Bright and Stable Nanomaterials for Imaging and Sensing
Abstract
:1. Introduction
2. Polymer Chains with Multiple Fluorescent Dyes
3. Polymer Nanoparticles
4. Silica Nanoparticles
5. Emission Enhancement Using Plasmonic Nanoparticles
6. Conclusions and Future Perspectives
Funding
Conflicts of Interest
References
- Kusumi, A.; Tsunoyama, T.A.; Hirosawa, K.M.; Kasai, R.S.; Fujiwara, T.K. Tracking Single Molecules at Work in Living Cells. Nat. Chem. Biol. 2014, 10, 524–532. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, H.; Ogawa, M.; Alford, R.; Choyke, P.L.; Urano, Y. New Strategies for Fluorescent Probe Design in Medical Diagnostic Imaging. Chem. Rev. 2010, 110, 2620–2640. [Google Scholar] [CrossRef] [PubMed]
- Schäferling, M. The Art of Fluorescence Imaging with Chemical Sensors. Angew. Chem. Int. Ed. 2012, 51, 3532–3554. [Google Scholar] [CrossRef] [PubMed]
- Hell, S.W. Far-Field Optical Nanoscopy. Science 2007, 316, 1153–1158. [Google Scholar] [CrossRef] [PubMed]
- Betzig, E.; Patterson, G.H.; Sougrat, R.; Lindwasser, O.W.; Olenych, S.; Bonifacino, J.S.; Davidson, M.W.; Lippincott-Schwartz, J.; Hess, H.F. Imaging Intracellular Fluorescent Proteins at Nanometer Resolution. Science 2006, 313, 1642–1645. [Google Scholar] [CrossRef]
- Rust, M.J.; Bates, M.; Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 2006, 3, 793–796. [Google Scholar] [CrossRef]
- Deschout, H.; Zanacchi, F.C.; Mlodzianoski, M.; Diaspro, A.; Bewersdorf, J.; Hess, S.T.; Braeckmans, K. Precisely and accurately localizing single emitters in Fluorescence Microscopy. Nat. Methods 2014, 11, 253. [Google Scholar] [CrossRef]
- Stennett, E.M.S.; Ciuba, M.A.; Levitus, M. Photophysical processes in Single Molecule Organic Fluorescent Probes. Chem. Soc. Rev. 2014, 43, 1057–1075. [Google Scholar] [CrossRef]
- Wolfbeis, O.S. An Overview of Nanoparticles Commonly Used in Fluorescent Bioimaging. Chem. Soc. Rev. 2015, 44, 4743–4768. [Google Scholar] [CrossRef]
- Howes, P.D.; Chandrawati, R.; Stevens, M.M. Colloidal Nanoparticles as Advanced Biological Sensors. Science 2014, 346, 1247390. [Google Scholar] [CrossRef]
- Algar, W.R.; Massey, M.; Rees, K.; Higgins, R.; Krause, K.D.; Darwish, G.H.; Peveler, W.J.; Xiao, Z.; Tsai, H.-Y.; Gupta, R.; et al. Photoluminescent Nanoparticles for Chemical and Biological Analysis and Imaging. Chem. Rev. 2021, 121, 9243. [Google Scholar] [CrossRef] [PubMed]
- Reisch, A.; Klymchenko, A.S. Fluorescent Polymer Nanoparticles Based on Dyes: Seeking Brighter Tools for Bioimaging. Small 2016, 12, 1968–1992. [Google Scholar] [CrossRef] [PubMed]
- Genovese, D.; Rampazzo, E.; Bonacchi, S.; Montalti, M.; Zaccheroni, N.; Prodi, L. Energy Transfer Processes in Dye-Doped Nanostructures Yield Cooperative And Versatile Fluorescent Probes. Nanoscale 2014, 6, 3022–3036. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.; Fan, W.; Lau, J.; Deng, L.; Shen, Z.; Chen, X. Emerging Blood–Brain-Barrier-Crossing Nanotechnology for Brain Cancer Theranostics. Chem. Soc. Rev. 2019, 48, 2967–3014. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, T.; Baleizão, C.; Farinha, J.P.S. Synthesis and Characterization of Perylenediimide Labeled Core-Shell Hybrid Silica-Polymer Nanoparticles. J. Phys. Chem. C 2009, 113, 18082–18090. [Google Scholar] [CrossRef]
- Relogio, P.; Bathfield, M.; Haftek-Terreau, Z.; Beija, M.; Favier, A.; Giraud-Panis, M.-J.; D’Agosto, F.; Mandrand, B.; Farinha, J.P.S.; Charreyre, M.-T.; et al. Biotin-End-Functionalized Highly Fluorescent Water-Soluble Polymers. Polym. Chem. 2013, 4, 2968. [Google Scholar] [CrossRef]
- Trofymchuk, K.; Reisch, A.; Shulov, I.; Mély, Y.; Klymchenko, A.S. Tuning the Color and Photostability of Perylene Diimides Inside Polymer Nanoparticles: Towards Biodegradable Substitutes of Quantum Dots. Nanoscale 2014, 6, 12934–12942. [Google Scholar] [CrossRef]
- Reisch, A.; Didier, P.; Richert, L.; Oncul, S.; Arntz, Y.; Mély, Y.; Klymchenko, A.S. Collective Fluorescence Switching of Counterion-Assembled Dyes in Polymer Nanoparticles. Nat. Commun. 2014, 5, 4089. [Google Scholar] [CrossRef]
- Li, K.; Liu, B. Polymer-Encapsulated Organic Nanoparticles for Fluorescence and Photoacoustic Imaging. Chem. Soc. Rev. 2014, 43, 6570–6597. [Google Scholar] [CrossRef]
