) References

Newspaper 37.2 20.3 34.5 1.5 - [24]
55.2 15.3 29.5 - - [25]

Paper
sludge

30.5 11.8 3.1 43.7 0 [21]
44.6 6.7 22.6 30.2 2.9 [26]

1 Due to the inaccuracy of the chemical composition methods, the total of components for each sample does not
always add up to 100%.
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Figure 1. Paper production life cycle.

Waste paper represents an old subject but still provides possible new developments.
Recent articles reported waste paper uses for aerogels production finding different possibil-
ities, such as spongy aerogels with oil absorption properties [27], superhydrophobic aerogel
as a thermal insulating cooler for building fields [28], and an adsorbent aerogel to remove
organic pollutants from wastewater (phenol and 2-chlorophenol) [29]. Additionally, the
waste paper was converted to bioethanol [30], biodiesel [31], and biogas [32] through the
action of micro-organisms. Other works synthesized the valuable compounds from waste
paper, such as the biopolymer polyhydroxyalkanoate (PHA) by anaerobic digestion [33]
and graphene from a carbonization process [34,35]. Furthermore, carboxymethyl cellulose
(CMC) [36] and hydroxypropyl cellulose (HPC) [37] were synthesized via alkaline and
ether reactions, while cyanoethyl cellulose (CEC) was synthesized via an alkaline reaction
with acrylonitrile [38]. Packaging materials were also developed from waste paper alone
with antimicrobial properties [39] or were mixed with other raw materials, such as silver
nanoparticles [40] and sugar cane stalk + adhesives [41].

In addition to the applications mentioned above, the polymeric composites field has
grown due to environmental issues and greater possibilities of using raw waste paper,
treated waste paper, or cellulose-extracted waste paper, by varying the concentration and
mixing methodology with different polymers (composites), as well as other fillers (hybrid
systems). The following section will focus on polymer composites concerning the matrices
used and the characterizations performed.

3. Waste Paper-Polymeric Composites
3.1. Systematic Review

Systematic research was performed using the Scopus and Web of Science databases,
considering only documents (journal articles) in English. The repeated documents were
excluded. First, the research included the words “waste paper”, showing a total of 4231 doc-
uments over the last 100 years (Table 2), discussing various applications, types of recycling,
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and the characterization of this residue. However, when the research was refined by com-
bining the words “waste paper” and “composite”, the number decreased to 255 documents.
The word “polymer” was not considered due to the different polymer names used in the
abstract and title, such as polyethylene or polypropylene. Therefore, all the abstracts were
reviewed, considering the ones related to the subject focusing on polymeric composites,
leading to 75 documents.

Table 2. Results of the systematic search in the Scopus and Web of Science databases.

Terms Web of Science Scopus Total of
Documents

Years of
Publication

“waste paper” 640 3591 4231 1923–2022
“waste paper” and

“composite” 7 68 75 1995–2022

The 75 publications span the last 27 years (Figure 2). The data showed gaps along
the timeline, but the subject has remained. Besides, an oscillation in publication numbers
(increase and decrease) was observed over the years, but a general increasing trend was
observed. The peak of publications was found in 2022 (incomplete year), followed by 2019,
showing that this subject earned more attention in the recent scientific literature. Also,
the number of publications was affected by the COVID-19 global pandemic in 2020 and
2021. Indeed, 50% of the volume of the documents was published over the last five years.
Furthermore, the number of citations continuously increased over the years, becoming more
relevant in 2006 as most were reported from Scopus, highlighting the scientific relevance of
the subject.
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Concerning geographic representation, 30 countries have published on the subject,
with at least one from each of the five continents (Figure 3). The most represented country
is China (22), followed by India (10), the USA (5), Turkey (5), and Iran (4), while the other
countries have three or fewer documents. All these countries have less than 100 citations in
their published documents, but the USA has the most cited paper in the scientific literature
(Table 3). Also, collaborative research was identified among the countries sharing the same
publication. For example, India with Ethiopia and Ireland [42], China with Switzerland [15],
and Italy with Russia [43]. China has published on this subject over the last 20 years, while
most countries have just started investigating the topic since half of the documents were
published after 2017. Furthermore, over 50% of the world has not published on this subject
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yet since the publication list only includes 15% of the world’s countries. This indicates that
the topic has started to be more widespread only recently.
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Chopped glass and recycled
newspaper as reinforcement

fibers in injection molded
poly(lactic acid) (PLA)

composites: A comparative study

[16] USA Comp. Sci.
Tech. 397
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Keyword networking was performed using the software VOSviewer concerning the
frequency and chronological time (Figure 4). The most incident cluster is mechanical proper-
ties, followed by composite(s), waste paper, and recycling. Regarding chronological time, the
yellow clusters are the most recent ones, including recycling, wood, nanocrystalline cellulose,
and flexural properties. This result indicates the relevance of recycling and mechanical
properties topics (including flexural properties). Other properties needed to be identified,
suggesting a gap in the literature that could be explored more in further research.
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Figure 4. Keywords network in the overlay visualization mode, including frequency and chronologi-
cal time from Scopus.

The five most cited documents (Table 3) include articles published over ten years ago
(1999, 2003, and 2006) from the USA, China, Iran, and India. The most important one
(Huda et al. 2006) has two times more citations than the other four documents. Although
it is not a recent article, it has been cited over the years until the present, confirming its
influence and relevance in the literature (pioneering work).

Finally, it was possible to highlight the leading composites found in the 75 docu-
ments (Table 4). Conventional thermoplastics, thermosetting polymers, elastomers, and
foams were identified. The highest number of documents was found for commodities
polymers: polyethylene (PE) and polypropylene (PP) (also found in the keyword network).
However, the biodegradable/sourced polylactic acid (PLA) provided a higher number of
citations from all the published documents (438), including the most cited article from 2006
(Table 3) and more than six recent articles from the last five years (Table 4). Concerning the
other biopolymers, one publication was found on PLA and PBAT (poly(butylene adipate-
co-terephthalate)), but none were reported for other biopolymers. Therefore, these data
support the scientific relevance of biopolymers and waste-paper-composite topics, indicat-
ing a scientific gap for new publications in the field of biopolymers as composite matrices.

Therefore, the subject has a low number of published documents (only 75) since it
is a specific topic inside the outstanding waste-paper (WP) topic. So, there are apparent
scientific gaps to be filled, highlighting several possibilities for new research on waste-
paper-polymeric composites. The following section focuses on the different polymers used
as matrices.
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Table 4. The main composites found in the 75 documents, according to Scopus and Web of Science.

Composites Documents Citations 1 References

Polyethylene + waste paper 19 148 [15,43,46,48–63]
Polypropylene + waste paper 17 351 [12,44,45,64–77]
Polylactic acid + waste paper 8 438 [11,16,78–83]

Rubber + waste paper 6 31 [17,84–88]
Epoxy + waste paper 6 55 [61,74,89–92]

Polyester + waste paper 6 98 [47,89,93–96]
Polyurethane + waste paper 4 44 [96–99]

Polyvinyl alcohol + waste paper 2 09 [42,74]
1 Until 30 September 2022.

