Organosilicon Fluorescent Materials
Abstract
1. Introduction
2. Classification of Organosilicon Fluorescent Materials
2.1. Organosilicon Fluorescent Small Molecules
2.1.1. Aryl Silanes
2.1.2. Siloxanes
2.2. Polysiloxanes
2.2.1. Linear Polysiloxanes
2.2.2. Hyperbranched Polysiloxanes
2.2.3. Cross-Linking Polysiloxanes
3. Applications
3.1. Chemosensors
3.2. Fluorescence Imaging
3.3. Organic Light-Emitting Diodes (OLEDs)
4. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liang, J.; Huang, C.; Gong, X. Silicon Nanocrystals and Their Composites: Syntheses, Fluorescence Mechanisms, and Biological Applications. ACS Sustain. Chem. Eng. 2019, 7, 18213–18227. [Google Scholar] [CrossRef]
- Baceiredo, A.; Kato, T. Chapter 9: Multiple Bonds to Silicon (Recent Advances in the Chemistry of Silicon Containing Multiple Bonds). In Organosilicon Compounds; Lee, V.Y., Ed.; Academic Press: Cambridge, MA, USA, 2017. [Google Scholar]
- Zuo, Y.; Liang, X.; Yin, J.; Gou, Z.; Lin, W. Understanding the significant role of Si-O-Si bonds: Organosilicon materials as powerful platforms for bioimaging. Coord. Chem. Rev. 2021, 447, 214166. [Google Scholar] [CrossRef]
- Zuo, Y.; Gou, Z.; Quan, W.; Lin, W. Silicon-assisted unconventional fluorescence from organosilicon materials. Coord. Chem. Rev. 2021, 438, 213887. [Google Scholar] [CrossRef]
- Lu, H.; Feng, L.; Li, S.; Zhang, J.; Lu, H.; Feng, S. Unexpected Strong Blue Photoluminescence Produced from the Aggregation of Unconventional Chromophores in Novel Siloxane–Poly(amidoamine) Dendrimers. Macromolecules 2015, 48, 476–482. [Google Scholar] [CrossRef]
- Cao, J.; Zuo, Y.; Lu, H.; Yang, Y.; Feng, S. An unconventional chromophore in water-soluble polysiloxanes synthesized via thiol-ene reaction for metal ion detection. J. Photochem. Photobiol. A Chem. 2018, 350, 152–163. [Google Scholar] [CrossRef]
- Karaman, D.Ş.; Sarparanta, M.P.; Rosenholm, J.M.; Airaksinen, A.J. Multimodality Imaging of Silica and Silicon Materials In Vivo. Adv. Mater. 2018, 30, e1703651. [Google Scholar] [CrossRef]
- Ren, Z.; Yan, S. Polysiloxanes for optoelectronic applications. Prog. Mater. Sci. 2016, 83, 383–416. [Google Scholar] [CrossRef]
- Eduok, U.; Faye, O.; Szpunar, J. Recent developments and applications of protective silicone coatings: A review of PDMS functional materials. Prog. Org. Coat. 2017, 111, 124–163. [Google Scholar] [CrossRef]
- Vasilopoulou, M.; Yusoff, A.R.B.M.; Daboczi, M.; Conforto, J.; Gavim, A.E.X.; da Silva, W.J.; Macedo, A.G.; Soultati, A.; Pistolis, G.; Schneider, F.K.; et al. High efficiency blue organic light-emitting diodes with below-bandgap electroluminescence. Nat. Commun. 2021, 12, 4868. [Google Scholar] [CrossRef]
- Yang, J.; Li, W.; Mu, B.; Xu, H.; Hou, X.; Yang, Y. Simultaneous toughness and stiffness of 3D printed nano-reinforced polylactide matrix with complete stereo-complexation via hierarchical crystallinity and reactivity. Int. J. Biol. Macromol. 2022, 202, 482–493. [Google Scholar] [CrossRef]
- Colpani, A.; Fiorentino, A.; Ceretti, E. Feasibility analysis and characterization of an extrusion-based AM process for a two-component and biocompatible silicone. J. Manuf. Process. 2020, 49, 116–125. [Google Scholar] [CrossRef]