- Zhou, X.B.; Zhao, L.F.; Zhang, K.; Yang, C.J.; Li, S.J.; Kang, X.X.; Li, G.; Wang, Q.; Ji, H.W.; Wu, M.M. Ultrabright AIEdots with tunable narrow emission for multiplexed fluorescence imaging. Chem. Sci. 2022, 14, 113–120. [Google Scholar] [CrossRef]
- Yeow, E.K.L.; Melnikov, S.M.; Bell, T.D.M.; Schryver, F.C.D.; Hofkens, J. Characterizing the Fluorescence Intermittency and Photobleaching Kinetics of Dye Molecules Immobilized on a Glass Surface. J. Phys. Chem. A 2006, 110, 1726–1734. [Google Scholar] [CrossRef] [PubMed]
- Nel, A.E.; Mädler, L.; Velegol, D.; Xia, T.; Hoek, E.M.V.; Somasundaran, P.; Klaessig, F.; Castranova, V.; Thompson, M. Understanding Biophysicochemical Interactions at the Nano–Bio Interface. Nat. Mater. 2009, 8, 543–557. [Google Scholar] [CrossRef] [PubMed]
- Monopoli, M.P.; Åberg, C.; Salvati, A.; Dawson, K.A. Biomolecular Coronas Provide the Biological Identity of Nanosized Materials. Nat. Nanotechnol. 2012, 7, 779–786. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Bai, Y.; Jia, J.; Gao, N.; Li, Y.; Zhang, R.; Jiang, G.; Yan, B. Perturbation of Physiological Systems by Nanoparticles. Chem. Soc. Rev. 2014, 43, 3762–3808. [Google Scholar] [CrossRef]
- Chen, M.; Yin, M. Design and Development of Fluorescent Nanostructures for Bioimaging. Prog. Polym. Sci. 2014, 39, 365–395. [Google Scholar] [CrossRef]
- Montalti, M.; Prodi, L.; Rampazzo, E.; Zaccheroni, N. Dye Doped Silica Nanoparticles as Luminescent Organized Systems for Nanomedicine. Chem. Soc. Rev. 2014, 43, 4243–4268. [Google Scholar] [CrossRef]
- Burns, A.; Ow, H.; Wiesner, U. Fluorescent Core-Shell Silica Nanoparticles: Towards “Lab on a Particle” Architectures for Nanobiotechnology. Chem. Soc. Rev. 2006, 35, 1028–1042. [Google Scholar] [CrossRef]
- Petryayeva, E.; Algar, W.R.; Medintz, I.L. Quantum Dots in Bioanalysis: A Review of Applications across Various Platforms for Fluorescence Spectroscopy and Imaging. Appl. Spectrosc. 2013, 67, 215–252. [Google Scholar] [CrossRef]
- Mei, J.; Leung, N.L.C.; Kwok, R.T.K.; Lam, J.W.Y.; Tang, B.Z. Aggregation-Induced Emission: Together We Shine, United We Soar! Chem. Rev. 2015, 115, 11718–11940. [Google Scholar] [CrossRef]
- Würthner, F. Aggregation-Induced Emission (AIE): A Historical Perspective. Angew. Chem. Int. Ed. 2020, 59, 14192–14196. [Google Scholar] [CrossRef]
- Wang, Y.; Feng, L.; Wang, S. Conjugated Polymer Nanoparticles for Imaging, Cell Activity Regulation, and Therapy. Adv. Funct. Mater. 2019, 29, 1806818. [Google Scholar] [CrossRef]
- Zheng, X.; Kankala, R.K.; Liu, C.G.; Wen, Y.; Wang, S.B.; Chen, A.Z.; Zhang, Y. Tailoring Lanthanide Upconversion Luminescence through Material Designs and Regulation Strategies. Adv. Opt. Mater. 2022, 10, 2200167. [Google Scholar] [CrossRef]
- McVey, B.F.P.; Tilley, R.D. Solution Synthesis, Optical Properties, and Bioimaging Applications of Silicon Nanocrystals. Acc. Chem. Res. 2014, 47, 3045–3051. [Google Scholar] [CrossRef] [PubMed]
- Kesharwani, P.; Jain, K.; Jain, N.K. Dendrimer as Nanocarrier for Drug Delivery. Prog. Polym. Sci. 2014, 39, 268. [Google Scholar] [CrossRef]
- Kuang, Y.; Zhang, K.; Cao, Y.; Chen, X.; Wang, K.; Liu, M.; Pei, R. Hydrophobic IR-780 Dye Encapsulated in CRGD-Conjugated Solid Lipid Nanoparticles for NIR Imaging-Guided Photothermal Therapy. ACS Appl. Mater. Interfaces 2017, 9, 12217–12226. [Google Scholar] [CrossRef] [PubMed]
- Jin, R.; Zeng, C.; Zhou, M.; Chen, Y. Atomically Precise Colloidal Metal Nanoclusters and Nanoparticles: Fundamentals and Opportunities. Chem. Rev. 2016, 116, 10346–10413. [Google Scholar] [CrossRef]
- Casteleiro, B.; Martinho, J.M.G.; Farinha, J.P.S. Encapsulation of Gold Nanoclusters: Stabilization and More. Nanoscale 2021, 13, 17199. [Google Scholar] [CrossRef]
- Han, Y.; Liccardo, L.; Moretti, E.; Zhao, H.G.; Vomiero, A. Synthesis, optical properties and applications of red/near-infrared carbon dots. J. Mater. Chem. C 2022, 10, 11827. [Google Scholar] [CrossRef]
- Santos, C.I.M.; Rodriguez-Perez, L.; Goncalves, G.; Dias, C.J.; Monteiro, F.; Faustino, M.D.F.; Vieira, S.I.; Helguero, L.A.; Herranz, M.A.; Martin, N.; et al. Enhanced Photodynamic Therapy Effects of Graphene Quantum Dots Conjugated with Aminoporphyrin. ACS Appl. Nano Mater. 2021, 4, 13079–13089. [Google Scholar] [CrossRef]