3.2. Main Polymers Used in WP Composites and Their Properties

Based on the systematic literature analysis presented above, it was possible to identify
the main composite formulations discussed in the 75 documents. The following sections
emphasize the main effects of adding WP to different polymers. A detailed discussion is in-
cluded to support the systematic data found and better understand the gaps and prospects.

3.2.1. Polyethylene (PE) Composites

The pioneering work reporting the influence of maleic anhydride coupling agent
(5 wt.%) on the mechanical properties of low-density PE (LDPE) blended with high-impact
polystyrene (HIPS) filled with WP (30 wt.%) presented a higher tensile (42%) and impact
strength (38%), as well as a better dispersion of the composite’s filler with the coupling
agent [48]. Other works also reported the mechanical behavior of PE/WP composites
besides their thermal and morphological-structural properties. LDPE grafted with a maleic
anhydride coupling agent filled with WP (10–50 parts per hundred—phr) has shown
increased tensile strength (88%) and stiffness (409%) for a composite with 30 phr WP
compared to a grafted polymer. This is supported by morphological analyses showing
good interfacial adhesion between the polymer/filler, with fewer voids and pull-out [49].
Moreover, an interesting recent work used PE with WP (from beverage packaging) to
produce a compressed laminated composite panel to replace typical wooden panels such
as OSB (oriented strand board) [50]. The mechanical results presented an improvement
in tensile strength (400%), tensile modulus (15%), three-point bending strength (54%),
and three-point bending modulus (22%) for the composite with 50 wt.% PE compared to
the OBS panel. The authors concluded that this material could replace wooden panels
following environmental concerns.

In addition, PE was filled with extruded WP and tested for photochemical behavior
after exposure to UV irradiation for 100 h [51]. The results showed a photo-oxidative
degradation on the materials, justified by the formation of carbonyl groups (C=O), mainly
for the composites with a higher WP concentration (20–30 wt.%) and, consequently, a re-
duction in crystallinity degree, compared to the composites with a lower WP concentration
(5–15 wt.%). Additionally, all the composites presented lower thermal stability after UV
exposure (around 20% for the 30 wt.% composites). Even with this result, the authors
concluded that these composites could be applied to a wide range of applications where
transparency is not required. Moreover, recycled LDPE from packaging films was mixed
with WP in an extruder, compression molded and characterized via thermal and rheological
analyses [52]. The addition of 40 wt.% WP slightly improved the thermal degradation
temperature compared to the matrix (3 ◦C), while the other composites (50 and 60 wt.%)
presented a decrease (4.5 ◦C) compared to the neat matrix. On the other hand, the complex
viscosity increased as the amount of filler increased, presenting a more viscous material
and, consequently, higher shear-thinning behavior.
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Two kinds of WP (water-treated sludge and ink-eliminated sludge) at different concen-
trations (20–60 wt.%) were mixed with high-density PE (HDPE) with and without wood
flour (WF) (20–60 wt.%) and were then extruded and injected [46]. In this hybrid system,
both cellulose-based fillers act as reinforcements to improve the flexural properties of the
composite. A Higher WF concentration increased the composite’s water absorption and
thickness swelling. However, HDPE with 60 wt.% ink-eliminated sludge (WP) and a maleic
anhydride coupling agent (3 wt.%) and without WF provided better physicomechanical
properties compared to the other composites. In another work, HDPE, WP, WF, maleic an-
hydride coupling agent (MAPE), and starch-derived polymer using different compositions
were mixed in a turbo mixer and compression molded [53]. The authors concluded that the
composites with 10 wt.% WP, 30 wt.% WF and 3 wt.% coupling agents provided the best
mechanical results regarding tensile strength and hardness.

WP was also mixed with pure cellulose and HDPE, followed by injection molding.
However, the fillers were initially modified with fatty and amide acid esters (plasticizer), an
aminosilane coupling agent, and a maleic anhydride coupling agent. The better interfacial
adhesion between the components led to improved mechanical properties and moisture
resistance, such as tensile strength for a composite modified with a maleic anhydride
coupling agent (20%) [54]. Recycled HDPE was mixed and injected with WP deinking
sludge. The results showed that adding the filler improved the crystallinity degree of the
composites compared to the polymer since the filler acted as a nucleating agent [55]. In
addition, a composite with 12.5 wt.% WP presented a higher tensile strength and stiffness
than 5 and 20 wt.%, indicating that an optimum occurred, representing a balance between
reinforcement and defects (dispersion, interface) with increasing filler content.

Novel research tested WP (5 wt.%) and chopped basalt (5 wt.%) in HDPE as a replace-
ment for HDPE double-wall greenhouse glazing [43]. The injected composites showed
a slight increase in melting temperature (4 ◦C) and tensile properties (8.2% and 11.4% in
tensile strength and modulus, respectively) compared to the neat HDPE. They provided
typical HDPE plastic behavior in the tensile test. This was considered an advantage since
the material could be exposed to more extreme weather conditions, such as wind, snow,
and rain, where plastic deformation, instead of fragile behavior, is required. Furthermore,
a composite with HDPE, a 3 wt.% maleic anhydride coupling agent, and 40 wt.% WP
(copy paper and poster paper) coated with CaCO3 was compressed and tested for wa-
ter absorption with different CaCO3 concentrations (2.3, 4.6, 6.6, and 9.2%) [56]. After
14 days of water immersion, the composite with 9.2% CaCO3 provided the best behavior
by decreasing its water absorption (from 5.3% to 2.5%) and thickness swelling (from 2.7%
to 0.5%), indicating that calcium carbonate might be a good option (available and low cost)
to improve the water-resistance of the HDPE/WP composites.

A recent study used HDPE and PP as matrices filled with WP from postage envelope
waste (5–15 wt.%). The materials were extruded and injection molded into bars and discs.
They found that the composites had increased dielectric losses: 40% for HDPE and 30%
for the PP composites as the filler content increased since cellulosic fillers have polar OH
groups compared to nonpolar polymers [57]. Another study used Xuan-WP from China
as a filler for recycled PE/red mud composites. The composites were molded in a plate
vulcanizing machine, and the results showed an improvement in the flexural strength (43%)
but lower tensile strength (16%), especially with a higher (60 wt.%) WP content, while
increasing the crystallinity degree of the composites [58]. This comes from the Xuan-WP
containing minerals (27 wt.%) and organic particles (63 wt.%), mainly calcite, whewellite,
and cellulose.