- Dorneanu, P.P.; Homocianu, M.; Tigoianu, I.R.; Airinei, A.; Zaltariov, M.; Cazacu, M. Solvent effects on the photophysical properties of poly[1,4-dihydroxyanthraquinoneimine-1,3-bis(phenylene-ester-methylene)tetramethyldisiloxane]. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 134, 218–224. [Google Scholar] [CrossRef]
- Vlad, A.; Zaltariov, M.-F.; Shova, S.; Cazacu, M.; Avadanei, M.; Soroceanu, A.; Samoila, P. New Zn(II) and Cu(II) complexes with in situ generated N2O2 siloxane Schiff base ligands. Polyhedron 2016, 115, 76–85. [Google Scholar] [CrossRef]
- Zaltariov, M.-F.; Cazacu, M.; Racles, C.; Musteata, V.; Vlad, A.; Airinei, A. Metallopolymers based on a polyazomethine ligand containing rigid oxadiazole and flexible tetramethyldisiloxane units. J. Appl. Polym. Sci. 2014, 132, 41631. [Google Scholar] [CrossRef]
- Kung, M.C.; Riofski, M.V.; Missaghi, M.N.; Kung, H.H. Organosilicon platforms: Bridging homogeneous, heterogeneous, and bioinspired catalysis. Chem. Commun. 2014, 50, 3262–3276. [Google Scholar] [CrossRef]
- Loman-Cortes, P.; Binte Huq, T.; Vivero-Escoto, J.L. Use of Polyhedral Oligomeric Silsesquioxane (POSS) in Drug Delivery, Photodynamic Therapy and Bioimaging. Molecules 2021, 26, 6453. [Google Scholar] [CrossRef]
- Kathan, M.; Kovaříček, P.; Jurissek, C.; Senf, A.; Dallmann, A.; Thünemann, A.F.; Hecht, S. Control of Imine Exchange Kinetics with Photoswitches to Modulate Self-Healing in Polysiloxane Networks by Light Illumination. Angew. Chem. Int. Ed. 2016, 55, 13882–13886. [Google Scholar] [CrossRef]
- Sun, D.; Ren, Z.; Bryce, M.R.; Yan, S. Arylsilanes and siloxanes as optoelectronic materials for organic light-emitting diodes (OLEDs). J. Mater. Chem. C 2015, 3, 9496–9508. [Google Scholar] [CrossRef]
- May, F.; Al-Helwi, M.; Baumeier, B.; Kowalsky, W.; Fuchs, E.; Lennartz, C.; Andrienko, D. Design rules for charge-transport efficient host materials for phosphorescent organic light-emitting diodes. J. Am. Chem. Soc. 2012, 134, 13818–13822. [Google Scholar] [CrossRef]
- Wang, H.; Liang, Y.; Wang, Y.; Xie, H.; Feng, L.; Lu, H.; Feng, S. The strategy to improve thermal and optical properties of diphenylfluoranthene based on silicon-cored derivatives. RSC Adv. 2014, 4, 17171–17178. [Google Scholar] [CrossRef]
- Wang, H.; Xie, H.; Liang, Y.; Feng, L.; Cheng, X.; Lu, H.; Feng, S. Color-tunable organic composite nanoparticles based on perylene tetracarboxylic-diimides and a silicon-cored fluoranthene derivate. J. Mater. Chem. C 2013, 1, 5367–5372. [Google Scholar] [CrossRef]
- Zhao, Z.; He, B.; Tang, B.Z. Aggregation-induced emission of siloles. Chem. Sci. 2015, 6, 5347–5365. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Tang, Y.; Barashkov, N.N.; Irgibaeva, I.S.; Lam, J.W.Y.; Hu, R.; Birimzhanova, D.; Yu, Y.; Tang, B.Z. Fluorescent Chemosensor for Detection and Quantitation of Carbon Dioxide Gas. J. Am. Chem. Soc. 2010, 132, 13951–13953. [Google Scholar] [CrossRef] [PubMed]
