Amino Acids as Bio-Based Curing Agents for Epoxy Resin: Correlation of Network Structure and Mechanical Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Resin Formulation
2.3. Curing Cycle and Sample Preparation
2.4. Characterization Methods
2.4.1. Dynamic Mechanical Analysis
2.4.2. Tensile and Compression Tests
2.4.3. Three-Point Bending
2.4.4. Fracture Toughness
3. Results and Discussion
3.1. Dynamic Mechanical Analysis
3.2. Tensile Tests
3.3. Three-Point Bending
3.4. Compression Tests
3.5. Fracture Toughness
3.6. Correlations between Material Properties
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Schürmann, H. Konstruieren mit Faser-Kunststoff-Verbunden; Springer: Berlin, Germany, 2007. [Google Scholar]
- Lengsfeld, H.; Wolff-Fabris, F.; Krämer, J.; Lacalle, J.; Altstädt, V. Faserverbundwerkstoffe—Prepregs und ihre Verarbeitung; Hanser Publishers: Munich, Germany, 2014. [Google Scholar] [CrossRef] [Green Version]
- Bourne, L.; Milner, F.; Alberman, K. Health problems of epoxy resins and amine–curing agents. Am. J. Ind. Med. 1959, 16, 81–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greim, H.; Bury, D.; Klimisch, H.J.; Oeben-Negele, M.; Ziegler-Skylakakis, K. Toxicity of aliphatic amines: Structure-activity relationship. Chemosphere 1998, 36, 271–295. [Google Scholar] [CrossRef] [PubMed]
- Venables, K. Low molecular weight chemicals, hypersensitivity, and direct toxicity: The acid anhydrides. Occup. Environ. Med. 1989, 46, 222–232. [Google Scholar] [CrossRef] [PubMed]
- Anku, W.; Mamo, M.; Govender, P. Phenolic Compounds in Water: Sources, Reactivity, Toxicity and Treatment Methods; IntechOpen: London, UK, 2017. [Google Scholar] [CrossRef] [Green Version]
- Leuchtenberger, W.; Huthmacher, K.; Drauz, K. Biotechnological production of amino acids and derivatives: Current status and prospects. Appl. Microbiol. Biotechnol. 2005, 69, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Nelson, D.; Cox, M. Lehninger Principles of Biochemistry; MacMillan Learning: New York City, NY, USA, 2021. [Google Scholar]
- Larsen, P. 6—Physical and Chemical Properties of Amino Acids; Academic Press: London, UK, 1980. [Google Scholar] [CrossRef]
- Li, Y.; Xiao, F.; Wong, C. Novel, Environmentally Friendly Crosslinking System of an Epoxy Using an Amino Acid: Tryptophan-Cured Diglycidyl Ether of Bisphenol A Epoxy. J. Polym. Sci. Part A Polym. Chem. 2007, 45, 181–190. [Google Scholar] [CrossRef]
- Motahari, A.; Omrani, A.; Rostami, A. Theoretical study on the mechanism of epoxy cured with tryptophan in the presence of 2,4,5-triphenylimidazole as a catalyst. Comput. Theor. Chem. 2011, 977, 168–180. [Google Scholar] [CrossRef]
- Gnanasekar, P.; Yan, N. Synthesis and thermo-mechanical properties of novel spirobiindane based epoxy nanocomposites with tryptophan as a green hardener: Curing kinetics using model free approach. Polym. Degrad. Stab. 2019, 163, 110–121. [Google Scholar] [CrossRef]
- Motahari, A.; Rostami, A.; Omrani, A.; Ehsani, M. On the Thermal Degradation of a Novel Epoxy-Based Nanocomposite Cured With Tryptophan as an Environment-Friendly Curing Agent. J. Macromol. Sci. Part B Phys. 2015, 54, 517–532. [Google Scholar] [CrossRef]