- Michalet, X.; Pinaud, F.F.; Bentolila, L.A.; Tsay, J.M.; Doose, S.; Li, J.J.; Sundaresan, G.; Wu, A.M.; Gambhir, S.S.; Weiss, S. Quantum Dots for Live Cells, In Vivo Imaging, and Diagnostics. Science 2005, 307, 538–544. [Google Scholar] [CrossRef]
- Chen, O.; Zhao, J.; Chauhan, V.P.; Cui, J.; Wong, C.; Harris, D.K.; Wei, H.; Han, H.-S.; Fukumura, D.; Jain, R.K.; et al. Compact High-Quality CdSe–CdS Core–Shell Nanocrystals with Narrow Emission Linewidths and Suppressed Blinking. Nat. Mater. 2013, 12, 445–451. [Google Scholar] [CrossRef] [PubMed]
- Gnach, A.; Bednarkiewicz, A. Lanthanide-Doped Up-Converting Nanoparticles: Merits and Challenges. Nano Today 2012, 7, 532–563. [Google Scholar] [CrossRef]
- Liu, Y.; Tu, D.; Zhu, H.; Chen, X. Lanthanide-Doped Luminescent Nanoprobes: Controlled Synthesis, Optical Spectroscopy, and Bioapplications. Chem. Soc. Rev. 2013, 42, 6924. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, X.; Tao, L.; Chi, Z.; Xu, J.; Wei, Y. Aggregation Induced Emission-Based Fluorescent Nanoparticles: Fabrication Methodologies and Biomedical Applications. J. Mater. Chem. B 2014, 2, 4398–4414. [Google Scholar] [CrossRef]
- Feng, G.; Liu, B. Aggregation-Induced Emission (AIE) Dots: Emerging Theranostic Nanolights. Acc. Chem. Res. 2018, 51, 1404–1414. [Google Scholar] [CrossRef] [PubMed]
- Hola, K.; Zhang, Y.; Wang, Y.; Giannelis, E.P.; Zboril, R.; Rogach, A.L. Carbon dots—Emerging Light Emitters for Bioimaging, Cancer Therapy and Optoelectronics. Nano Today 2014, 9, 590–603. [Google Scholar] [CrossRef]
- Kang, Z.; Lee, S.-T. Carbon Dots: Advances in Nanocarbon Applications. Nanoscale 2019, 11, 19214–19224. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, E. Metal Nanoclusters: New Fluorescent Probes for Sensors and Bioimaging. Nano Today 2014, 9, 132–157. [Google Scholar] [CrossRef]
- Shang, L.; Xu, J.; Nienhaus, G.U. Recent Advances in Synthesizing Metal Nanocluster-Based Nanocomposites for Application in Sensing, Imaging and Catalysis. Nano Today 2019, 28, 100767. [Google Scholar] [CrossRef]
- Peng, H.-S.; Chiu, D.T. Soft Fluorescent Nanomaterials for Biological and Biomedical Imaging. Chem. Soc. Rev. 2015, 44, 4699–4722. [Google Scholar] [CrossRef]
- Ribeiro, T.; Baleizão, C.; Farinha, J.P.S. Artefact-free Evaluation of Metal Enhanced Fluorescence in Silica Coated Gold Nanoparticles. Sci. Rep. 2017, 7, 2440. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Govorov, A.O.; Dulka, J.; Kotov, N.A. Bioconjugates of CdTe Nanowires and Au Nanoparticles: Plasmon–Exciton Interactions, Luminescence Enhancement, and Collective Effects. Nano Lett. 2004, 4, 2323. [Google Scholar] [CrossRef]
- Kumar, V.; Nisika, N.; Kumar, M. Modified Absorption and Emission Properties Leading to Intriguing Applications in Plasmonic-Excitonic Nanostructures. Adv. Opt. Mater. 2020, 9, 2001150. [Google Scholar] [CrossRef]
- Li, J.F.; Li, C.Y.; Aroca, R.F. Plasmon-enhanced fluorescence spectroscopy. Chem. Soc. Rev. 2017, 46, 3962. [Google Scholar] [CrossRef] [PubMed]
- Luan, J.; Seth, A.; Gupta, R.; Wang, Z.; Rathi, P.; Cao, S.; Derami, H.G.; Tang, R.; Xu, B.; Achilefu, S.; et al. Ultrabright Fluorescent Nanoscale Labels for the Femtomolar Detection of Analytes with Standard Bioassays. Nat. Biomed. Eng. 2020, 4, 518. [Google Scholar] [CrossRef] [PubMed]
- Jeong, Y.; Kook, Y.M.; Lee, K.; Koh, W.G. Metal enhanced fluorescence (MEF) for biosensors: General approaches and a review of recent developments. Biosens. Bioelectron. 2018, 111, 102–116. [Google Scholar] [CrossRef]
- Favier, A.; Charreyre, M.-T. Experimental Requirements for an Efficient Control of Free-Radical Polymerizations via the Reversible Addition-Fragmentation Chain Transfer (RAFT) Process. Macromol. Rapid Commun. 2006, 27, 653–692. [Google Scholar] [CrossRef]
- Alves, S.; Baleizao, C.; Farinha, J.P.S. A New Optical Boron Detection Method. Anal. Methods 2014, 6, 5450–5453. [Google Scholar] [CrossRef]
- Areias, L.R.P.; da Costa, A.P.; Alves, S.P.C.; Baleizão, C.; Farinha, J.P.S. Optical Sensing of Aqueous Boron Based on Polymeric Hydroxytriphenylene Derivatives. RSC Adv. 2017, 7, 4627. [Google Scholar] [CrossRef]