A novel piece of work developed a foam-compressed composite made of HDPE/WP
using azodicarbonamide as a chemical blowing agent. The melt viscosity decreased, while
the cell number increased (smaller cell sizes) as the blowing agent content (1–8 phr) in-
creased. In contrast, a higher WP content led to higher melt viscosity, reducing the cell
number and increasing the cell size [62]. Furthermore, HDPE/WP-injected composites
were tested with different coupling agents: vinyltriethoxysilane (A151), vinyltrimethoxysi-
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lane (A171), and γ-methacryloxy propyl trimethoxy silane (KH570) [63]. A composite
with 35 wt.% WP provided the best mechanical performance in terms of the improved
tensile strength (19%), for which the modifier addition (3 wt.%), mainly A171 and KH570,
generated a slight improvement not only in the mechanical properties but also in water
absorption and thermal properties.

Finally, newspaper waste was tested as a WP filler (sheets) for HDPE (films)-laminated
composites made from a hot-pressing process and characterized in a three-article series.
The first one evaluated the relationship between flexural strength and composite density,
as well as water absorption and porosity concerning WP content [15]. The flexural strength
and density showed a linear correlation with maximum values of 99.4 MPa and 1.4 g/cm3,
respectively, highlighting the influence of density on the mechanical properties of the
composites. Water absorption was also correlated to porosity because the pores/voids in
WP-filled HDPE are known to facilitate water penetration. The second work studied the
influence of stair-like and vertical splicing on the properties of the HDPE/WP-laminated
composites, in which the stair-like splicing provided the optimum physicomechanical
behavior as the tensile strength increased (62% for 0◦ stacking direction to 11.1% for
90◦) [59]. In contrast, the flexural properties decreased because of the poor interaction at
the splicing position. The last paper focused on modifying the WP filler with stearic acid to
improve the water resistance of the final composites [60]. The treatment was found to be
effective in improving the composite’s water resistance, related to the esterification bonds
between the WP hydroxyl groups and stearic acid carboxyl groups. All these interactions
improved the tensile strength of the wet samples as the stearic acid concentration increased.

Table 5 presents an overview of the works published on WP-based PE composites for
a quick reference and comparison of their properties.

3.2.2. Polypropylene (PP) Composites

The effect of coupling agents on the properties of PP/WP was investigated in several
works. Maleic anhydride grafted onto PP (MAPP) was compared with ethylene diamine
dilaurate (EDD) as coupling agents in PP/WP composites that were extruded, and compres-
sion molded [12]. The results showed that EDD (2 wt.%) performed better by producing
higher ductility (68%), flexural strength (19%), and impact strength (37%) but decreased
the tensile modulus (10%) and water resistance (12%), with a similar tensile strength when
compared to the same amount of MAPP. Another work investigated MAPP, stearic acid,
and titanate as coupling agents in PP/WP composites that were extruded and injected [66].
It was found that MAPP generated the optimum interfacial interaction leading to a higher
tensile strength (10%) and crystallization rate compared to the other compatibilizers. More-
over, MAPP (5 wt.%), as a coupling agent, was reported to increase the tensile strength
(13%), flexural strength (70%), and impact strength (90%) compared to a composite without
a coupling agent [45,68].

In addition, PP filled with WP, WF, and cellulose was hot-pressed and evaluated re-
garding water absorption. As expected, increasing the filler content (15–35 wt.%) increased
the water absorption for all composites [44], but PP/WP presented the highest value, while
PP/cellulose presented a higher water resistance. Furthermore, PP/WP (ink-eliminated
sludge) was compared to PP filled with CaCO3, with both extruded and injection molded,
showing that both fillers acted as nucleating agents in PP crystallization [67]. However,
WP influenced the composite more since the melting and crystallization temperatures were
higher for PP/WP than PP/CaCO3. The mechanical strength was better (about 20%) for PP
with 30 wt.% WP compared to PP/CaCO3 with the same content.



Polymers 2023, 15, 426 10 of 24

Table 5. Main mechanical properties found in the PE composites.

Matrix Filler Modifier Processing Main Mechanical Properties Reference

HDPE WP (64.6 wt.%) N/A Hot-pressing
(laminated)

Tensile strength: 101.5 MPa
Flexural strength: 99.4 MPa [15]

HDPE WP (64 wt.%) N/A

Hot-pressing
(laminated-

star-like
splicing 0◦)

Tensile strength: 109 MPa
Tensile modulus: 9836 MPa
Flexural strength: 119 MPa

[59]

HDPE WP (78.5 wt.%) Stearic acid
(0.10 M)

Hot-pressing
(laminated)

Tensile strength: ~65 MPa
Tensile modulus: ~8500 MPa [60]

HDPE WP/chopped
basalt (5:5 wt.%) N/A Extrusion and

injection
Tensile strength: 17.1 MPa

Tensile modulus: 641.8 MPa [43]

HDPE WP (60 wt.%) MAPE 1 (3 wt.%)
Extrusion and

injection Flexural modulus: 3250 MPa [46]

HDPE WP/Wood
(10:30 wt.%) MAPE (3 wt.%)

Turbomixer
and

hot-pressing

Tensile strength: 27.7 MPa
Tensile modulus: 1417 MPa
Hardness Shore D (RT): ~70

[53]

HDPE WP (60 wt.%) MAPE + plasticizer
(10:8 wt.%)

Extrusion and
injection

Tensile strength: 42.1 MPa
Tensile modulus: 2612 MPa [54]

HDPE WP/CaCO3
(40:9.2 wt.%) MAPE (3 wt.%) Extrusion and

hot-pressing
Tensile strength: 18.3 MPa

Flexural strength: 21.8 MPa [56]

HDPE WP (15 wt.%) N/A Extrusion and
injection Tensile strength: 4.6 MPa [57]

HDPE WP (35 wt.%) KH570 2 (3 wt.%)
Twin rotary
mixer and
injection

Tensile strength: 26.6 MPa
Flexural strength: 37.8 MPa

Flexural modulus: 2349 MPa
[63]

Recycled HDPE WP (12.5 wt.%) N/A Extrusion and
injection

Tensile strength: ~26 MPa
Tensile modulus: ~1020 MPa

Elongation at break: ~21%
[55]

Recycled HDPE WP-Xuan/red
mud (60:40 wt.%) N/A

Plate
vulcanizing

machine

Tensile strength: 15.9 MPa
Flexural strength: 71.8 MPa [58]

PE WP (50%) N/A Hot-pressing Tensile strength: 12.9 MPa
3-point flexural strength: 23.8 MPa [50]

LDPE + HIPS WP (30 wt.%) MAPE (5 wt.%) Extrusion and
injection

Tensile strength: ~17.5 MPa
Tensile modulus: ~1.7 GPa

Impact strength: 19.9 kJ/m2
[48]

LLDPE-g-MA WP (30 phr) N/A
Micro

compounder
and injection

Tensile strength: 7.9 MPa [49]

Recycled LDPE +
Epoxy (40:40%) WP (20 wt.%) N/A Compression

molded

Tensile strength: 10.1 MPa
Tensile modulus: 422 MPa
Flexural strength: 22.3 MPa

[61]

1 maleic anhydride graft polyethylene. 2 silane coupling agent.

