Effect of Aprotic Solvents on the Microtensile Bond Strength of Composite Core and Fiber-Reinforced Composite Posts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Preparation
2.2. Specimen Preparation
2.3. Surface Treatment Protocols
2.4. Microtensile Specimen Preparations
2.5. Mode of Failure Evaluation
2.6. Sample Preparation for Measuring Surface Roughness
2.6.1. Determination of Surface Properties with White Light Interferometry
- The tapered end of a fiber-reinforced composite post in each subgroup was placed 2 mm deep into the plastic mold, as shown in Figure 5.
- Multicore flow was injected around the post until the plastic mold was fully filled and then activated with a light-curing unit for 40 s per surface.
- A Rectangular black acrylic resin plate was joined to a fiber-reinforced composite post-plastic mold assembly via a plastic hole that was inserted into the metal post and secured to a post-plastic mold assembly, as shown in Figure 6.
- The assembled component was placed on the white-light interferometry tester’s stand.
- The Ra value was measured on the surface of the fiber-reinforced composite posts that corresponded to the marker line. For each subgroup, ten samples were measured. Measurements were made using white light optical interferometry (WLI, ContourX-1000, Bruker, Salbruken, Germany) with the vertical scanning interferometry mode (VSI). A magnification of 20× with a 0.55× field of view (FOV) was used, obtaining an image size of 1.7 × 2.3 mm. The arithmetic mean height of the surface (Ra) was reported.
2.6.2. Scanning Electron Microscope (SEM) Evaluation
2.7. Statistical Analysis
3. Results
3.1. Mean Microtensile Bond Strength
3.1.1. Non-Thermocycling Condition
3.1.2. The 5000-Cycle and 10,000-Cycle Thermocycling Conditions
3.2. Failure Modes
3.2.1. Non-Thermocycling Condition
3.2.2. The 5000-Cycle Thermocycling Condition
3.2.3. The 10,000-Cycle Thermocycling Condition
3.3. Surface Roughness Analysis Results
3.3.1. White Light Interferometry
3.3.2. Scanning Electron Microscope (SEM)
4. Discussion
- The resin matrix covering the glass fiber was dissolved and removed, exposing the glass fiber posts. Furthermore, the fibers contained a hydroxyl group, which could be silanated to create sufficient adhesion to the bonding agent.
- When the resin matrix was dissolved and swelled, adhesion between the polymer matrix and the new bonding resin could be achieved via two processes:
- (i)
- Mechanical interlocking is caused by rough surfaces.
- (ii)
- Adhesion via interpenetrating network (IPN) formation. When the resin matrix swelled, became soft, and created pores between the polymer chains, these processes permitted the transfer of low-molecular-weight monomers from the bonding agent into the swollen polymer matrix via diffusion.
5. Conclusions
- (1)
- Pyridine, an aprotic solvent, generates the highest microtensile bond strength between the interfaces of composite cores and fiber-reinforced composite posts, e.g., Bis-GMA (41.09 ± 4.29 MPa) and an epoxy resin matrix (46.93 ± 4.97 MPa). However, pyridine is more effective with an epoxy resin matrix than with a Bis-GMA resin matrix.
- (2)
- In this research, pyridine treatment resulted in the highest surface roughness (Epoxy 704.140 ± 44.637 Ra, Bis-GMA 859.439 ± 30.789 Ra).