- Ding, D.; Liang, J.; Shi, H.; Kwok, R.T.K.; Gao, M.; Feng, G.; Yuan, Y.; Tang, B.Z.; Liu, B. Light-up bioprobe with aggregation-induced emission characteristics for real-time apoptosis imaging in target cancer cells. J. Mater. Chem. B 2014, 2, 231–238. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Yu, R.; Xu, K.; Ye, S.; Kuang, S.; Zhu, X.; Wan, Y. An arch-bridge-type fluorophore for bridging the gap between aggregation-caused quenching (ACQ) and aggregation-induced emission (AIE). Chem. Sci. 2016, 7, 4485–4491. [Google Scholar] [CrossRef]
- Hu, R.; Qin, A.; Tang, B.Z. AIE polymers: Synthesis and applications. Prog. Polym. Sci. 2020, 100, 101176. [Google Scholar] [CrossRef]
- Kong, Y.-J.; Yan, Z.-P.; Li, S.; Su, H.-F.; Li, K.; Zheng, Y.-X.; Zang, S.-Q. Photoresponsive Propeller-like Chiral AIE Copper(I) Clusters. Angew. Chem. Int. Ed. 2020, 59, 5336–5340. [Google Scholar] [CrossRef]
- Würthner, F. Aggregation-Induced Emission (AIE): A Historical Perspective. Angew. Chem. Int. Ed. 2020, 59, 14192–14196. [Google Scholar] [CrossRef]
- Curtis, M.D. Synthesis and Reactions of Some Functionally Substituted Sila- and Germacyclopentadienes. J. Am. Chem. Soc. 1969, 91, 6011–6018. [Google Scholar] [CrossRef]
- Luo, J.; Xie, Z.; Lam, J.W.Y.; Cheng, L.; Chen, H.; Qiu, C.; Kwok, H.S.; Zhan, X.; Liu, Y.; Zhu, D.; et al. Aggregation-Induced Emission of 1-Methyl-1,2,3,4,5-Pentaphenylsilole. Chem. Commun. 2001, 1740–1741. [Google Scholar] [CrossRef]
- Yu, G.; Yin, S.; Liu, Y.; Chen, J.; Xu, X.; Sun, X.; Ma, D.; Zhan, X.; Peng, Q.; Shuai, Z.; et al. Structures, electronic states, photoluminescence, and carrier transport properties of 1,1-disubstituted 2,3,4,5-tetraphenylsiloles. J. Am. Chem. Soc. 2005, 127, 6335–6346. [Google Scholar] [CrossRef]
- Chen, B.; Jiang, Y.; He, B.; Zhou, J.; Sung, H.H.Y.; Williams, I.D.; Lu, P.; Kwok, H.S.; Qiu, H.; Zhao, Z.; et al. Synthesis, structure, photoluminescence, and electroluminescence of siloles that contain planar fluorescent chromophores. Chem. Asian J. 2014, 9, 2937–2945. [Google Scholar] [CrossRef]
- Zhang, Y.; Zuo, Y.; Yang, T.; Gou, Z.; Wang, X.; Lin, W. Novel fluorescent probe with a bridged Si-O-Si bond for the reversible detection of hypochlorous acid and biothiol amino acids in live cells and zebrafish. Analyst 2019, 144, 5075–5080. [Google Scholar] [CrossRef]
- Wang, X.; Zuo, Y.; Zhang, Y.; Yang, T.; Lin, W. An ICT-based fluorescent probe with bridging Si–O–Si bonds for visualizing hydrogen sulfide in lipid droplets and its application. Anal. Methods 2020, 12, 1064–1069. [Google Scholar] [CrossRef]
- Gai, F.; Zuo, Y.; Lin, W. Detecting lipid droplets polarity: Silicone-based unique fluorescent probe for cancer diagnosis in living cells. Talanta 2021, 225, 122059. [Google Scholar] [CrossRef]
- Zuo, Y.; Wang, X.; Lin, W. Four-armed functional siloxane enables ratiometric unconventional fluorescence for the detection of ONOO−. Sens. Actuators B Chem. 2021, 331, 129462. [Google Scholar] [CrossRef]
- Zuo, Y.; Yang, T.; Gou, Z.; Tian, M.; Dong, B.; Lin, W. Robust Organoalkoxysilanes as Red Unconventional Fluorescent Platform. Adv. Funct. Mater. 2020, 30, 1910536. [Google Scholar] [CrossRef]