- Farinha, J.P.S.; Alves, S.; Baleizão, C. Optical Sensors for Boron Detection Based on the Use of 2,3,6,7,10,11-Hexahydroxytriphenylene or Its Derivatives. French Patent PCT/PT2014/000007, 4 February 2014. [Google Scholar]
- Farinha, J.P.S.; Alves, S.; Baleizão, C. Sensores Óticos para Deteção de Boro Baseados na Utilização de 2,3,6,7,10,11-Hexahidroxitrifenileno ou seus Derivados. French Patent PT106766, 6 February 2013. [Google Scholar]
- Beija, M.; Afonso, C.A.M.; Farinha, J.P.S.; Charreyre, M.T.; Martinho, J.M.G. Novel Malachite Green- and Rhodamine B-Labeled Cationic Chain Transfer Agents for RAFT Polymerization. Polymer 2011, 52, 5933–5946. [Google Scholar] [CrossRef]
- Bou, S.; Klymchenko, A.S.; Collot, M. Fluorescent labeling of biocompatible block copolymers: Synthetic strategies and applications in bioimaging. Mater. Adv. 2021, 2, 3213. [Google Scholar] [CrossRef] [PubMed]
- Marcelo, G.; Prazeres, T.; Charreyre, M.-T.; Martinho, J.M.G.; Farinha, J.P.S. Thermoresponsive Micelles of Poly(decylacrylamide-b-diethylacrylamide) in Water. Macromolecules 2010, 43, 501–510. [Google Scholar] [CrossRef]
- Prazeres, T.J.V.; Beija, M.; Charreyre, M.-T.; Farinha, J.P.S.; Martinho, J.M.G. RAFT Polymerization and Self-Assembly of Thermoresponsive Poly(N-decylacrylamide)-b-poly(N,N-diethylacrylamide) Block Copolymers Bearing a Phenanthrene Fluorescent alfa-End Group. Polymer 2010, 51, 355–367. [Google Scholar] [CrossRef]
- Romão, R.I.S.; Beija, M.; Charreyre, M.-T.; Farinha, J.P.S.; Gonçalves da Silva, A.M.P.S.; Martinho, J.M.G. Schizophrenic Behavior of a Thermoresponsive Double Hydrophilic Diblock Copolymer at the Air-Water Interface. Langmuir 2010, 26, 1807–1815. [Google Scholar] [CrossRef]
- Duhamel, J. New Insights in the Study of Pyrene Excimer Fluorescence to Characterize Macromolecules and their Supramolecular Assemblies in Solution. Langmuir 2012, 28, 6527–6538. [Google Scholar] [CrossRef]
- Besford, Q.A.; Schubotz, S.; Chae, S.; Özdabak Sert, A.B.; Weiss, A.C.G.; Auernhammer, G.K.; Uhlmann, P.; Farinha, J.P.S.; Fery, A. Molecular Transport within Polymer Brushes: A FRET View at Aqueous Interfaces. Molecules 2022, 27, 3043. [Google Scholar] [CrossRef]
- Besford, Q.A.; Merlitz, H.; Schubotz, S.; Yong, S.; Chae, S.; Schnepf, M.J.; Weiss, A.C.G.; Auernhammer, G.K.; Sommer, J.-U.; Uhlmann, P.; et al. Mechanofluorescent Polymer Brush Surfaces that Spatially Resolve Surface Solvation. ACS Nano 2022, 16, 3383. [Google Scholar] [CrossRef]
- Relógio, P.; Charreyre, M.-T.; Farinha, J.P.S.; Martinho, J.G.M.; Pichot, C. Well-Defined Polymer Precursors Synthesized by RAFT Polymerization of N,N-dimethylacrylamide/N-acryloxysuccinimide: Random and Block Copolymers. Polymer 2004, 45, 8639. [Google Scholar] [CrossRef]
- Relógio, P.; Martinho, J.G.M.; Farinha, J.P.S. Effect of Surfactant on the Intra- and Intermolecular Association of Hydrophobically Modified Poly(N,N-dimethylacrylamide). Macromolecules 2005, 38, 10799. [Google Scholar] [CrossRef]
- Farinha, J.P.S.; Relógio, P.; Charreyre, M.-T.; Prazeres, T.; Martinho, J.G.M. Understanding and Avoiding Fluorescence Quenching in Polymers Obtained by RAFT. Macromolecules 2007, 40, 4680. [Google Scholar] [CrossRef]
- Charreyre, M.-T.; Farinha, J.P.S.; Mandrand, B.; Martinho, J.M.G.; Relógio, P. Fluorescent Polymers Soluble in an Aqueous Solution and Preparation Thereof. U.S. Patent 8,133,411B2, 13 March 2012. [Google Scholar]
- Charreyre, M.-T.; Farinha, J.P.S.; Mandrand, B.; Martinho, J.M.G.; Relógio, P. Fluorescent Polymer Soluble in an Aqueous Solution, Useful in Medical Diagnostics or Therapeutics to Detect a Target Molecule, Comprises Fluorophores, Which Are Distributed on a Polymer and Exhibit Specific Properties. WO2007003781, 30 June 2006; U.S. Patent 2,008,290,321, 30 June 2006. EP1899434, 30 June 2006. [Google Scholar]
- Charreyre, M.-T.; Mandrand, B.; Martinho, J.M.G.; Relógio, P.; Farinha, J.P.S. New Fluorescent Polymer Soluble in Water, Useful for Delivering Pharmaceuticals and for Diagnosis, Comprises Many Fluorophores Distributed over the Polymer Chain. FR2887892, 2007. [Google Scholar]