- (3)
- Thermocycling reduced the microtensile bond strength in all groups. However, the pyridine groups had the highest bond strength.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meira, J.B.; Espósito, C.O.; Quitero, M.F.; Poiate, I.A.; Pfeifer, C.S.; Tanaka, C.B.; Ballester, R.Y. Elastic modulus of posts and the risk of root fracture. Dent. Traumatol. 2009, 25, 394–398. [Google Scholar] [CrossRef] [PubMed]
- Spinhayer, L.; Bui, A.T.B.; Leprince, J.G.; Hardy, C.M.F. Core build-up resin composites: An in-vitro comparative study. Biomater. Investig. Dent. 2020, 7, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Bateman, G.; Ricketts, D.N.; Saunders, W.P. Fibre-based post systems: A review. Br. Dent. J. 2003, 195, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Glazer, B. Restoration of endodontically treated teeth with carbon fibre posts-a prospective study. J. Can. Dent. Assoc. 2000, 66, 613–618. [Google Scholar] [PubMed]
- Lassila, L.V.; Tezvergil, A.; Lahdenperä, M.; Alander, P.; Shinya, A.; Vallittu, P.K. Evaluation of some properties of two fiber-reinforced composite materials. Acta Odontol. Scand. 2005, 63, 196–204. [Google Scholar] [CrossRef] [PubMed]
- Goracci, C.; Raffaelli, O.; Monticelli, F.; Balleri, B.; Bertelli, E.; Ferrari, M. The adhesion between prefabricated FRC posts and composite resin cores: Microtensile bond strength with and without post-silanization. Dent. Mater. 2005, 21, 437–444. [Google Scholar] [CrossRef]
- Wang, Z.; Ji, Y.; Zhang, F. Bond strengths of an epoxy resin-based fiber post with four adhesive systems. Quintessence Int. 2010, 41, e173–e180. [Google Scholar]
- Hayashi, M.; Ebisu, S. Key factors in achieving firm adhesion in post–core restorations. Jpn. Dent. Sci. Rev. 2008, 44, 22–28. [Google Scholar] [CrossRef]
- Cagidiaco, M.C.; Radovic, I.; Simonetti, M.; Tay, F.; Ferrari, M. Clinical performance of fiber post restorations in endodontically treated teeth: 2-year results. Int. J. Prosthodont. 2007, 20, 293–298. [Google Scholar]
- Prado, M.; Marques, J.N.; Pereira, G.D.; da Silva, E.M.; Simão, R.A. Evaluation of different surface treatments on fiber post cemented with a self-adhesive system. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 77, 257–262. [Google Scholar] [CrossRef]
- Monticelli, F.; Goracci, C.; Ferrari, M. Micromorphology of the fiber post-resin core unit: A scanning electron microscopy evaluation. Dent. Mater. 2004, 20, 176–183. [Google Scholar] [CrossRef] [PubMed]
- Monticelli, F.; Goracci, C.; Grandini, S.; García-Godoy, F.; Ferrari, M. Scanning Electron Microscopic Evaluation of Fiber Post-Resin Core Units Built up with Different Resin Composites. Am. J. Dent. 2005, 18, 61–65. [Google Scholar] [PubMed]
- Monticelli, F.; Toledano, M.; Tay, F.R.; Sadek, F.T.; Goracci, C.; Ferrari, M. A simple etching technique for improving the retention of fiber posts to resin composites. J. Endod. 2006, 32, 44–47. [Google Scholar] [CrossRef]
- Asmussen, E.; Peutzfeldt, A. Influence of UEDMA, BisGMA and TEGDMA on selected mechanical properties of experimental resin composites. Dent. Mater. 1998, 14, 51–56. [Google Scholar] [CrossRef]
- Daneshkazemi, A.; Davari, A.; Askari, N.; Kaveh, M. Effect of different fiber post surface treatments on microtensile bond strength to composite resin. J. Prosthet. Dent. 2016, 116, 896–901. [Google Scholar] [CrossRef]