- Zuo, Y.; Wang, D.; Zhang, J.; Feng, S. Multifunctional alkoxysilanes prepared by thiol–yne “click” chemistry: Their luminescence properties and modification on a silicon surface. RSC Adv. 2014, 4, 62827–62834. [Google Scholar] [CrossRef]
- Lu, H.; Hu, Z.; Feng, S. Nonconventional Luminescence Enhanced by Silicone-Induced Aggregation. Chem. Asian J. 2017, 12, 1213–1217. [Google Scholar] [CrossRef]
- Zhou, H.; Ye, Q.; Xu, J. Polyhedral oligomeric silsesquioxane-based hybrid materials and their applications. Mater. Chem. Front. 2017, 1, 212–230. [Google Scholar] [CrossRef]
- Gao, Y.; Xu, W.; Zhu, D.; Chen, L.; Fu, Y.; He, Q.; Cao, H.; Cheng, J. Highly efficient nitrate ester explosive vapor probe based on multiple triphenylaminopyrenyl-substituted POSS. J. Mater. Chem. A 2015, 3, 4820–4826. [Google Scholar] [CrossRef]
- Zuo, Y.; Wang, X.; Yang, Y.; Huang, D.; Yang, F.; Shen, H.; Wu, D. Facile preparation of pH-responsive AIE-active POSS dendrimers for the detection of trivalent metal cations and acid gases. Polym. Chem. 2016, 7, 6432–6436. [Google Scholar] [CrossRef]
- Cabrera-González, J.; Ferrer-Ugalde, A.; Bhattacharyya, S.; Chaari, M.; Teixidor, F.; Gierschner, J.; Núñez, R. Fluorescent carborane–vinylstilbene functionalised octasilsesquioxanes: Synthesis, structural, thermal and photophysical properties. J. Mater. Chem. C 2017, 5, 10211–10219. [Google Scholar] [CrossRef]
- Sun, M.; Su, Y.; Yang, W.; Zhang, L.; Hu, J.; Lv, Y. Organosiloxane and Polyhedral Oligomeric Silsesquioxanes Compounds as Chemiluminescent Molecular Probes for Direct Monitoring Hydroxyl Radicals. Anal. Chem. 2019, 91, 8926–8932. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Li, J.; Chua, M.H.; Yan, H.; Ye, Q.; Song, J.; Lin, T.T.; Tang, B.Z.; Xu, J. Tetraphenylethene (TPE) modified polyhedral oligomeric silsesquioxanes (POSS): Unadulterated monomer emission, aggregation-induced emission and nanostructural self-assembly modulated by the flexible spacer between POSS and TPE. Chem. Commun. 2016, 52, 12478–12481. [Google Scholar] [CrossRef]
- Chanmungkalakul, S.; Ervithayasuporn, V.; Boonkitti, P.; Phuekphong, A.; Prigyai, N.; Kladsomboon, S.; Kiatkamjornwong, S. Anion identification using silsesquioxane cages. Chem. Sci. 2018, 9, 7753–7765. [Google Scholar] [CrossRef]
- Wolf, M.P.; Salieb-Beugelaar, G.B.; Hunziker, P. PDMS with designer functionalities—Properties, modifications strategies, and applications. Prog. Polym. Sci. 2018, 83, 97–134. [Google Scholar] [CrossRef]
- Abe, Y.; Gunji, T. Oligo- and polysiloxanes. Prog. Polym. Sci. 2004, 29, 149–182. [Google Scholar] [CrossRef]
- Hudson, Z.M.; Boott, C.E.; Robinson, M.E.; Rupar, P.A.; Winnik, M.A.; Manners, I. Tailored hierarchical micelle architectures using living crystallization-driven self-assembly in two dimensions. Nat. Chem. 2014, 6, 893–898. [Google Scholar] [CrossRef]
- Hudson, Z.M.; Lunn, D.J.; Winnik, M.A.; Manners, I. Colour-tunable fluorescent multiblock micelles. Nat. Commun. 2014, 5, 3372. [Google Scholar] [CrossRef]
- Liang, Y.; Xu, L.; Qu, F.; Tang, K.; Wang, H.; Yu, W.W. A silicone polymer modified by fluoranthene groups as a new approach for detecting nitroaromatic compounds. Polym. Chem. 2019, 10, 4818–4824. [Google Scholar] [CrossRef]