- Daniel, M.; Dubreil, L.; Fleurisson, R.; Judor, J.-P.; Bresson, T.; Brouard, S.; Favier, A.; Charreyre, M.-T.; Conchon, S. Multiscale fluorescent tracking of immune cells in the liver with a highly biocompatible far-red emitting polymer probe. Sci. Rep. 2020, 10, 17546. [Google Scholar] [CrossRef]
- Berki, T.; Bakunts, A.; Duret, D.; Fabre, L.; Ladavière, C.; Orsi, A.; Charreyre, M.-T.; Raimondi, A.; van Anken, E.; Favier, A. Advanced Fluorescent Polymer Probes for the Site-Specific Labeling of Proteins in Live Cells Using the HaloTag Technology. ACS Omega 2019, 4, 12841–12847. [Google Scholar] [CrossRef] [PubMed]
- Fabre, L.; Rousset, C.; Monier, K.; Da Cruz-Boisson, F.; Bouvet, P.; Charreyre, M.T.; Delair, T.; Fleury, E.; Favier, A. Fluorescent Polymer-AS1411-Aptamer Probe for dSTORM Super-Resolution Imaging of Endogenous Nucleolin. Biomacromolecules 2022, 23, 2302–2314. [Google Scholar] [CrossRef]
- Wu, C.; Chiu, D.T. Highly Fluorescent Semiconducting Polymer Dots for Biology and Medicine. Angew. Chem. Int. Ed. 2013, 52, 3086. [Google Scholar] [CrossRef]
- Pecher, J.; Mecking, S. Nanoparticles of Conjugated Polymers. Chem. Rev. 2010, 110, 6260–6279. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.H.; Zhu, C.L.; Yuan, H.X.; Liu, L.B.; Lv, F.T.; Wang, S. Conjugated polymer nanoparticles: Preparation, properties, functionalization and biological applications. Chem. Soc. Rev. 2013, 42, 6620–6633. [Google Scholar] [CrossRef]
- Awada, A.; Potter, M.; Wijerathne, D.; Gauld, J.W.; Mutus, B.; Rondeau-Gagne, S. Conjugated Polymer Nanoparticles as a Universal High-Affinity Probe for the Selective Detection of Microplastics. ACS Appl. Mater. Interfaces 2022, 14, 46562–46568. [Google Scholar] [CrossRef]
- Geng, J.; Li, K.; Qin, W.; Ma, L.; Gurzadyan, G.G.; Tang, B.Z.; Liu, B. Eccentric Loading of Fluorogen with Aggregation-Induced Emission in PLGA Matrix Increases Nanoparticle Fluorescence Quantum Yield for Targeted Cellular Imaging. Small 2013, 9, 2012–2019. [Google Scholar] [CrossRef]
- Lepeltier, E.; Bourgaux, C.; Couvreur, P. Nanoprecipitation and the Ouzo Effect: Application to Drug Delivery Devices. Adv. Drug Deliv. Rev. 2014, 71, 86–97. [Google Scholar] [CrossRef]
- Reisch, A.; Runser, A.; Arntz, Y.; Mély, Y.; Klymchenko, A.S. Charge-Controlled Nanoprecipitation as a Modular Approach to Ultrasmall Polymer Nanocarriers: Making Bright and Stable Nanoparticles. ACS Nano 2015, 9, 5104–5116. [Google Scholar] [CrossRef] [PubMed]
- Bae, Y.H.; Yin, H. Stability Issues of Polymeric Micelles. J. Control Release 2008, 131, 2–4. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Yuan, Y.; Jiang, R.; Fu, N.; Lu, X.; Tian, C.; Hu, W.; Fan, Q.; Huang, W. Homogeneous Near-Infrared Emissive Polymeric Nanoparticles Based on Amphiphilic Diblock Copolymers with Perylene Diimide and PEG Pendants: Self-Assembly Behavior and Cellular Imaging Application. Polym. Chem. 2014, 5, 1372–1380. [Google Scholar] [CrossRef]
- Afonso, C.A.M.; Farinha, J.P.S. Synthesis of 4-aryl-butylamine Fluorescent Probes. J. Chem. Res. 2002, 11, 584–587. [Google Scholar] [CrossRef]
- Beija, M.; Charreyre, M.T.; Martinho, J.M.G. Dye-labelled polymer chains at specific sites: Synthesis by living/controlled polymerization. Prog. Polym. Sci. 2011, 36, 568–602. [Google Scholar] [CrossRef]
- Piçarra, S.; Fidalgo, A.; Fedorov, A.; Martinho, J.M.G.; Farinha, J.P.S. Smart Hybrid Polymer Nanoparticles for High Performance Water-borne Coatings. Langmuir 2014, 30, 12345–12353. [Google Scholar] [CrossRef]
- Winnik, M.A. Latex film formation. Curr. Opin. Colloid Interface Sci. 1997, 2, 192–199. [Google Scholar] [CrossRef]
- Martinho, J.M.G.; Farinha, J.P.S. Resonance Energy Transfer in Polymer Nanodomains. J. Phys. Chem. C 2008, 112, 10591. [Google Scholar]
- Soleimani, M.; Haley, J.C.; Majonis, D.; Guerin, G.; Lau, W.; Winnik, M.A. Smart Polymer Nanoparticles Designed for Environmentally Compliant Coatings. J. Am. Chem. Soc. 2011, 133, 11299–11307. [Google Scholar] [CrossRef]
- Landfester, K.; Musyanovych, A.; Mailender, V. From Polymeric Particles to Multifunctional Nanocapsules for Biomedical Applications Using the Miniemulsion Process. J. Polym. Sci. Part A Polym. Chem. 2010, 48, 493–515. [Google Scholar] [CrossRef]