- Valandro, L.F.; Yoshiga, S.; de Melo, R.M.; Galhano, G.A.; Mallmann, A.; Marinho, C.P.; Bottino, M.A. Microtensile bond strength between a quartz fiber post and a resin cement: Effect of post surface conditioning. J. Adhes. Dent. 2006, 8, 105–111. [Google Scholar] [PubMed]
- Sahafi, A.; Peutzfeldt, A.; Asmussen, E.; Gotfredsen, K. Bond strength of resin cement to dentin and to surface-treated posts of titanium alloy, glass fiber, and zirconia. J. Adhes. Dent. 2003, 5, 153–162. [Google Scholar] [PubMed]
- Sahafi, A.; Peutzfeld, A.; Asmussen, E.; Gotfredsen, K. Effect of surface treatment of prefabricated posts on bonding of resin cement. Oper. Dent. 2004, 29, 60–68. [Google Scholar] [PubMed]
- Monticelli, F.; Osorio, R.; Sadek, F.T.; Radovic, I.; Toledano, M.; Ferrari, M. Surface treatments for improving bond strength to prefabricated fiber posts: A literature review. Oper. Dent. 2008, 33, 346–355. [Google Scholar] [CrossRef]
- Monticelli, F.; Toledano, M.; Tay, F.R.; Cury, A.H.; Goracci, C.; Ferrari, M. Post-surface conditioning improves interfacial adhesion in post/core restorations. Dent. Mater. 2006, 22, 602–609. [Google Scholar] [CrossRef]
- Vano, M.; Goracci, C.; Monticelli, F.; Tognini, F.; Gabriele, M.; Tay, F.R.; Ferrari, M. The adhesion between fibre posts and composite resin cores: The evaluation of microtensile bond strength following various surface chemical treatments to posts. Int. Endod. J. 2006, 39, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Baskin, D.G.; Erlandsen, S.L.; Parsons, J.A. Influence of hydrogen peroxide or alcoholic sodium hydroxide on the immunocytochemical detection of growth hormone and prolactin after osmium fixation. J. Histochem. Cytochem. 1979, 27, 1290–1292. [Google Scholar] [CrossRef] [PubMed]
- Monticelli, F.; Osorio, R.; Toledano, M.; Goracci, C.; Tay, F.R.; Ferrari, M. Improving the quality of the quartz fiber post core bond using sodium ethoxide etching and combined silane/adhesive coupling. J. Endod. 2006, 32, 447–451. [Google Scholar] [CrossRef] [PubMed]
- Yenisey, M.; Kulunk, S. Effects of chemical surface treatments of quartz and glass fiber posts on the retention of a composite resin. J. Prosthet. Dent. 2008, 99, 38–45. [Google Scholar] [CrossRef]
- Fontes, S.T.; Ogliari, F.A.; Lima, G.S.; Bueno, M.; Schneider, L.F.; Piva, E. Tetrahydrofuran as alternative solvent in dental adhesive systems. Dent. Mater. 2009, 25, 1503–1508. [Google Scholar] [CrossRef]
- Bunchansakul, N.; Thamrongananskul, N. The effect of surfacetreatment on shear bond strength ofresin matrix ceramics and dual cure resin cement. J. Int. Dent. Med. Res. 2020, 13, 1248–1257. [Google Scholar]
- Klaisiri, A.; Suebnukarn, S.; Krajangta, N.; Rakmanee, T.; Sriamporn, T.; Thamrongananskul, N. The effect of morpholine on composite-to-composite repair strength contaminated with saliva. Polymers 2022, 14, 4718. [Google Scholar] [CrossRef]
- Sano, H.; Shono, T.; Sonoda, H.; Takatsu, T.; Ciucchi, B.; Carvalho, R.; Pashley, D.H. Relationship between surface area for adhesion and tensile bond strength—Evaluation of a micro-tensile bond test. Dent. Mater. 1994, 10, 236–240. [Google Scholar] [CrossRef]
- Pashley, D.H.; Sano, H.; Ciucchi, B.; Yoshiyama, M.; Carvalho, R.M. Adhesion testing of dentin bonding agents: A review. Dent. Mater. 1995, 11, 117–125. [Google Scholar] [CrossRef]