- Zuo, Y.; Yang, T.; Wang, X.; Zhang, Y.; Tian, M.; Gou, Z.; Lin, W. Visualizing the cell ferroptosis via a novel polysiloxane-based fluorescent schiff base. Sens. Actuators B Chem. 2019, 298, 126843. [Google Scholar] [CrossRef]
- Zhang, Z.; Gu, A.; Liang, G.; Yuan, L.; Zhuo, D. A Novel Hyperbranched Polysiloxane Containing Epoxy and Phosphaphenanthrene Groups and its Multi-Functional Modification of Cyanate Ester Resin. Soft Mater. 2013, 11, 346–352. [Google Scholar] [CrossRef]
- Niu, S.; Yan, H.; Chen, Z.; Li, S.; Xu, P.; Zhi, X. Unanticipated bright blue fluorescence produced from novel hyperbranched polysiloxanes carrying unconjugated carbon–carbon double bonds and hydroxyl groups. Polym. Chem. 2016, 7, 3747–3755. [Google Scholar] [CrossRef]
- Niu, S.; Yan, H.; Li, S.; Tang, C.; Chen, Z.; Zhi, X.; Xu, P. A multifunctional silicon-containing hyperbranched epoxy: Controlled synthesis, toughening bismaleimide and fluorescent properties. J. Mater. Chem. C 2016, 4, 6881–6893. [Google Scholar] [CrossRef]
- Niu, S.; Yan, H.; Chen, Z.; Yuan, L.; Liu, T.; Liu, C. Water-Soluble Blue Fluorescence-Emitting Hyperbranched Polysiloxanes Simultaneously Containing Hydroxyl and Primary Amine Groups. Macromol. Rapid Commun. 2016, 37, 136–142. [Google Scholar] [CrossRef]
- Feng, Y.; Bai, T.; Yan, H.; Ding, F.; Bai, L.; Feng, W. High Fluorescence Quantum Yield Based on the Through-Space Conjugation of Hyperbranched Polysiloxane. Macromolecules 2019, 52, 3075–3082. [Google Scholar] [CrossRef]
- Bai, L.; Yang, P.; Guo, L.; Liu, S.; Yan, H. Truly Multicolor Emissive Hyperbranched Polysiloxane: Synthesis, Mechanism Study, and Visualization of Controlled Drug Release. Biomacromolecules 2022, 23, 1041–1051. [Google Scholar] [CrossRef]
- Zuo, Y.; Cao, J.; Feng, S. Sunlight-Induced Cross-Linked Luminescent Films Based on Polysiloxanes andd-Limonene via Thiol-ene “Click” Chemistry. Adv. Funct. Mater. 2015, 25, 2754–2762. [Google Scholar] [CrossRef]
- Wang, N.; Feng, L.; Xu, X.-D.; Feng, S. Dynamic Covalent Bond Cross-Linked Luminescent Silicone Elastomer with Self-Healing and Recyclable Properties. Macromol. Rapid Commun. 2022, 43, e2100885. [Google Scholar] [CrossRef]
- Fawcett, A.S.; Hughes, T.C.; Zepeda-Velazquez, L.; Brook, M.A. Phototunable Cross-Linked Polysiloxanes. Macromolecules 2015, 48, 6499–6507. [Google Scholar] [CrossRef]
- Zuo, Y.; Lu, H.; Xue, L.; Wang, X.; Wu, L.; Feng, S. Polysiloxane-based luminescent elastomers prepared by thiol-ene “click” chemistry. Chem. Eur. J. 2014, 20, 12924–12932. [Google Scholar] [CrossRef] [PubMed]
- Song, M.; Wang, Y.; Zhang, L.; Lu, H.; Feng, S. A Multifunctional Imidazolium-Based Silicone Material with Conductivity, Self-Healing, Fluorescence, and Stretching Sensitivity. Macromol. Rapid Commun. 2019, 40, e1900469. [Google Scholar] [CrossRef] [PubMed]
- Buffa, M.; Carturan, S.; Debije, M.G.; Quaranta, A.; Maggioni, G. Dye-doped polysiloxane rubbers for luminescent solar concentrator systems. Sol. Energy Mater. Sol. Cells 2012, 103, 114–118. [Google Scholar] [CrossRef]