- Farinha, J.P.S.; Augusto, V.; Baleizão, C.; Berberan e Santos, M. Method for Producing Polymeric Nano-Particles and Micro-Particles with Encapsulated Fullerenes for Application in Optical Sensors of Temperature and Molecular Oxygen Content. French Patent PT104172, 2010. [Google Scholar]
- Antonietti, M.; Basten, R.; Lohmann, S. Polymerization in Microemulsions—A New Approach to Ultrafine, Highly Functionalized Polymer Dispersions. Macromol. Chem. Phys. 1995, 196, 441–466. [Google Scholar] [CrossRef]
- Augusto, V.; Baleizão, C.; Berberan-Santos, M.N.; Farinha, J.P.S. Oxygen-Proof Fluorescence Temperature Sensing with Pristine C70 Encapsulated in Polymer Nanoparticles. J. Mater. Chem. 2010, 20, 1192–1197. [Google Scholar] [CrossRef]
- Sauer, R.; Turshatov, A.; Baluschev, S.; Landfester, K. One-Pot Production of Fluorescent Surface-Labeled Polymeric Nanoparticles via Miniemulsion Polymerization with Bodipy Surfmers. Macromolecules 2012, 45, 3787–3796. [Google Scholar] [CrossRef]
- Monguzzi, A.; Frigoli, M.; Larpent, C.; Meinardi, F. Laser Dye Doped Nanoparticles for Highly Photostable Optical Nanoamplifiers. RSC Adv. 2012, 2, 11731. [Google Scholar] [CrossRef]
- Derry, M.J.; Fielding, L.A.; Armes, S.P. Polymerization-Induced Self-Assembly of Block Copolymer Nanoparticles via RAFT Non-Aqueous Dispersion Polymerization. Prog. Polym. Sci. 2016, 52, 1–18. [Google Scholar] [CrossRef]
- Gao, H.; Zhao, Y.; Fu, S.; Li, B.; Li, M. Preparation of a Novel Polymeric Fluorescent Nanoparticle. Colloid Polym. Sci. 2002, 280, 653–660. [Google Scholar] [CrossRef]
- Damsongsang, P.; Hoven, V.P.; Yusa, S.I. Core-functionalized nanoaggregates: Preparation via polymerization-induced self-assembly and their applications. New J. Chem. 2021, 45, 12776–12791. [Google Scholar] [CrossRef]
- Farinha, J.P.S.; Wu, J.; Winnik, M.A.; Farwaha, R.; Rademacher, J. Polymer Diffusion in Gel-Containing Poly(vinyl acetate-co-dibutyl daleate) Latex Films. Macromolecules 2005, 38, 4393. [Google Scholar] [CrossRef]
- Rosiuk, V.; Runser, A.; Klymchenko, A.; Reisch, A. Controlling Size and Fluorescence of Dye-Loaded Polymer Nanoparticles through Polymer Design. Langmuir 2019, 35, 7009–7017. [Google Scholar] [CrossRef]
- Caltagirone, C.; Bettoschi, A.; Garau, A.; Montis, R. Silica-Based Nanoparticles: A Versatile Tool for the Development of Efficient Imaging Agents. Chem. Soc. Rev. 2015, 44, 4645–4671. [Google Scholar] [CrossRef]
- Yang, S.B.; Li, Y.S. Fluorescent hybrid silica nanoparticles and their biomedical applications. Wiley Interdiscip. Rev.—Nanomed. Nanobiotechnol. 2020, 12, e1603. [Google Scholar] [CrossRef]
- Stöber, W.; Fink, A.; Bohn, E. Controlled Growth of Monodisperse Silica Spheres in the Micron Size Range. J. Colloid Interface Sci. 1968, 26, 62–69. [Google Scholar] [CrossRef]
- Hoffmann, F.; Cornelius, M.; Morell, J.; Fröba, M. Silica-Based Mesoporous Organic–Inorganic Hybrid Materials. Angew. Chem. Int. Ed. 2006, 45, 3216–3251. [Google Scholar] [CrossRef]
- Yan, J.; Estévez, M.C.; Smith, J.E.; Wang, K.; He, X.; Wang, L.; Tan, W. Dye-doped Nanoparticles for Bioanalysis. Nano Today 2007, 2, 44–50. [Google Scholar] [CrossRef]
- Crucho, C.I.C.; Baleizão, C.; Farinha, J.P.S. Functional Group Coverage and Conversion Quantification in Nanostructured Silica by 1H-NMR. Anal. Chem. 2017, 89, 681–687. [Google Scholar] [CrossRef]
- Santiago, A.M.; Ribeiro, T.; Rodrigues, A.S.; Ribeiro, B.; Frade, R.F.M.; Baleizão, C.; Farinha, J.P.S. Multifunctional Hybrid Silica Nanoparticles with a Fluorescent Core and Active Targeting Shell for Fluorescence Imaging Biodiagnostic Applications. Eur. J. Inorg. Chem. 2015, 27, 4579–4587. [Google Scholar] [CrossRef]
- Vouriot, E.; Bihannic, I.; Beaussart, A.; Waldvogel, Y.; Razafitianamaharavo, A.; Ribeiro, T.; Farinha, J.P.S.; Beloin, C.; Duval, J.F.L. Electrophoresis as a Simple Method to Detect Deleterious Actions of Engineered Nanoparticles on Living Cells. Environ. Chem. 2020, 17, 39. [Google Scholar] [CrossRef]
- Ribeiro, T.; Raja, S.; Rodrigues, A.S.; Fernandes, F.; Baleizão, C.; Farinha, J.P.S. NIR and Visible Perylenediimide-Silica Nanoparticles for Laser Scanning Bio-imaging. Dye. Pigment. 2014, 110, 227–234. [Google Scholar] [CrossRef]