A recycled PP mixed with WP as old newspaper (ON) and old magazines (OMs) was
compression molded and showed the most significant properties and interfacial adhesion
with 30 wt.% filler. However, WP-ON presented the highest mechanical properties for
flexural strength (25%) [71]. Recycled PP filled with WP as newspaper (WP-N) was com-
pared with better quality and more expensive filler: cellulose with a special bleaching
pretreatment [69]. The results showed an improvement in tensile strength (26% and 56%)
and stiffness (47% and 16%) for WP-N and cellulose, respectively, compared to recycled
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PP. At the same time, the thermal properties behaved similarly, with an increase in crys-
tallinity degree for both the fillers. The authors concluded that cellulose performed better,
but WP-N was more economically viable. In another work, recycled PP was mixed and
hot-pressed with printed and unprinted WP to determine the effect of the ink on the mate-
rial properties [70]. The presence of ink generated better interfacial interaction between
the polymer and the filler due to its iron oxide content, thus improving the composite’s
mechanical strength (tensile 37.9% and flexural 17.8%), tensile modulus (38.5%), and water
resistance (25.5%).

An exciting work produced virgin and recycled PP filled with WP (from newspaper),
nanoclay, and a coupling agent, for which the materials were put in a mixer rotating
followed by injection molding [72]. The thermal and mechanical properties were slightly
higher for the composites than the virgin PP composites. Nevertheless, the addition of
nanoclay (2.5 wt.%) increased the thermal degradation temperature of the composites
(32%), tensile strength (11%), and elastic modulus (23%) for PP/WP. The authors concluded
that despite the slight decrease in properties for recycled PP, the values were sufficient
for environmentally friendly applications, such as food utensils and automotive interior
parts. In addition, PP was used with WP (newspaper) and glass fiber (GF) for outdoor
applications in which the panels were hot-pressed. Water absorption and thickness swelling
increased with filler content because the poor interaction between the materials generated
a high number of voids/porosity facilitating water absorption [73]. However, higher water
resistance with GF addition can open the door for wet locations, such as bathrooms and
outside decks.

Another work evaluated the effect of four fillers (waste wood, kenaf core, waste jute,
and WP newspaper) as reinforcement for injected PP composites to replace wood-plastic
composites (WPC) [75]. The results indicated that any fillers could replace wood in the
composites concerning mechanical properties. However, WP provided the best balance of
properties. For example, WP improved flexural and tensile strength by over 25%. However,
a more recent recycled PP and WP were produced to compare with cardboard or WF for
3D printing applications [64]. The composites were first extruded, and the specimens were
3D-printed to evaluate the physicomechanical properties. The recycled PP composites
were compared to virgin PP composites, in which PP/WP (5–20 wt.%) did not improve
the thermal and mechanical properties. But the addition of 10 wt.% WP in recycled PP
generated a slight increase in the thermal stability (1.4 ◦C), glass transition temperature
(36%), and tensile elastic modulus (25%), as well as a decrease in crystallinity degree (15%),
and tensile strength (80%). Unfortunately, there was no conclusion regarding the feasibility
of the material specified for 3D printing applications.

Conventional melt processing was replaced by solid-state shear pulverization (SSSP)
via twin-screw extrusion to produce a PP/WP composite (15 wt.%) [65]. The composites
were produced with different specific energy inputs (Ep) to investigate their influence
on filler size and dispersion. The results showed that medium to high Ep (14–35 kJ/g)
provided a better filler dispersion, leading to an improved tensile elastic modulus (70 %),
crystallization temperature (6%), and crystallinity degree (4%) at Ep = 14 kJ/g, compared
to neat PP. Moreover, the cost of the composite was estimated to be lower than the neat
PP, with both produced by SSSP. Another work investigated the thermomechanical per-
formance of PP/WP composites made by injection, indicating that WP addition increased
the stiffness and energy absorption capacity while decreasing the tensile strength and
ductility [76]. However, 30 wt.% composites presented similar values to the neat PP, and
10 wt.% composites were suitable for nonstructural applications and for being more en-
vironmentally friendly by reducing the amount of synthetic material. Finally, a vintage
article investigated the influence of WP particle size on the mechanical properties of PP
composites with and without a MAPP wax coupling agent mixed by a K-mixer [77]. It was
concluded that particle size did not influence mechanical strength, but MAPP provided an
improvement of 26%.
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Table 6 presents an overview of the works published on WP-based PP composites for
a quick reference and comparison of their properties.

Table 6. Main mechanical properties found in the PP composites.

Matrix Filler Modifier Processing Main Mechanical Properties Reference

PP WP (30 wt.%) EDD 1

(2 wt.%)
Reomix polydrive
and hot-pressing

Tensile strength: 29 MPa
Flexural strength: 49 MPa

Impact strength: 13.7 kJ/m2
[12]

PP WP (15 wt.%) N/A
Solid-state shear

pulverization and
hot-pressing

Tensile strength: ~32 MPa
Tensile modulus: ~1700 MPa
(Specific energy of 15 kJ/g)

[65]

PP WP (30 wt.%) MAPP 2 (5 wt.%)
Extrusion and

injection

Tensile strength: 24 MPa
Impact strength: 31.4 J/m
Hardness: 66.8 N/mm2

[66]

PP WP (20 wt.%) N/A Extrusion and
injection

Tensile strength: 23.9 MPa
Impact strength: 74.4 J/m
Hardness: 62.4 N/mm2

[67]

PP WP (30 wt.%) MAPP (20 wt.%) Extrusion and
injection

Tensile strength: 29.9 MPa
Impact strength: 51.6 J/m
Hardness: 71.7 N/mm2

[68]

PP WP (25 wt.%) MAPP (2 wt.%) Torque mixer and
hot-pressing

Tensile strength: ~25 MPa
Tensile modulus: ~2.1 GPa [44]

PP WP (50 wt.%) MAPP (10 wt.%) Two-roll mixer and
hot-pressing

Flexural strength: 78.4 MPa
Flexural modulus: 2916 MPa
Impact strength: 17.1 kJ/m2

[45]

PP WP (42 wt.%) MAPP (5 wt.%) Thermokinetic
mixer and injection

Tensile strength: 48.9 MPa
Impact strength: 27.2 J/m [75]

PP WP (30 wt.%) N/A Thermokinetic
mixer and injection

Tensile strength: 24.5 MPa
Tensile modulus: 1.1 GPa
Elongation at break: 8.2 %

[76]

Recycled PP WP (10 wt.%) N/A Extrusion and 3D
printing

Tensile strength: ~19 MPa
Tensile modulus: ~1450 MPa [64]

Recycled PP WP (40 wt.%) MAPP + impact
modifier (3:5 wt.%)

Extrusion and
injection

Tensile strength: 29 MPa
Tensile modulus: 564 MPa
Elongation at break: 9.0%

[69]

Recycled PP WP-ink office
(50 wt.%) N/A Extrusion and

hot-pressing

Tensile strength: 15.6 MPa
Tensile modulus: 1.7 GPa

Flexural strength: 26.9 MPa
[70]

Recycled PP WP (30 wt.%) MAPP (2 wt.%)
Double-roller

mixer and
hot-pressing

Tensile strength: ~32 MPa
Elongation at break: ~11% [71]

Recycled PP WP/nano clay
(30:2.5 wt.%) MAPP (10 wt.%) Mixer rotating and

injection
Tensile strength: ~40.5 MPa

Tensile modulus: ~1350 MPa [72]

1 ethylene diamine dilaurate. 2 maleic anhydride graft polypropylenes.