- Della Bona, A.; van Noort, R. Shear vs. tensile bond strength of resin composite bonded to ceramic. J. Dent. Res. 1995, 74, 1591–1596. [Google Scholar] [CrossRef]
- Poitevin, A.; De Munck, J.; Van Landuyt, K.; Coutinho, E.; Peumans, M.; Lambrechts, P.; Van Meerbeek, B. Critical analysis of the influence of different parameters of the microtensile bond strength of adhesives to dentin. J. Adhes. Dent. 2008, 10, 7–16. [Google Scholar] [PubMed]
- Lamichhane, A.; Xu, C.; Zhang, F.Q. Dental fiber-post resin base material: A review. J. Adv. Prosthodont. 2014, 6, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Sadek, F.T.; Cury, Á.H.; Monticelli, F.; Ferrari, M.; Cardoso, P.E.C. The influence of the cutting speed on bond strength and integrity of microtensile specimens. Dent. Mater. 2005, 21, 1144–1149. [Google Scholar] [CrossRef] [PubMed]
- Sloan, F.E. Chemical attack of graphite/epoxy by hydrogen peroxide. Appl. Spectrosc. 1992, 46, 524–528. [Google Scholar] [CrossRef]
- Mosharraf, R.; Ranjbarian, P. Effects of post surface conditioning before silanization on bond strength between fiber post and resin cement. J. Adv. Prosthodont. 2013, 5, 126–132. [Google Scholar] [CrossRef]
- Menezes, M.D.S.; Queiroz, E.C.; Soares, P.V.; Faria-E-Silva, A.L.; Soares, C.J.; Martins, L.R.M. Fiber post etching with hydrogen peroxide: Effect of concentration and application time. J. Endod. 2011, 37, 398–402. [Google Scholar] [CrossRef]
- Machry, R.V.; Fontana, P.E.; Bohrer, T.C.; Valandro, L.F.; Kaizer, O.B. Effect of different surface treatments of resin relined fiber posts cemented with self-adhesive resin cement on push-out and microtensile bond strength tests. Oper. Dent. 2020, 45, E185–E195. [Google Scholar] [CrossRef]
- Menezes, M.S.; Faria-e-Silva, A.L.; Silva, F.P.; Reis, G.R.; Soares, C.J.; Stape, T.H.; Martins, L.R. Etching a fiber post surface with high-concentration bleaching agents. Oper. Dent. 2014, 39, E16–E21. [Google Scholar] [CrossRef]
- Majeti, C.; Veeramachaneni, C.; Morisetty, P.K.; Rao, S.A.; Tummala, M. A simplified etching technique to improve the adhesion of fiber post. J. Adv. Prosthodont. 2014, 6, 295–301. [Google Scholar] [CrossRef]
- Kum, K.-Y.; Lim, K.-R.; Lee, C.-Y.; Park, K.-H.; Safavi, K.E.; Fouad, A.F.; Spångberg, L.S. Effects of removing residual peroxide and other oxygen radicals on the shear bond strength and failure modes at resin-tooth interface after tooth bleaching. Am. J. Dent. 2004, 17, 267–270. [Google Scholar]
- Manjkow, J.; Papanu, J.S.; Soong, D.S.; Hess, S.W.; Bell, A.T. An in situ study of dissolution and swelling behavior of poly-(methyl methacrylate) thin films in solvent/nonsolvent binary mixtures. J. Appl. Phys. 1987, 62, 682–688. [Google Scholar] [CrossRef]
- Miller-Chou, B.A.; Koenig, J.L. A review of polymer dissolution. Prog. Polym. Sci. 2003, 28, 1223–1270. [Google Scholar] [CrossRef]
- Miller, R.G.; Bowles, C.Q.; Chappelow, C.C.; Eick, J.D. Application of solubility parameter theory to dentin-bonding systems and adhesive strength correlations. J. Biomed. Mater. Res. 1998, 41, 237–243. [Google Scholar] [CrossRef]
- Pashley, D.H.; Tay, F.R.; Carvalho, R.M.; Rueggeberg, F.A.; Agee, K.A.; Carrilho, M. From dry bonding to water-wet bonding to ethanol-wet bonding. A review of the interactions between dentine matrix and solvated resins using a macromodel of the hybrid layer. Am. J. Dent. 2007, 20, 7–20. [Google Scholar] [PubMed]