- Tavares, M.T.; Oliveira, M.B.; Mano, J.F.; Farinha, J.P.S.; Baleizão, C. Bioactive Silica Nanoparticles with Calcium and Phosphate for Single Dose Osteogenic Differentiation. Mater. Sci. Eng. C 2020, 107, 110348. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, J.L.M.; Baleizão, C.; Farinha, J.P.S. Smart Porous Silica–Polymer Nanomaterials for Theranostics. In Soft Matter for Biomedical Applications, 1st ed.; Royal Society of Chemistry: London, UK, 2021. [Google Scholar] [CrossRef]
- Benezra, M.; Penate-Medina, O.; Zanzonico, P.B.; Schaer, D.; Ow, H.; Burns, A.; DeStanchina, E.; Longo, V.; Herz, E.; Iyer, S.; et al. Multimodal Silica Nanoparticles are Effective Cancer-Targeted Probes in a Model of Human Melanoma. J. Clin. Investig. 2011, 121, 2768–2780. [Google Scholar] [CrossRef] [PubMed]
- Croissant, J.G.; Fatieiev, Y.; Khashab, N.M. Degradability and Clearance of Silicon, Organosilica, Silsesquioxane, Silica Mixed Oxide, and Mesoporous Silica Nanoparticles. Adv. Mater. 2017, 29, 1604634. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.; Ito, S.; Yoshino, F.; Suzuki, Y.; Zhao, L.; Komatsu, N. Polyglycerol Grafting Shields Nanoparticles from Protein Corona Formation to Avoid Macrophage Uptake. ACS Nano 2020, 14, 7216–7226. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, T.; Fedorov, A.; Baleizão, C.; Farinha, J.P.S. Formation of Hybrid Films from Perylenediimide-Labeled Core-Shell Silica-Polymer Nanoparticles. J. Colloid Interface Sci. 2013, 401, 14–22. [Google Scholar] [CrossRef]
- Ribeiro, T.; Raja, S.; Rodrigues, A.S.; Fernandes, F.; Baleizão, C.; Farinha, J.P.S. High Performance NIR Fluorescent Silica Nanoparticles for Bioimaging. RSC Adv. 2013, 3, 9171–9174. [Google Scholar] [CrossRef]
- Rampazzo, E.; Genovese, D.; Palomba, F.; Prodi, L.; Zaccheroni, N. NIR-Fluorescent Dye Doped Silica Nanoparticles for in Vivo Imaging, Sensing and Theranostic. Methods Appl. Fluoresc. 2018, 6, 022002. [Google Scholar] [CrossRef]
- Genovese, D.; Bonacchi, S.; Juris, R.; Montalti, M.; Prodi, L.; Rampazzo, E.; Zaccheroni, N. Prevention of Self-Quenching in Fluorescent Silica Nanoparticles by Efficient Energy Transfer. Angew. Chem. Int. Ed. 2013, 52, 5965–5968. [Google Scholar] [CrossRef]
- Yao, G.; Wang, L.; Wu, Y.; Smith, J.; Xu, J.; Zhao, W.; Lee, E.; Tan, W. FloDots: Luminescent Nanoparticles. Anal. Bioanal. Chem. 2006, 385, 518–524. [Google Scholar] [CrossRef]
- Ambrogio, M.W.; Thomas, C.R.; Zhao, Y.-L.; Zink, J.I.; Stoddart, J.F. Mechanized Silica Nanoparticles: A New Frontier in Theranostic Nanomedicine. Acc. Chem. Res. 2011, 44, 903–913. [Google Scholar] [CrossRef]
- Cang, H.; Labno, A.; Lu, C.; Yin, X.; Liu, M.; Gladden, C.; Liu, Y.; Zhang, X. Probing the Electromagnetic Field of a 15-Nanometre Hotspot by Single Molecule Imaging. Nature 2011, 469, 385–388. [Google Scholar] [CrossRef]
- Hildebrandt, N.; Lim, M.; Kim, N.; Choi, D.Y.; Nam, J.-M. Plasmonic quenching and enhancement: Metal–quantum dot nanohybrids for fluorescence biosensing. Chem. Commun. 2023, 59, 2352. [Google Scholar] [CrossRef] [PubMed]
- Khatua, S.; Paulo, P.M.R.; Yuan, H.; Gupta, A.; Zijlstra, P.; Orrit, M. Resonant Plasmonic Enhancement of Single-Molecule Fluorescence by Individual Gold Nanorods. ACS Nano 2014, 8, 4440–4449. [Google Scholar] [CrossRef] [PubMed]
- Anger, P.; Bharadwaj, P.; Novotny, L. Enhancement and Quenching of Single-Molecule Fluorescence. Phys. Rev. Lett. 2006, 96, 113002. [Google Scholar] [CrossRef] [PubMed]
- Abadeer, N.S.; Brennan, M.R.; Wilson, W.L.; Murphy, C.J. Distance and Plasmon Wavelength Dependent Fluorescence of Molecules Bound to Silica-Coated Gold Nanorods. ACS Nano 2014, 8, 8392–8406. [Google Scholar] [CrossRef]
- Vukovic, S.; Corni, S.; Mennucci, B. Fluorescence Enhancement of Chromophores Close to Metal Nanoparticles. Optimal Setup Revealed by the Polarizable Continuum Model. J. Phys. Chem. C 2008, 113, 121–133. [Google Scholar] [CrossRef]
- Ribeiro, T.; Prazeres, T.; Moffitt, M.; Farinha, J.P.S. Enhanced Photoluminescence from Micellar Assemblies of Cadmium Sulfide Quantum Dots and Gold Nanoparticles. J. Phys. Chem. C 2013, 117, 3122–3133. [Google Scholar] [CrossRef]