3.2.3. Poly(Lactic acid) (PLA) Composites

PLA/WP composites (5–15 wt.%), with and without a silane coupling agent, were
investigated as filaments for 3D printing [80]. The thermal results indicated a decrease
in the thermal stability of the composites. However, the stability was still enough for
3D printing (190–210 ◦C), with a significant increase in crystallinity degree (134%). The
tensile strength and ductility of the composites were improved with the addition of a
silane coupling agent. Moreover, WP addition enhanced the melt flow properties of the
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composites, presenting higher shear-thinning behavior and fluidity than other well-known
fillers, such as wood and cellulose nanocrystals.

Three sequential works from the same authors evaluated the influence of WP addition
on PLA composites, as well as the influence of filler modifiers. The PLA/WP compos-
ites were compared with PLA/wheat straw and PLA/bamboo composites and showed
optimum thermomechanical performance [11]. Furthermore, PLA with 20 wt.% WP and
compatibilized with γ-(2,3-propylene oxide) propyltrimethylsilane (KH560) presented
higher tensile strength (14%) and water resistance than the other composites. In subse-
quent work, nanocrystalline cellulose (NCC) was prepared from WP and mixed with PLA
resulting in a composite with higher mechanical properties than neat PLA, such as ten-
sile (8.2%), flexural (13.1%) and impact strength (35.9%) at 3 wt.% NCC [78]. Then, WP
was mixed with a PLA/NCC composite and showed improved mechanical properties
and water absorption compared to neat PLA, but this was still lower than PLA/NCC.
According to the authors, the interfacial adhesion must be improved to produce higher
mechanical properties in the composites, which were tested in more recent work. The influ-
ence of different coupling agents, such as γ-methacryloxypropyltrimethoxy silane (KH570),
isopropyl tri(dioctylpyrophosphate) titanate, sodium hydroxide, poly-ethylene glycol
6000 (PEG6000), and a composite silane (KH570/PEG6000) was evaluated for PLA/NCC/WP
composites [79]. From the microscopy images, it was possible to conclude that all the cou-
pling agents provided interfacial interaction between the polymer and the fillers, enhancing
the material’s properties by different degrees depending on the modifier. For example, the
composites modified by KH570 presented higher thermal stability, while KH570/PEG6000
provided a higher tensile strength. Therefore, the best coupling agent depends on the
properties required for the composite application.

The most cited article in the systematic analyses investigated PLA + WP (newspaper)
and PLA + chopped glass fiber composites concerning their physicomechanical proper-
ties [16]. The main results showed an improvement in PLA/WP stiffness compared to
neat PLA, identified by the increase in the tensile modulus, flexural modulus, and storage
modulus. However, when considering PLA/glass fiber, the composites presented a slight
reduction in almost all properties, except for glass transition temperature and crystallinity
degree, which showed higher values in the PLA/WP composite. This little difference led
the author to conclude that PLA/WP composites can replace PLA/GF composites in some
applications, depending on the required properties.

A novel study evaluated the use of poly(butylene adipate-co-terephthalate) (PBAT) to
improve the thermomechanical performance of PLA/WP composites [81]. PBAT addition
(10–40 wt.%) promoted the impact strength (290%), thermal stability (4.1%), and crystallinity
degree (10%) of the composites, compared to neat PLA. Furthermore, a coupling agent
was added to improve the mechanical properties, leading to an optimum for PLA/WP
with 20 wt.% PBAT and MAPLA/KH560 as compatibilizers. This result highlights the
improvement of PLA performance by WP and PBAT for its use in nonconventional PLA
applications that are different from packaging and 3D filaments. Another work evaluated
the effect of treatment time (the filler went through a beating machine) and filler content
on the properties of PLA/WP (corrugated paper) composites. As expected, WP addition
(5–30 wt.%) increased the mechanical properties of the composite compared to neat PLA,
such as their tensile (5–22%) and flexural (5–50%) strengths, while decreasing thermal
stability (3–24%). The composite with 25 wt.% and 30 min of beating time provided the
optimum mechanical performance, for which the authors concluded that this material
could solve the environmental issues related to paper recycling [82].

Table 7 presents an overview of the works published on WP-based PLA composites
for a quick reference and comparison of their properties.
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Table 7. Main mechanical properties found in the PLA composites.

Matrix Filler Modifier Processing Main Mechanical Properties Reference

PLA WP-cellulose
(30 wt.%) N/A Extrusion and

injection

Flexural strength: 106.2 MPa
Impact strength: 23.5 J/m

Storage modulus: 10.1 GPa
[16]

PLA WP (20 wt.%) KH560 1 (2 wt.%)
Rotary mixer and

injection
Tensile strength: 58.9 MPa

Flexural strength: 82.6 MPa [11]

PLA
WP/nano
cellulose

(10:3 wt.%)
N/A Extrusion and

injection

Tensile strength: ~64 MPa
Flexural strength: ~93.0 MPa
Impact strength: ~10.5 kJ/m2

[78]

PLA
WP/nano
cellulose

(15:3 wt.%)

KH570 1 + PEG6000 2

(3:4 wt.%)
Extrusion and

injection

Tensile strength: ~68 MPa
Flexural strength: ~98 MPa

Impact strength: ~11.5 kJ/m2
[79]

PLA WP (10 wt.%) KH570 (2 wt.%) Extrusion and 3D
printing

Tensile strength: ~50 MPa
Elongation at break: ~6.2% [80]

PLA WP-corrugated
(25 wt.%) N/A Reactor mixing

and injection

Tensile strength: 29.5 MPa
Tensile modulus: 907.3 MPa
Flexural strength: 41.8 MPa

[82]

PLA + PBAT
(68:20%) WP (10 wt.%) MAPLA + KH560

(2:2 wt.%)
Two-roll mixer and

injection

Tensile strength: ~48 MPa
Flexural strength: ~73.7 MPa
Impact strength: ~15 kJ/m2

[81]

1 silane coupling agent. 2 poly-ethylene glycol 6000.