- Sato, K.; Fukata, N.; Hirakuri, K.; Murakami, M.; Shimizu, T.; Yamauchi, Y. Flexible and transparent silicon nanoparticle/polymer composites with stable luminescence. Chem. Asian J. 2010, 5, 50–55. [Google Scholar] [CrossRef]
- Hu, G.; Sun, Y.; Zhuang, J.; Zhang, X.; Zhang, H.; Zheng, M.; Xiao, Y.; Liang, Y.; Dong, H.; Hu, H.; et al. Enhancement of Fluorescence Emission for Tricolor Quantum Dots Assembled in Polysiloxane toward Solar Spectrum-Simulated White Light-Emitting Devices. Small 2020, 16, e1905266. [Google Scholar] [CrossRef]
- Sun, R.; Feng, S.; Wang, D.; Liu, H. Fluorescence-Tuned Silicone Elastomers for Multicolored Ultraviolet Light-Emitting Diodes: Realizing the Processability of Polyhedral Oligomeric Silsesquioxane-Based Hybrid Porous Polymers. Chem. Mater. 2018, 30, 6370–6376. [Google Scholar] [CrossRef]
- Lin, Y.; Kouznetsova, T.B.; Craig, S.L. A Latent Mechanoacid for Time-Stamped Mechanochromism and Chemical Signaling in Polymeric Materials. J. Am. Chem. Soc. 2020, 142, 99–103. [Google Scholar] [CrossRef]
- Xie, Z.; Wang, F.; Liu, C.-Y. Organic-inorganic hybrid functional carbon dot gel glasses. Adv. Mater. 2012, 24, 1716–1721. [Google Scholar] [CrossRef]
- Sun, X.; Wang, Y.; Lei, Y. Fluorescence based explosive detection: From mechanisms to sensory materials. Chem. Soc. Rev. 2015, 44, 8019–8061. [Google Scholar] [CrossRef]
- Sun, R.; Huo, X.; Lu, H.; Feng, S.; Wang, D.; Liu, H. Recyclable fluorescent paper sensor for visual detection of nitroaromatic explosives. Sens. Actuators B Chem. 2018, 265, 476–487. [Google Scholar] [CrossRef]
- Wan, W.-M.; Tian, D.; Jing, Y.-N.; Zhang, X.-Y.; Wu, W.; Ren, H.; Bao, H.-L. NBN-Doped Conjugated Polycyclic Aromatic Hydrocarbons as an AIEgen Class for Extremely Sensitive Detection of Explosives. Angew Chem. Int. Ed. 2018, 130, 15736–15742. [Google Scholar] [CrossRef]
- Mako, T.L.; Racicot, J.M.; Levine, M. Supramolecular Luminescent Sensors. Chem. Rev. 2019, 119, 322–477. [Google Scholar] [CrossRef]
- Gou, Z.; Zhang, X.; Zuo, Y.; Tian, M.; Dong, B.; Lin, W. Pyrenyl-Functionalized Polysiloxane Based on Synergistic Effect for Highly Selective and Highly Sensitive Detection of 4-Nitrotoluene. ACS Appl. Mater. Interfaces 2019, 11, 30218–30227. [Google Scholar] [CrossRef]
- Gou, Z.; Zhang, X.; Zuo, Y.; Tian, M.; Dong, B.; Tang, Y.; Lin, W. Triphenylamine-based silsesquioxane derivatives for multiple anion recognition via anion effect and solvent effect. Sens. Actuators B Chem. 2021, 338, 129837. [Google Scholar] [CrossRef]
- Lv, Z.; Chen, Z.; Feng, S.; Wang, D.; Liu, H. A sulfur-containing fluorescent hybrid porous polymer for selective detection and adsorption of Hg2+ ions. Polym. Chem. 2022, 13, 2320–2330. [Google Scholar] [CrossRef]
- Chanmungkalakul, S.; Ervithayasuporn, V.; Hanprasit, S.; Masik, M.; Prigyai, N.; Kiatkamjornwong, S. Silsesquioxane cages as fluoride sensors. Chem. Commun. 2017, 53, 12108–12111. [Google Scholar] [CrossRef]
- Liu, H.; Chen, Z.; Feng, S.; Wang, D.; Liu, H. A Selenone-Functionalized Polyhedral Oligomeric Silsesquioxane for Selective Detection and Adsorption of Hg2+ ions in Aqueous Solutions. Polymers 2019, 11, 2084. [Google Scholar] [CrossRef]