- Mazzocchetti, L.; Merighi, S.; Benelli, T.; Giorgini, L. Evaluation of Tryptophan—Late curing agent systems as hardener for epoxy resin. AIP Conf. Proc. 2018, 1981, 020170. [Google Scholar] [CrossRef]
- Merighi, S.; Mazzocchetti, L.; Benelli, T.; Giorgini, L. Evaluation of Novel Bio-Based Amino Curing Agent Systems for Epoxy Resins: Effect of Tryptophan and Guanine. Processes 2021, 9, 42. [Google Scholar] [CrossRef]
- Rothenhäusler, F.; Ruckdaeschel, H. L-Arginine as a Bio-based Curing Agent for Epoxy Resins: Glass Transition Temperature, Rheology and Latency. Polymers 2022, 14, 4331. [Google Scholar] [CrossRef]
- Shibata, M.; Fujigasaki, J.; Enjoji, M.; Shibita, A.; Teramoto, N.; Ifuku, S. Amino acid-cured bio-based epoxy resins and their biocomposites with chitin- and chitosan-nanofibers. Eur. Polym. J. 2018, 98, 216–225. [Google Scholar] [CrossRef]
- Rothenhäusler, F.; Ruckdaeschel, H. l-Arginine as Bio-Based Curing Agent for Epoxy Resins: Temperature-Dependence of Mechanical Properties. Polymers 2022, 14, 4696. [Google Scholar] [CrossRef]
- Espuche, E.; Galy, J.; Gérard, J.F.; Pascault, J.P.; Sautereau, H. Influence of crosslink density and chain flexibility on mechanical properties of model epoxy networks. Macromol. Symp. 1995, 93, 107–115. [Google Scholar] [CrossRef]
- Garcia, F.G.; Soares, B.G.; Pita, V.J.R.R.; Sánchez, R.; Rieumont, J. Mechanical properties of epoxy networks based on DGEBA and aliphatic amines. J. Appl. Polym. Sci. 2007, 106, 2047–2055. [Google Scholar] [CrossRef]
- Shundo, A.; Aoki, M.; Yamamoto, S.; Tanaka, K. Effect of Cross-Linking Density on Horizontal and Vertical Shift Factors in Linear Viscoelastic Functions of Epoxy Resins. Macromolecules 2021, 54, 9618–9624. [Google Scholar] [CrossRef]
- Lau, C.H.; Hodd, K.A.; Wright, W.W. Structure and Properties Relationships of Epoxy Resins Part 1: Crosslink Density of Cured Resin: (II) Model Networks Properties. Br. Polym. J. 1986, 18, 316–322. [Google Scholar] [CrossRef]
- Levita, G.; De Petris, S.; Marchetti, A.; Lazzeri, A. Crosslink density and fracture toughness of epoxy resins. J. Mater. Sci. 1991, 26, 2348–2352. [Google Scholar] [CrossRef]
- Cease, H.; Derwent, P.; Diehl, H.; Fast, J.; Finley, D. Measurement of Mechanical Properties of Three Epoxy Adhesives at Cryogenic Temperatures for CCD Construction; Fermilab: Batavia, IL, USA, 2006. [Google Scholar]
- Williams, J.G. The beta relaxation in epoxy resin-based networks. J. Appl. Polym. Sci. 1979, 23, 3433–3444. [Google Scholar] [CrossRef]
- Ochi, M.; Kageyama, H.; Shimbo, M. Mechanical and dielectric relaxations of poly(hydroxy ethers): 1. Low-temperature relaxations. Polymer 1988, 29, 320–324. [Google Scholar] [CrossRef]
- Li, Y.; Xiao, F.; Moon, K.; Wong, C. Novel Curing Agent for Lead-Free Electronics: Amino Acid. J. Polym. Sci. Part A Polym. Chem. 2005, 44, 1020–1027. [Google Scholar] [CrossRef]
- Hayaty, M.; Honarkar, H.; Beheshty, M.H. Curing behavior of dicyandiamide/epoxy resin system using different accelerators. Iran. Polym. J. 2013, 22, 591–598. [Google Scholar] [CrossRef]
- Kishi, H.; Naitou, T.; Matsuda, S.; Murakami, A.; Muraji, Y.; Nakagawa, Y. Mechanical properties and inhomogeneous nanostructures of dicyandiamide-cured epoxy resins. J. Polym. Sci. Part B Polym. Phys. 2007, 45, 1425–1434. [Google Scholar] [CrossRef]