- Wang, L.; Song, Q.; Liu, Q.; He, D.; Ouyang, J. Plasmon-Enhanced Fluorescence-Based Core-Shell Gold Nanorods as a Near-IR Fluorescent Turn-On Sensor for the Highly Sensitive Detection of Pyrophosphate in Aqueous Solution. Adv. Funct. Mater. 2015, 25, 7017–7027. [Google Scholar] [CrossRef]
- Lin, H.-H.; Chen, I.-C. Study of the Interaction between Gold Nanoparticles and Rose Bengal Fluorophores with Silica Spacers by Time-Resolved Fluorescence Spectroscopy. J. Phys. Chem. C 2015, 119, 26663–26671. [Google Scholar] [CrossRef]
- Fu, Y.; Zhang, J.; Lakowicz, J.R. Plasmonic Enhancement of Single-Molecule Fluorescence Near a Silver Nanoparticle. J. Fluoresc. 2007, 17, 811–816. [Google Scholar] [CrossRef]
- Hanske, C.; Sanz-Ortiz, M.N.; Liz-Marzan, L.M. Silica-Coated Plasmonic Metal Nanoparticles in Action. Adv. Mater. 2018, 30, 1707003. [Google Scholar] [CrossRef]
- Reineck, P.; Gómez, D.; Ng, S.H.; Karg, M.; Bell, T.; Mulvaney, P.; Bach, U. Distance and Wavelength Dependent Quenching of Molecular Fluorescence by Au@SiO2 Core–Shell Nanoparticles. ACS Nano 2013, 7, 6636–6648. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, S.; Lee, J.B.; Valappil, N.V.; Luo, D.; Menon, V.M. Investigating the Distance Limit of a Metal Nanoparticle Based Spectroscopic Ruler. Biomed. Opt. Express 2011, 2, 1727–1733. [Google Scholar] [CrossRef] [PubMed]
- Marcelo, G.; Burns, F.; Ribeiro, T.; Martinho, J.M.G.; Tarazona, M.P.; Saiz, E.; Moffitt, M.G.; Farinha, J.P.S. Versatile Tetrablock Copolymer Scaffold for Hierarchical Colloidal Nanoparticle Assemblies: Synthesis, Characterization, and Molecular Dynamics Simulation. Langmuir 2017, 33, 8201–8212. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Ma, N.; Tang, F.; Cui, Q.; He, F.; Li, L. pH- and Glucose-Responsive Core–Shell Hybrid Nanoparticles with Controllable Metal-Enhanced Fluorescence Effects. ACS Appl. Mater. Interfaces 2012, 4, 1747–1751. [Google Scholar] [CrossRef] [PubMed]
- Tang, F.; Ma, N.; Tong, L.; He, F.; Li, L. Control of Metal-Enhanced Fluorescence with pH- and Thermoresponsive Hybrid Microgels. Langmuir 2011, 28, 883–888. [Google Scholar] [CrossRef]
- Guerrero-Martínez, A.; Pérez-Juste, J.; Liz-Marzán, L.M. Recent Progress on Silica Coating of Nanoparticles and Related Nanomaterials. Adv. Mater. 2010, 22, 1182–1195. [Google Scholar] [CrossRef]
- Choi, J.H.; Lim, J.; Shin, M.; Paek, S.H.; Choi, J.W. CRISPR-Cas12a-Based Nucleic Acid Amplification-Free DNA Biosensor via Au Nanoparticle-Assisted Metal-Enhanced Fluorescence and Colorimetric Analysis. Nano Lett. 2021, 21, 693–699. [Google Scholar] [CrossRef]
- Sergeyeva, T.; Yarynka, D.; Lytvyn, V.; Demydov, P.; Lopatynskyi, A.; Stepanenko, Y.; Brovko, O.; Pinchuk, A.; Chegel, V. Highly-selective and sensitive plasmon-enhanced fluorescence sensor of aflatoxins. Analyst 2022, 147, 1135–1143. [Google Scholar] [CrossRef]
- Ganesh, M.K.; Rai, A.; Battampara, P.; Reddy, R.; Bhaskar, S.; Reddy, N.; Ramamurthy, S.S. Optical coupling of bio-inspired mustard protein-based bimetallic nanohybrids with propagating surface plasmon polaritons for femtomolar nitrite ion sensing: Cellphone-based portable detection device. Nano-Struct. Nano-Objects 2023, 35, 101025. [Google Scholar] [CrossRef]
- Casteleiro, B.; Ribeiro, T.; Mariz, I.; Martinho, J.M.G.; Farinha, J.P.S. Encapsulation of gold nanoclusters by photo-initiated miniemulsion polymerization. Colloids Surf. A Physicochem. Eng. Asp. 2022, 648, 129410. [Google Scholar] [CrossRef]
- Casteleiro, B.; Martinho, J.M.G.; Farinha, J.P.S. Interaction between Gold Nanoclusters and Gold Nanoparticles encapsulated in Polymer Nanoparticles. Colloid Interface Sci. Commun. 2023, 52, 100694. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farinha, J.P.S. Bright and Stable Nanomaterials for Imaging and Sensing. Polymers 2023, 15, 3935. https://doi.org/10.3390/polym15193935
Farinha JPS. Bright and Stable Nanomaterials for Imaging and Sensing. Polymers. 2023; 15(19):3935. https://doi.org/10.3390/polym15193935
Chicago/Turabian StyleFarinha, José Paulo Sequeira. 2023. "Bright and Stable Nanomaterials for Imaging and Sensing" Polymers 15, no. 19: 3935. https://doi.org/10.3390/polym15193935
APA StyleFarinha, J. P. S. (2023). Bright and Stable Nanomaterials for Imaging and Sensing. Polymers, 15(19), 3935. https://doi.org/10.3390/polym15193935