- Pantuso, E.; De Filpo, G.; Nicoletta, F.P. Light-Responsive Polymer Membranes. Adv. Opt. Mater. 2019, 7, 1900252. [Google Scholar] [CrossRef]
- Gossweiler, G.R.; Hewage, G.B.; Soriano, G.; Wang, Q.; Welshofer, G.W.; Zhao, X.; Craig, S.L. Mechanochemical Activation of Covalent Bonds in Polymers with Full and Repeatable Macroscopic Shape Recovery. ACS Macro Lett. 2014, 3, 216–219. [Google Scholar] [CrossRef]
- An, Z.; Shan, T.; He, H.; Ma, M.; Shi, Y.; Chen, S.; Wang, X. Contradiction or Unity? Thermally Stable Fluorescent Probe for In Situ Fast Identification of Self-sort or Co-assembly of Multicomponent Gelators with Sensitive Properties. ACS Appl. Mater. Interfaces 2021, 13, 8774–8781. [Google Scholar] [CrossRef] [PubMed]
- Heras, D.; Reig, M.; Llorca-Isern, N.; Garcia-Amorós, J.; Velasco, D. Highly Efficient Elastomeric Fluorescence Sensors for Force Detection. ACS Appl. Polym. Mater. 2019, 1, 535–541. [Google Scholar] [CrossRef]
- Zuo, Y.; Yang, T.; Zhang, Y.; Gou, Z.; Tian, M.; Kong, X.; Lin, W. Two-photon fluorescent polysiloxane-based films with thermally responsive self switching properties achieved by a unique reversible spirocyclization mechanism. Chem. Sci. 2018, 9, 2774–2781. [Google Scholar] [CrossRef] [PubMed]
- Zuo, Y.; Zhang, Y.; Dong, B.; Gou, Z.; Yang, T.; Lin, W. Binding Reaction Sites to Polysiloxanes: Unique Fluorescent Probe for Reversible Detection of ClO(-)/GSH Pair and the in Situ Imaging in Live Cells and Zebrafish. Anal. Chem. 2019, 91, 1719–1723. [Google Scholar] [CrossRef] [PubMed]
- Zuo, Y.; Tian, M.; Sun, J.; Yang, T.; Zhang, Y.; Lin, W. Silica Nanoparticles with Up-conversion Fluorescence Based on Triplet-Triplet Annihilation Mechanism for Specific Recognition of Apoptosis Cells. Anal. Chem. 2018, 90, 14602–14609. [Google Scholar] [CrossRef]
- Zuo, Y.; Zhang, Y.; Gou, Z.; Lin, W. Facile construction of imidazole functionalized polysiloxanes by thiol-ene “Click” reaction for the consecutive detection of Fe3+ and amino acids. Sens. Actuat. B Chem. 2019, 291, 235–242. [Google Scholar] [CrossRef]
- Sun, C.-L.; Li, J.; Wang, X.-Z.; Shen, R.; Liu, S.; Jiang, J.-Q.; Li, T.; Song, Q.-W.; Liao, Q.; Fu, H.-B.; et al. Rational Design of Organic Probes for Turn-On Two-Photon Excited Fluorescence Imaging and Photodynamic Therapy. Chem 2019, 5, 600–616. [Google Scholar] [CrossRef]
- Ye, X.; Xiang, Y.; Wang, Q.; Li, Z.; Liu, Z. A Red Emissive Two-Photon Fluorescence Probe Based on Carbon Dots for Intracellular pH Detection. Small 2019, 15, e1901673. [Google Scholar] [CrossRef]
- Jin, H.; Yang, M.; Sun, Z.; Gui, R. Ratiometric two-photon fluorescence probes for sensing, imaging and biomedicine applications at living cell and small animal levels. Coord. Chem. Rev. 2021, 446, 214114. [Google Scholar] [CrossRef]
- Chen, B.; Feng, G.; He, B.; Goh, C.; Xu, S.; Ramos-Ortiz, G.; Aparicio-Ixta, L.; Zhou, J.; Ng, L.; Zhao, Z.; et al. Silole-Based Red Fluorescent Organic Dots for Bright Two-Photon Fluorescence In vitro Cell and In vivo Blood Vessel Imaging. Small 2016, 12, 782–792. [Google Scholar] [CrossRef]