- Hansen, C.M. Hansen Solubility Parameters. In A User’s Handbook, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2007; pp. 1–43, 345–483. [Google Scholar]
- Han, K.H.; Jeon, G.S.; Hong, I.K.; Lee, S.B. Prediction of solubility parameter from intrinsic viscosity. J. Ind. Eng. Chem. 2013, 19, 1130–1136. [Google Scholar] [CrossRef]
- Watson, T.F. Applications of confocal scanning optical microscopy to dentistry. Br. Dent. J. 1991, 171, 287–291. [Google Scholar] [CrossRef] [PubMed]
- Elliott, A.D. Confocal Microscopy: Principles and Modern Practices. Curr. Protoc. Cytom. 2020, 92, e68. [Google Scholar] [CrossRef]
- Hovis, D.B.; Heuer, A.H. The use of laser scanning confocal microscopy (LSCM) in materials science. J. Microsc. 2010, 240, 173–180. [Google Scholar] [CrossRef]
- Özcan, M.; Corazza, P.H.; Marocho, S.M.S.; Barbosa, S.H.; Bottino, M.A. Repair bond strength of microhybrid, nanohybrid and nano-filled resin composites: Effect of substrate resin type, surface conditioning and ageing. Clin. Oral Investig. 2013, 17, 1751–1758. [Google Scholar] [CrossRef]
- Gale, M.S.; Darvell, B.W. Thermal cycling procedures for laboratory testing of dental restorations. J. Dent. 1999, 66, 1336–1339. [Google Scholar] [CrossRef]
- Stewardson, D.A.; Shortall, A.C.; Marquis, P.M. The effect of clinically relevant thermocycling on the flexural properties of endodontic post materials. J. Dent. 2010, 38, 437–442. [Google Scholar] [CrossRef] [PubMed]
- Lassila, L.V.; Tanner, J.; Le Bell, A.M.; Narva, K.; Vallittu, P.K. Flexural properties of fiber reinforced root canal posts. Dent. Mater. 2004, 20, 29–36. [Google Scholar] [CrossRef] [PubMed]
Type | Material | Composition |
---|---|---|
Fiber-reinforced composite post | FRC Postec Plus (Ivoclar Vivadent, Schaan, Liechtenstein) | Glass fiber, Bis-EMA 1, ytterbium trifluoride, Bis-GMA 2, 1,4-butanediol dimethacrylate |
Fiber-reinforced composite post | D.T. Light-Post (Recherches Techniques Dentaires, RTD, St. Egreve, France) | Quartz fibers, epoxy resin matrix |
Composite core | Multicore Flow (Ivoclar Vivadent, Schaan, Liechtenstein) | Matrix: Bis-GMA 2, urethane dimethacrylate, triethylene glycol dimethacrylate Fillers: barium glass, ytterbium Ba-Al-fluorosilicate glass, highly dispersed silicon dioxide |
Adhesive agent | ExcitE F DSC (Ivoclar Vivadent, Schaan, Liechtenstein) | Bis-GMA 2, ethanol, 2-hydroxyethyl methacrylate phosphonic acid acrylate, diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide, potassium fluoride |
Silane coupling agent | Monobond plus (Ivoclar Vivadent, Schaan, Liechtenstein) | Ethanol, 3-(trimethoxysilyl)propyl methacrylate, methacrylated phosphoric acid ester |
Treatment reagents | Tetrahydrofuran (LOBA Chemie Pvt. Ltd.—Mumbai, India) | Tetrahydrofuran 99.8% |
Treatment reagents | Hydrogen peroxide (LOBA Chemie Pvt. Ltd.—Mumbai, India) | Hydrogen peroxide 35% |
Treatment reagents | Pyridine (LOBA Chemie Pvt. Ltd.—Mumbai, India) | Pyridine 99.5% |
Treatment reagents | Morpholine (LOBA Chemie Pvt. Ltd.—Mumbai, India) | Morpholine 99.5% |
Group | C | H2O2 | THF | PY | MP |
---|---|---|---|---|---|
Epoxy (D.T. Light-Post) | 33.22 ±2.43 c* | 38.3 ± 3.16 b* | 40.73± 3.40 b* | 46.93 ± 4.97 a* | 39.40 ± 2.80 b* |