3.2.4. Rubber Composites

Rubber/WP (newspaper) composites were reported with enhanced mechanical prop-
erties compared to rubber/silica composites [17]. The composites were tested with natural
rubber (NR) and butadiene acrylate copolymer rubber (NBR), with 20, 40, and 60% of the
filler untreated and treated with sodium silicate and magnesium chloride. The results
showed that rubber/WP composites with 40% WP provided the optimum mechanical
properties, such as enhanced tensile strength (47.4%) and ductility (5.1%) compared to
the silica composites. Moreover, the rubber/treated WP provided the best mechanical
performance, especially for NR. Corn husk was used as a second filler for the rubber/WP
composites to produce low-cost and low-weight composites with improved properties [84].
The results reported an improvement in composite wear resistance and water resistance
as the corn husk content increased (2, 4, 6, 8, and 10 wt.%), which is associated with the
hydrophobic nature of the corn husk. However, lower contents (4–8 wt.%) generated higher
flexural properties. Rattan fibers (untreated and treated with KOH) were also investi-
gated as a filler for NR/WP (pulp) composites and cassava starch/WP (pulp) composites.
The results showed that cassava starch/WP/rattan composites provided higher flexural
properties (~18%), while NR/WP/rattan presented a higher water resistance (~10%) [86].
The treatment improved the flexural properties while reducing the water resistance of all
composites. Overall, the composites made with NR and WP provided the most outstanding
water resistance without any treatments or other fillers (lower cost and easier to produce).

The fatigue life of two natural rubbers having 0 and 50 mole% epoxidations (SMR
L and ENR 50) filled with WP (sludge) showed that increasing the WP content (10–40%)
decreased the fatigue life of the composites. However, ENR 50 provided longer fatigue
life [87]. Additionally, a maleated natural rubber coupling agent was used to increase the
fatigue life of the composites by up to 14% at 30% WP and 22% at 10% WP.

Natural rubber was filled with WP (newspaper) that was modified with magnetite to
generate radiation shielding, resulting in higher conductivity and mechanical properties
than the neat matrix [88]. The NR/WP composites also included paraffin wax and boron
carbide (B4C), which improved radiation shielding. The optimum was obtained at 42%
modified WP, 18% paraffin wax, and 20% B4C. In recent work, NR + barium sulfate + WP
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composites were developed as a radiation attenuation material and were applied in X-
ray shielding [85]. Prototypes with a 0.25 mm thickness were produced, showing good
dispersion of the barium sulfate in the rubber matrix, and influencing the absorption
of incident X-rays. Moreover, the maximum voltage of the X-ray beam for protection
was 80 kV.

Table 8 presents an overview of the works published on WP-based rubber composites
for a quick reference and comparison of their properties.

Table 8. Main mechanical properties found in the rubber composites.

Matrix Filler Modifier Processing Main Mechanical Properties Reference

Rubber WP (40 wt.%) Na2SiO3 + MgCl2
(20 wt.%)

Two-roll mixer and
hot-pressing

Tensile strength: 13.5 MPa
Elongation at break: 850% [17]

Rubber WP/corn husk
(70:8 wt.%) N/A Compacting

machine
Flexural strength: ~0.9 MPa
Flexural modulus: ~3.2 MPa [84]

Rubber WP-cellulose/
BaSO4 (60 wt.%) N/A N/A Tensile strength: 11.2 MPa

Elongation at break: 595% [85]

Rubber WP/rattan fiber
(75:2) KOH (1 M) Compacting

machine
Flexural strength: ~1.3 MPa
Flexural modulus: ~38 MPa [86]

Rubber
(ENR 50) WP (10 phr) MNR 1 Hot-pressing Fatigue life: 220 kc 2 [87]

Rubber WP/paraffin/B4C
(42:18:20 phr) Magnetite (1:1) Two-roll mixer and

hot-pressing

Tensile strength: 7 MPa
Tensile modulus: 1.9 MPa
Elongation at break: 400%

[88]

1 maleic anhydride natural rubber. 2 kilocycles.

3.2.5. Epoxy Composites

The first published work reported epoxy resin, phenolic resin, and WP (newspaper)
composite laminates produced via prepreg, for which the mechanical performance was
evaluated and compared to PP/WP [92]. The mechanical strength and modulus produced
a decreasing trend as the filler content increased (0.3–0.7 wt.%), but the ductility was
enhanced by 155% for the PP/WP 0.6 w.t% composite. The mechanical properties of the
PP/WP composites were similar, such as tensile strength (56 MPa) for epoxy/phenolic/WP
compared to 53 MPa for the PP/WP composites (for the same concentration). Another
work produced laminate composites based on epoxy + WP (paper sheets) + woven jute,
varying the stacking sequence and the layer content [91]. The WP composites provided the
best mechanical properties compared to the jute composite and hybrid WP/jute composites,
while the filler combinations (WP/jute) increased the stiffness of the composites. Electronic
microscopy and acoustic emission analysis provided information on the failure mode of
the composites during tensile and flexural tests.

Epoxy resin + WP composites were mixed with dammar natural resin (60–80%) and
WP as paper sheets before and after shredding [90]. The results indicated that the tensile
strength and modulus decreased with increasing dammar content. At the same time, the
composites based on the WP sheets provided higher strength compared to the neat epoxy
resin. The random distribution of the filler generated a lack of uniformity in the composite,
where the tensile response was nonlinear for the shredded WP compared to linear for the
WP sheets. Moreover, the damping properties of the material vibration were evaluated,
showing an increase with enhanced dammar content, mainly for the composite with 80%
dammar and shredded WP. The authors concluded that these hybrid composites based
on shredded WP could be applied in the medical field as a material for fracture or sprain
immobilization products. In contrast, hybrid composites based on WP sheets could be
applied in the automotive industry for indoor products.

A recent work focusing on the environmental concerns caused by waste plastics
developed a composite material from waste LDPE, WP, and epoxy resin [61]. Three
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formulations were evaluated, keeping the epoxy content (40%) but varying the WP (20–30%)
and LDPE (30–40%). The results indicated that 20% WP and 40% LDPE improved tensile
strength (17%) and water resistance (70%), while 25% WP and 35% LDPE improved flexural
properties (15%) and stiffness (145%). Another work investigated the surface printability
of the epoxy or polyester + WP (sludge) or cardboard waste composite plate [89]. The
prints were made with water, solvent- and UV-based inks for a single color (cyan). The
solvent-based and UV-based inks provided permanent surface adhesion, mostly observed
for the WP composites, because of better ink adhesion than the cardboard composites.
Epoxy/WP composites presented higher density than the polyester-based and cardboard-
based composites, for which the density value was most significant for the solvent-based
ink print.