- Schneider, J.P.; Lengsfeld, H. Toughening of a dicyandiamide-cured epoxy resin: Influence of cure conditions on different rubber modifications. Polym. Eng. Sci. 2021, 61, 2445–2452. [Google Scholar] [CrossRef]
- Hübner, F.; Brückner, A.; Dickhut, T.; Altstädt, V.; Rios de Anda, A.; Ruckdäschel, H. Low temperature fatigue crack propagation in toughened epoxy resins aimed for filament winding of type V composite pressure vessels. Polym. Test. 2021, 102, 107323. [Google Scholar] [CrossRef]
- Jamshidi, H.; Akbari, R.; Beheshty, M.H. Toughening of dicyandiamide-cured DGEBA-based epoxy resins using flexible diamine. Iran. Polym. J. 2015, 24, 399–410. [Google Scholar] [CrossRef]
- Hübner, F.; Hoffmann, M.; Sommer, N.; Altstädt, V.; Scherer, A.; Dickhut, T.; Ruckdäschel, H. Temperature-dependent fracture behavior of towpreg epoxy resins for cryogenic liquid hydrogen composite vessels: The influence of polysiloxane tougheners on the resin yield behavior. Polym. Test. 2022, 113, 107678. [Google Scholar] [CrossRef]
- Farkas, A.; Strohm, P.F. Imidazole catalysis in the curing of epoxy resins. J. Appl. Polym. Sci. 1968, 12, 159–168. [Google Scholar] [CrossRef]
- Greenberg, A.; Breneman, C.M.; Liebman, J.F. The Amide Linkage: Structural Significance in Chemistry, Biochemistry, and Materials Science; John Wiley & Sons: New York, NY, USA, 2000. [Google Scholar]
- Hughes, A.B. Amino Acids, Peptides and Proteins in Organic Chemistry, Analysis and Function of Amino Acids and Peptides; John Wiley & Sons: New York, NY, USA, 2013. [Google Scholar]
- Matsumoto, K.; Yanagi, R.; Oe, Y. Recent Advances in the Synthesis of Carboxylic Acid Esters. In Carboxylic Acid; Badea, G.I., Radu, G.L., Eds.; IntechOpen: Rijeka, Croatia, 2018. [Google Scholar] [CrossRef] [Green Version]
- Varley, R.J. Toughening of epoxy resin systems using low-viscosity additives. Polym. Int. 2004, 53, 78–84. [Google Scholar] [CrossRef]
- Kim, B.C.; Park, S.W.; Lee, D.G. Fracture toughness of the nano-particle reinforced epoxy composite. Compos. Struct. 2008, 86, 69–77. [Google Scholar] [CrossRef]
- Bravais, A. Analyse Mathématique sur les Probabilités des Erreurs de Situation d’un Point; Impr. Royale: Paris, France, 1844. [Google Scholar]
- NumPy-Developers. Numpy.corrcoef()-function. Website. 2022. Available online: https://numpy.org/doc/stable/reference/generated/numpy.corrcoef.html (accessed on 6 September 2022).
- Blanco, M.; Corcuera, M.A.; Riccardi, C.C.; Mondragon, I. Mechanistic kinetic model of an epoxy resin cured with a mixture of amines of different functionalities. Polymer 2005, 46, 7989–8000. [Google Scholar] [CrossRef]
- Meier, S.; Albuquerque, R.Q.; Demleitner, M.; Ruckdäschel, H. Modeling glass transition temperatures of epoxy systems: A machine learning study. J. Mater. Sci. 2022, 57, 13991–14002. [Google Scholar] [CrossRef]
- Verdu, J.; Tcharkhtchi, A. Elastic properties of thermosets in glassy state. Die Angew. Makromol. Chem. 1996, 240, 31–38. [Google Scholar] [CrossRef]
- Chang, T.D.; Carr, S.H.; Brittain, J.O. Studies of epoxy resin systems: Part B: Effect of crosslinking on the physical properties of an epoxy resin. Polym. Eng. Sci. 1982, 22, 1213–1220. [Google Scholar] [CrossRef]