Bis-GMA (FRC Postec Plus) | 29.64 ± 2.26 c | 31.15 ± 2.61 bc | 28.49 ± 1.86 c | 41.09 ± 4.29 a | 34.44 ± 3.76 b |
Group | C | H2O2 | THF | PY | MP |
---|---|---|---|---|---|
Epoxy (D.T. Light-Post) | 27.81 ± 3.23 c | 29.43 ± 3.58 bc | 29.73 ± 4.60 bc | 41.96 ± 4.45 a* | 34.80 ± 5.07 b |
Bis-GMA (FRC Postec Plus) | 25.05 ± 4.71 c | 26.19 ± 2.36 bc | 26.31 ± 4.51 c | 36.21 ± 5.39 a | 33.04 ± 4.43 b |
Group | C | H2O2 | THF | PY | MP |
---|---|---|---|---|---|
Epoxy (D.T. Light-Post) | 26.33 ± 2.51 c | 28.84 ± 3.86 bc | 28.59 ± 3.17 bc | 39.76 ± 2.37 a* | 31.42 ± 4.15 b |
Bis-GMA (FRC Postec Plus) | 24.22 ± 4.07 c | 25.40 ± 2.18 c | 25.59 ± 2.51 c | 35.26 ± 3.65 a | 31.63 ± 4.97 b |
Group | Adhesive | Mode of Failure Mixed | Cohesive |
---|---|---|---|
Epoxy C | 80 | 20 | 0 |
Epoxy H2O2 | 70 | 30 | 0 |
Epoxy THF | 80 | 20 | 0 |
Epoxy PY | 60 | 40 | 0 |
Epoxy MP | 80 | 20 | 0 |
Bis-GMA C | 80 | 20 | 0 |
Bis-GMA H2O2 | 70 | 30 | 0 |
Bis-GMA THF | 80 | 20 | 0 |
Bis-GMA PY | 80 | 20 | 0 |
Bis-GMA MP | 90 | 10 | 0 |
Group | Adhesive | Mode of Failure Mixed | Cohesive |
---|---|---|---|
Epoxy C | 100 | 0 | 0 |
Epoxy H2O2 | 90 | 10 | 0 |
Epoxy THF | 90 | 10 | 0 |
Epoxy PY | 80 | 10 | 10 |
Epoxy MP | 90 | 10 | 0 |
Bis-GMA C | 80 | 20 | 0 |
Bis-GMA H2O2 | 80 | 20 | 0 |
Bis-GMA THF | 90 | 10 | 0 |
Bis-GMA PY | 90 | 0 | 10 |
Bis-GMA MP | 100 | 0 | 0 |
Group | Adhesive | Mode of Failure Mixed | Cohesive |
---|---|---|---|
Epoxy C | 100 | 0 | 0 |
Epoxy H2O2 | 90 | 10 | 0 |
Epoxy THF | 100 | 0 | 0 |
Epoxy PY | 70 | 10 | 20 |
Epoxy MP | 90 | 10 | 0 |
Bis-GMA C | 100 | 0 | 0 |
Bis-GMA H2O2 | 90 | 10 | 0 |
Bis-GMA THF | 100 | 0 | 0 |
Bis-GMA PY | 100 | 0 | 0 |
Bis-GMA MP | 100 | 0 | 0 |
Group | Ra (µm) |
---|---|
Epoxy C | 514.860 ± 31.801 c |
Epoxy H2O2 | 596.661 ± 32.910 b |
Epoxy THF | 614.874 ± 36.120 b |
Epoxy PY | 704.140 ± 44.637 a |
Epoxy MP | 664.629 ± 37.545 ab |
Group | Ra (µm) |
---|---|
Bis-GMA C | 584.970 ± 22.221 b |
Bis-GMA H2O2 | 585.884 ± 31.036 b |
Bis-GMA THF | 608.670 ± 36.106 b |
Bis-GMA PY | 859.439 ± 30.789 a |
Bis-GMA MP | 621.812 ± 41.610 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prawatvatchara, W.; Angkanawiriyarak, S.; Klaisiri, A.; Sriamporn, T.; Thamrongananskul, N. Effect of Aprotic Solvents on the Microtensile Bond Strength of Composite Core and Fiber-Reinforced Composite Posts. Polymers 2023, 15, 3984. https://doi.org/10.3390/polym15193984
Prawatvatchara W, Angkanawiriyarak S, Klaisiri A, Sriamporn T, Thamrongananskul N. Effect of Aprotic Solvents on the Microtensile Bond Strength of Composite Core and Fiber-Reinforced Composite Posts. Polymers. 2023; 15(19):3984. https://doi.org/10.3390/polym15193984
Chicago/Turabian StylePrawatvatchara, Wisarut, Somphote Angkanawiriyarak, Awiruth Klaisiri, Tool Sriamporn, and Niyom Thamrongananskul. 2023. "Effect of Aprotic Solvents on the Microtensile Bond Strength of Composite Core and Fiber-Reinforced Composite Posts" Polymers 15, no. 19: 3984. https://doi.org/10.3390/polym15193984
APA StylePrawatvatchara, W., Angkanawiriyarak, S., Klaisiri, A., Sriamporn, T., & Thamrongananskul, N. (2023). Effect of Aprotic Solvents on the Microtensile Bond Strength of Composite Core and Fiber-Reinforced Composite Posts. Polymers, 15(19), 3984. https://doi.org/10.3390/polym15193984