- Owens, E.A.; Henary, M.; El Fakhri, G.; Choi, H.S. Tissue-Specific Near-Infrared Fluorescence Imaging. Acc. Chem. Res. 2016, 49, 1731–1740. [Google Scholar] [CrossRef]
- Ji, Y.; Jones, C.; Baek, Y.; Park, G.K.; Kashiwagi, S.; Choi, H.S. Near-infrared fluorescence imaging in immunotherapy. Adv. Drug Deliv. Rev. 2020, 167, 121–134. [Google Scholar] [CrossRef]
- Koide, Y.; Urano, Y.; Hanaoka, K.; Piao, W.; Kusakabe, M.; Saito, N.; Terai, T.; Okabe, T.; Nagano, T. Development of NIR Fluorescent Dyes Based on Si–rhodamine for in Vivo Imaging. J. Am. Chem. Soc. 2012, 134, 5029–5031. [Google Scholar] [CrossRef]
- Wirth, R.; Gao, P.; Nienhaus, G.U.; Sunbul, M.; Jäschke, A. SiRA: A Silicon Rhodamine-Binding Aptamer for Live-Cell Super-Resolution RNA Imaging. J. Am. Chem. Soc. 2019, 141, 7562–7571. [Google Scholar] [CrossRef]
- Zuo, Y.; Wang, X.; Gou, Z.; Lin, W. Step-wise functionalization of polysiloxane towards a versatile dual-response fluorescent probe and elastomer for the detection of H2S in two-photon and NO in near-infrared modes. Chem. Commun. 2020, 56, 1121–1124. [Google Scholar] [CrossRef]
- Liu, H.; Cheng, G.; Hu, D.; Shen, F.; Lv, Y.; Sun, G.; Yang, B.; Lu, P.; Ma, Y. A Highly Efficient, Blue-Phosphorescent Device Based on a Wide-Bandgap Host/FIrpic: Rational Design of the Carbazole and Phosphine Oxide Moieties on Tetraphenylsilane. Adv. Funct. Mater. 2012, 22, 2830–2836. [Google Scholar] [CrossRef]
- Li, Z.; Kong, J.; Wang, F.; He, C. Polyhedral oligomeric silsesquioxanes (POSSs): An important building block for organic optoelectronic materials. J. Mater. Chem. C 2017, 5, 5283–5298. [Google Scholar] [CrossRef]
- Yu, T.; Xu, Z.; Su, W.; Zhao, Y.; Zhang, H.; Bao, Y. Highly efficient phosphorescent materials based on Ir(iii) complexes-grafted on a polyhedral oligomeric silsesquioxane core. Dalton Trans. 2016, 45, 13491–13502. [Google Scholar] [CrossRef]
- Ertan, S.; Cihaner, A. Designing a Solution Processable Poly(3,4-ethylenedioxyselenophene) Analogue. Macromolecules 2018, 51, 8698–8704. [Google Scholar] [CrossRef]
- Cheng, C.-C.; Chu, Y.-L.; Chu, C.-W.; Lee, D.-J. Highly efficient organic–inorganic electroluminescence materials for solution-processed blue organic light-emitting diodes. J. Mater. Chem. C 2016, 4, 6461–6465. [Google Scholar] [CrossRef]
- Hu, G.; Xu, X.; Lei, B.; Zhuang, J.; Zhang, X.; Zhang, H.; Hu, C.; Liu, X.; He, Y.; Liu, Y. Self-formed C-dot-based 2D polysiloxane with high photoluminescence quantum yield and stability. Nanoscale 2020, 12, 10771–10780. [Google Scholar] [CrossRef] [PubMed]


















Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Z.; Feng, S.; Wang, D. Organosilicon Fluorescent Materials. Polymers 2023, 15, 332. https://doi.org/10.3390/polym15020332
Chen Z, Feng S, Wang D. Organosilicon Fluorescent Materials. Polymers. 2023; 15(2):332. https://doi.org/10.3390/polym15020332
Chicago/Turabian StyleChen, Zixu, Shengyu Feng, and Dengxu Wang. 2023. "Organosilicon Fluorescent Materials" Polymers 15, no. 2: 332. https://doi.org/10.3390/polym15020332
APA StyleChen, Z., Feng, S., & Wang, D. (2023). Organosilicon Fluorescent Materials. Polymers, 15(2), 332. https://doi.org/10.3390/polym15020332