- Rahul, R.; Kitey, R. Effect of cross-linking on dynamic mechanical and fracture behavior of epoxy variants. Compos. Part B Eng. 2016, 85, 336–342. [Google Scholar] [CrossRef]
- Shimbo, M.; Nishitani, N.; Takahama, T. Mechanical properties of acid-cured epoxide resins with different network structures. J. Appl. Polym. Sci. 1984, 29, 1709–1721. [Google Scholar] [CrossRef]
Amino Acid | Molecular Weight in g mol | Functionality (f) | AEW in g mol |
---|---|---|---|
l-arginine | 174.2 | 7 | 24.89 |
l-citrulline | 175.2 | 6 | 29.20 |
GABA | 103.1 | 3 | 34.37 |
l-glutamine | 146.2 | 5 | 29.24 |
l-tryptophan | 204.2 | 4 | 51.05 |
l-tyrosine | 181.2 | 3 | 60.40 |
Amino Acid | in C | E at T = 22 C in GPa | Cross-Link Density in mol m |
---|---|---|---|
l-arginine | 161.8 ± 2.6 | 2.6 ± 0.1 | 13,450 |
l-citrulline | 143.5 ± 0.7 | 2.8 ± 0.1 | 2730 |
GABA | 98.1 ± 0.7 | 2.6 ± 0.1 | 2400 |
l-glutamine | 162.7 ± 1.3 | 2.4 ± 0.0 | 7180 |
l-tryptophan | 138.5 ± 0.7 | 2.6 ± 0.1 | 1560 |
l-tyrosine | 188.3 ± 1.3 | 3.3 ± 0.0 | 11,770 |
Amino Acid | in GPa | in MPa | in % |
---|---|---|---|
l-arginine | 3.0 ± 0.1 | 43.0 ± 2.1 | 1.67 ± 0.10 |
l-citrulline | 2.9 ± 0.0 | 39.4 ± 2.5 | 1.69 ± 0.18 |
GABA | 2.6 ± 0.0 | 41.4 ± 3.8 | 1.84 ± 0.25 |
l-glutamine | 2.6 ± 0.1 | 43.5 ± 3.3 | 1.95 ± 0.25 |
l-tryptophan | 2.8 ± 0.1 | 46.4 ± 1.9 | 2.57 ± 0.11 |
l-tyrosine | 3.5 ± 0.1 | 42.8 ± 2.9 | 1.97 ± 0.40 |
Amino Acid | in GPa | in MPa | in % |
---|---|---|---|
l-arginine | 3.2 ± 0.0 | 69.5 ± 5.9 | 2.34 ± 0.27 |
l-citrulline | 3.1 ± 0.1 | 95.8 ± 10.5 | 4.43 ± 0.88 |
GABA | 2.8 ± 0.0 | 66.9 ± 10.9 | 2.59 ± 0.6 |
l-glutamine | 2.8 ± 0.0 | 62.9 ± 9.3 | 2.37 ± 0.54 |
l-tryptophan | 2.9 ± 0.1 | 71.0 ± 4.0 | 2.94 ± 0.20 |
l-tyrosine | 3.7 ± 0.1 | 70.8 ± 2.9 | 2.30 ± 0.15 |
Amino Acid | in GPa | in MPa | in % |
---|---|---|---|
l-arginine | 3.3 ± 0.1 | 132.2 ± 12.2 | 23.4 ± 2.39 |
l-citrulline | 3.2 ± 0.2 | 111.5 ± 11.3 | 12.2 ± 0.86 |
GABA | 2.9 ± 0.2 | 80.8 ± 2.5 | 9.0 ± 0.54 |
l-glutamine | 2.9 ± 0.1 | 103.3 ± 6.1 | 17.3 ± 2.41 |
l-tryptophan | 3.0 ± 0.2 | 96.8 ± 6.4 | 11.2 ± 1.24 |
l-tyrosine | 3.6 ± 0.2 | 132.2 ± 17.5 | 23.2 ± 3.76 |
Amino Acid | in MPa m | in J m | in m |
---|---|---|---|
l-arginine | 0.48 ± 0.08 | 71 ± 24 | 1.4 |
l-citrulline | 0.97 ± 0.09 | 288 ± 52 | 8.0 |
GABA | 0.79 ± 0.15 | 219 ± 91 | 10.1 |
l-glutamine | 0.64 ± 0.04 | 138 ± 17 | 4.1 |
l-tryptophan | 1.34 ± 0.17 | 575 ± 146 | 20.3 |
l-tyrosine | 0.82 ± 0.12 | 172 ± 54 | 4.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rothenhäusler, F.; Ruckdaeschel, H. Amino Acids as Bio-Based Curing Agents for Epoxy Resin: Correlation of Network Structure and Mechanical Properties. Polymers 2023, 15, 385. https://doi.org/10.3390/polym15020385
Rothenhäusler F, Ruckdaeschel H. Amino Acids as Bio-Based Curing Agents for Epoxy Resin: Correlation of Network Structure and Mechanical Properties. Polymers. 2023; 15(2):385. https://doi.org/10.3390/polym15020385
Chicago/Turabian StyleRothenhäusler, Florian, and Holger Ruckdaeschel. 2023. "Amino Acids as Bio-Based Curing Agents for Epoxy Resin: Correlation of Network Structure and Mechanical Properties" Polymers 15, no. 2: 385. https://doi.org/10.3390/polym15020385