Table 9 presents an overview of the works published on WP-based epoxy composites
for a quick reference and comparison of their properties.

Table 9. Main mechanical properties found in epoxy composites.

Matrix Filler Modifier Processing Main Mechanical Properties Reference

Epoxy WP/dammar
(60 wt.%) N/A Casting Tensile strength 20.8 MPa

Tensile modulus: 24.7 MPa [90]

Epoxy WP (37.5 wt.%) N/A Hand lay-up
(laminated)

Tensile strength: ~92.5 MPa
Flexural strength: ~121 MPa [91]

Epoxy WP (40 wt.%) N/A 3-piece mold
(laminated)

Tensile strength: ~56 MPa
Tensile modulus: ~2.2 GPa [92]

3.2.6. Polyester Composites

It was reported that a polyester resin was mixed with WP as newspaper and kraft, with
and without biaxially knitted glass fiber, in which the WP-kraft composite presented higher
tensile strength (29%), ductility (109%) and stiffness (8.5%) but a similar impact strength
to the WP-newspaper composite [95]. As expected, the knitted glass fiber composite
significantly improved both composites’ mechanical properties, such as WP-kraft composite
tensile strength (133%). The authors stated that the WP-kraft behavior was related to its
hydrophilic nature, promoting better adhesion with the polyester resin. The polyester
resin and WP-as-newspaper (25, 33, and 48%) laminate composites were also produced via
hand lay-up as a low-cost raw reinforcement [94]. The mechanical results showed that the
tensile strength increased as the amount of WP increased in the fiber’s direction (44.5 MPa
for the WP 25% composite and 68.6 MPa for the WP 48% composite). In contrast, tensile
strength decreased as the amount of WP increased in the cross direction (22.9 for the 25%
WP composite and 19.1 for the 48% WP composite).

Water swelling properties were investigated in polyester/WP composites (25, 34, and
50 wt.%), indicating that water absorption and thickness swelling increased as the amount
of WP increased [93]. Moreover, the mechanical performance of dry and wet composites
was tested, showing that all the mechanical properties were lower for wet composites,
being more significant for the 50 wt.% WP composites with a reduction of 40% in tensile
strength and 50% in stiffness. Another work from the same authors evaluated the jute
addition on polyester/WP laminate composites [47]. They reported improved mechanical
properties regarding the polyester/WP composite, mainly for the composite with two
layers of jute and one layer of WP in contrast to the two layers of WP and one layer of jute
(~20% enhancement for tensile and flexural strength).

Table 10 presents an overview of the works published on WP-based polyester compos-
ites for a quick reference and comparison of their properties.
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Table 10. Main mechanical properties found in the polyester composites.

Matrix Filler Modifier Processing Main Mechanical Properties Reference

Polyester WP (50 wt.%) N/A Hand lay-up
(laminated)

Tensile strength: 70.2 MPa
Interlaminar shear strength: ~7 MPa [93]

Polyester WP/Jute (42 wt.%) N/A Hand lay-up
(laminated)

Tensile strength: 60 MPa
Interlaminar shear strength: ~6 MPa [47]

Polyester WP (48 wt.%) N/A Hand lay-up
(laminated)

Tensile strength: 68.6 MPa
Tensile modulus: 5.9 GPa [94]

Polyester WP/biaxial glass fiber N/A Hand lay-up
(laminated)

Tensile strength: 80.6 MPa
Tensile modulus: 1424 MPa

Impact strength: 130.1 kJ/m2
[95]

3.2.7. Polyurethane (PU) Composites

PU/WP composites have only been reported recently. The first work reported PU
and polyester mixed with WP and rice hulls, considering 80 v/v% of filler from which the
composite plates were produced by compression molding [96]. The results showed that
PU/WP presented the best water resistance performance. Moreover, PU/WP provides the
highest mechanical properties compared to the other composites and neat PU. Compared
to neat PU, PU/WP has a higher tensile strength (550%), stiffness (5000%), and hardness
(12.5%), indicating that the flexible elastomeric PU became stiffer with the filler addition.
The following article extracted cellulose nanocrystals from WP (WP-CNC) and filled water-
borne PU composites to produce a transparent film via sonication after PU synthesis in-situ
during PU synthesis [98]. The interaction among the hydrogen bonds between PU and
WP-CNC was stronger for in-situ PU/WP-CNC than for sonicated PU/WP-CNC. Thermal
stability was also improved for all the composites but sonicated PU/WP-CNC presented
the most significant value. The authors concluded that both composites are applicable in
medical and biological areas.

Another work studied waterborne PU mixed with cellulose nanocrystals (CNCs) from
WP to produce membrane composites with two soaking times in water (20 s and 5 min) [97].
The CNCs were of the same quality as commercial cellulose but with higher thermal stability.
Consequently, PU/WP-CNC composite membranes presented higher thermal stability than
PU/commercial cellulose, for which the longer soaking time influenced better thermal
properties. Additionally, a newer work compared WP-CNCs with microcrystalline cellulose
and cellulose from waste cotton as reinforcement for PU composites [99]. The cellulose
from WP provided a higher aspect ratio, crystallinity degree, and thermal stability than
other cellulose sources. The significant interaction between PU and WP-CNC improved
the composites’ thermal properties and stiffness.

Table 11 presents an overview of the works published on WP-based PU composites
for a quick reference and comparison of their properties.

3.2.8. Polyvinyl Alcohol (PVA) Composites

PVA was filled with WP, wood dust, and sisal fiber keeping WP (25 wt.%) and PVA
(10 wt.%) concentrations constant but varying the wood dust (20–40 wt.%) and sisal
(25–45 wt.%) contents [42]. The density decreased as the amount of sisal fiber increased.
At the same time, the flexural strength was optimum at 30 wt.% wood and 35 wt.% sisal.
The water absorption result indicated that a higher volume of sisal caused more significant
water absorption. However, the most water-resistant composite was 30 wt.% wood and
35 wt.% sisal, as with the flexural results.

A second work investigated the effect of WP filler on epoxy resin, PP, and PVA com-
posites regarding water absorption performance. In this case, injection molding and casting
produced two types of PVA (GF 4–86 and 4–88) [74]. The results showed that epoxy/WP
(3 wt.%), PP/WP/MAPP (30 wt.% and 4 wt.%), and casting/molded 4–88 PVA/WP
(30 wt.%) provided lower moisture content, mainly for the PP and PVA composites. The
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authors concluded that molded 4–88 PVA/WP was the best composite with the optimum
production method, good interfacial adhesion between the polymer/filler, and high crys-
tallinity degree.

Table 11 presents an overview of the works published on WP-based PVA composites
for a quick reference and comparison of their properties.

3.2.9. Other Composites

Although conventional, well-known, and general polymeric composites have already
been discussed, other synthetic and natural polymers were noticed at least once in the
literature. Most of them were recently studied and published, being the reference for future
research. One interesting recent work reviewed the novelty of cellulose-based materials,
including WP as a rich-cellulose source, mostly applied to polymeric composites to improve
their properties [100].

Some works reported some results on composites made from cellulose (WP-extracted).
The starch-based composite was filled with nanocellulose from WP and commercial nanocel-
lulose, from which the mechanical properties increased as the filler content increased
(5–20 wt.%). However, the values were lower than for the starch-based commercial nanocel-
lulose composites [18]. Nanocellulose from WP was also mixed with a guar gum film
composite, indicating that the 4 wt.% nanocellulose composites provided the highest me-
chanical behavior with tensile strength (172%) and elongation (101%), compared to the neat
guar gum film but stiffness (154%) was better for the 10 wt.% nanocellulose composite [22].
In another work, the cellulose from WP was mixed with chitosan and methyl red to obtain
a composite film. The cellulose was successfully tested as a substrate for a colorimetric
sensor. It indicates that these composite films could be used to detect food spoilage [101].
Furthermore, a novel work used cellulose from WP as a filler for a polypyrrole/graphene
composite for supercapacitor electrodes. The cellulose addition promoted a higher spe-
cific capacitance (318%), power density, and energy density than neat polypyrrole, being
suitable as an electrolyte tank [102].

Carboxymethyl cellulose and sodium alginate were mixed with WP to develop a
biodegradable film to replace conventional packaging films with good mechanical prop-
erties and water vapor permeability [103]. Additionally, cassava starch was used with
WP/bamboo and WP/rice husk. The composites with increased WP content presented
a lower density and higher compression strength, suitable for construction blocks [104].
Composites based on maleated PVA, natural rubber graft cassava starch, modified cassava
starch, and natural rubber/cassava starch filled with WP/sugar cane stalk were com-
pared using different contents [41]. The impact strength and hardness increased as the
polymers increased, while the swelling ratio decreased, concluding that mixed natural
rubber/cassava starch composite provided the best physicomechanical performance.

Polyethylene terephthalate-1,4-cyclohexanedimethanol ester (PETG) was also filled
with WP modified with an alkyl-ketene-dimer (AKD) and silane coupling agents (KH 550,
560, and 570). The optimum filler content was found to be 10 wt.%, and KH 550 was the
most efficient for improving the composite’s performance by enhancing the mechanical
properties and water resistance [105]. Moreover, a superabsorbent composite was studied
using polyaspartic acid (PASP) with WP and 2-acrylamide-2-methyl-1-propanesulfonic acid
graft with copolymerized acrylic acid. The results showed that the composite presented a
high water absorbance, water retention, acid/base resistance, and salt resistance, leading to
an adaptation in different environmental conditions [106].

To complete this review, Table 11 presents an overview of the works published
on WP-based PU, PVA, and others composites for a quick reference and comparison of
their properties.
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Table 11. Main mechanical properties found in the PU, PVA, and other composites.

Matrix Filler Modifier Processing Main Mechanical Properties Reference

PU WP (20 v/v%) N/A Hot-pressing Tensile strength: 7.8 MPa
Tensile modulus: 741 Mpa [96]

PVA WP/wood/ sisal
(25:30:35 wt.%) N/A Compression

molded Flexural strength: ~7.8 Mpa [42]

Starch WP/rice husk
(70:10 wt.%) N/A Compression

molded
Compression strength: 202 Mpa

Impact strength: 130 J [104]

Starch WP-cellulose (20 wt.%) N/A Hot-pressing Tensile strength: 29.8 Mpa
Tensile modulus: 1396 Mpa [18]

PETG WP (10 wt.%) KH550 1

(1 wt.%)
High-speed mixer
and hot-pressing

Tensile strength: ~55 Mpa
Flexural strength: ~41 Mpa [105]

Cassava
starch/rubber

WP/sugar cane
(20 w/v%: 25 g) N/A Compression

molded
Impact strength: ~0.1 J/mm

Hardness (Shore D): ~66 [41]

Guar gum WP-nano cellulose
(4 wt.%) N/A Film-forming

solution
Tensile strength: 6.3 Mpa

Tensile modulus: 19.1 Mpa [22]

1 silane coupling agent.

4. Prospects

The studies included in this review used WP in different ways. Therefore, future works
should still investigate new polymeric matrices different from conventional synthetic poly-
mers, for which the composite materials will cause minimal or no environmental impact.
Nowadays, several discussions on evaluating the environmental impacts, environmental
footprint, and circular economy are included in any new development. Although a life
cycle assessment (LCA) of the end-of-life of WP was published [107,108], none were found
for WP composites. Some studies stated that WP composites are environmentally friendly
materials but use many synthetic and/or virgin polymers. At the same time, no report was
found on their impacts during and after their lifetime. Investigating composites’ end-of-life
(via LCA), such as recycling and degradation, would be highly valuable. In addition,
recycled and biobased polymers must be tested, especially to account for biodegradable
biopolymers to resolve some of the environmental issues.

WP was reported to be a raw material for PHA synthesis. Future works could be
carried out using PHA from WP in composites filled with WP, leading to an integrated
biodegradable material with 100% materials from WP. Also, PHBV could be used in WP
composites and PU foams. WP, as a cellulose-rich material, could positively affect PU
foams’ stiffness and porous structure in terms of cell size and density. Biobased PU should
be a priority and NR for more elastic applications.

Finally, new applications should be considered for WP composites to support material
characterization. Three-dimensional printing is an outstanding and costly technology
based on commercial filaments from PP, PLA, or acrylonitrile-butadiene-styrene (ABS).
These filaments can be filled with natural fibers to obtain positive effects. Therefore, WP
composites could be made based on PP or PLA filaments, influencing the material cost
and performance.

5. Conclusions

The recent trends in polymeric composites were revised and critically discussed. A
systematic review was performed using the two most important databases in the field. A
total of 75 documents were found and discussed, highlighting their main conclusions and
novelties concerning WP composite properties and application possibilities. These data
provided valuable quantitative information about the number of documents, countries,
keywords, and citations, indicating the scientific relevance of the subject and the gaps for
future research.
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The systematic bibliographic review showed that petro-based PP and PE had been
vastly reported with WP filler with good physicomechanical properties depending on the
filler content. In contrast, PLA is a biobased polymer but presented fewer publications with
much higher citations, highlighting the scientific relevance of the PLA/WP composites. The
keyword analysis showed that mechanical properties and recycling are the most frequent
clusters, which were found in the discussion of the papers (Section 3.2).

Therefore, WP is a valuable cellulose-rich material that can be used for several appli-
cations, positively affecting the composite field. It is generally used as a reinforcement to
improve mechanical properties or as a filler for enhancing water resistance, rheological
properties, and thermal properties. Although several works have already been published,
there are some new possibilities to fill the gaps observed in this review, and this should be
a source of many works in the near future.
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