Facile Preparation of Carbon Nanotubes/Cellulose Nanofibrils/Manganese Dioxide Nanowires Electrode for Improved Solid-Sate Supercapacitor Performances
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methodology
2.2.1. Preparation of CNF Dispersion
2.2.2. Preparation of CNT Dispersion
2.2.3. Synthesis of MnO2 NWs
2.2.4. Fabrication of CNT/CNF Electrode and CNT/CNF-MnO2 NWs Electrode
2.3. Characterisation
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Alhebshi, N.A.; Salah, N.; Hussain, H.; Salah, Y.N.; Yin, J. Structural and Electrochemical Properties of Physically and Chemically Activated Carbon Nanoparticles for Supercapacitors. Nanomaterials 2021, 12, 122. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.; Cui, D.; Ma, J.; Chu, L.; Zhao, X.; Song, H.; Liu, H.; Liu, T.; Wang, N.; Guo, Z. Energy Conversion Technologies towards Self-Powered Electrochemical Energy Storage Systems: The State of the Art and Perspectives. J. Mater. Chem. A Mater. 2017, 5, 1873–1894. [Google Scholar] [CrossRef]
- Olabi, A.G.; Abbas, Q.; Al Makky, A.; Abdelkareem, M.A. Supercapacitors as next Generation Energy Storage Devices: Properties and Applications. Energy 2022, 248, 123617. [Google Scholar] [CrossRef]
- Kunhikrishnan, L.; Shanmugham, R. High Electrochemical Performance of Morphologically Controlled Cobalt Oxide for Supercapacitor Application. Mater. Charact. 2021, 177, 111160. [Google Scholar] [CrossRef]
- Safaei, J.; Mohamed, N.A.; Mohamad Noh, M.F.; Soh, M.F.; Ludin, N.A.; Ibrahim, M.A.; Roslam Wan Isahak, W.N.; Mat Teridi, M.A. Graphitic Carbon Nitride (g-C3N4 ) Electrodes for Energy Conversion and Storage: A Review on Photoelectrochemical Water Splitting, Solar Cells and Supercapacitors. J. Mater. Chem. A Mater. 2018, 6, 22346–22380. [Google Scholar] [CrossRef]
- Zhang, C.; Zeng, J.; Xu, C.; Gao, T.; Wang, X. Electric Double Layer Capacitors Based on Porous Three-Dimensional Graphene Materials for Energy Storage. J. Electron. Mater. 2021, 50, 3043–3063. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, X.; Han, Y.; Li, T. Flexible Supercapacitor: Overview and Outlooks. J. Energy Storage 2021, 42, 103053. [Google Scholar] [CrossRef]
- Fan, X.; Zhong, C.; Liu, J.; Ding, J.; Deng, Y.; Han, X.; Zhang, L.; Hu, W.; Wilkinson, D.P.; Zhang, J. Opportunities of Flexible and Portable Electrochemical Devices for Energy Storage: Expanding the Spotlight onto Semi-Solid/Solid Electrolytes. Chem. Rev. 2022, 122, 17155–17239. [Google Scholar] [CrossRef]
- Zhang, Y.; Mei, H.; Cao, Y.; Yan, X.; Yan, J.; Gao, H.; Luo, H.; Wang, S.; Jia, X.; Kachalova, L.; et al. Recent Advances and Challenges of Electrode Materials for Flexible Supercapacitors. Coord. Chem. Rev. 2021, 438, 213910. [Google Scholar] [CrossRef]
- Sahoo, S.; Kumar, R.; Joanni, E.; Singh, R.K.; Shim, J.J. Advances in Pseudocapacitive and Battery-like Electrode Materials for High Performance Supercapacitors. J. Mater. Chem. A Mater. 2022, 10, 13190–13240. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, J.; Chen, Z.; Chen, M. Nickel-Based Materials: Toward Practical Application of the Aqueous Hybrid Supercapacitors. Sustain. Mater. Technol. 2022, 33, e00479. [Google Scholar] [CrossRef]
- Li, H.; Tang, Z.; Liu, Z.; Zhi, C. Evaluating Flexibility and Wearability of Flexible Energy Storage Devices. Joule 2019, 3, 613–619. [Google Scholar] [CrossRef]
- Du, P.; Wei, W.; Liu, D.; Kang, H.; Liu, C.; Liu, P. Fabrication of Hierarchical MoO3–PPy Core–Shell Nanobelts and “Worm-like” MWNTs–MnO2 Core–Shell Materials for High-Performance Asymmetric Supercapacitor. J. Mater. Sci. 2018, 53, 5255–5269. [Google Scholar] [CrossRef]
- Ravit, R.; Azman, N.H.N.; Kulandaivalu, S.; Abdullah, J.; Ahmad, I.; Sulaiman, Y. Cauliflower-like Poly(3,4-Ethylenedioxythipohene)/Nanocrystalline Cellulose/Manganese Oxide Ternary Nanocomposite for Supercapacitor. J. Appl. Polym. Sci. 2020, 137, 49162. [Google Scholar] [CrossRef]
- Ahmed, J.; Ubiadullah, M.; Khan, M.A.M.; Alhokbany, N.; Alshehri, S.M. Significant Recycled Efficiency of Multifunctional Nickel Molybdenum Oxide Nanorods in Photo-Catalysis, Electrochemical Glucose Sensing and Asymmetric Supercapacitors. Mater. Charact. 2021, 171, 110741. [Google Scholar] [CrossRef]
- Ye, M.; Yin, Q.; Lin, Y.; Jia, H. High-Performance MXene/Aramid Nanofibers/Graphene Film Electrodes with Superior Integration of Mechanical and Capacitive Properties. J. Alloys Compd. 2023, 961, 171038. [Google Scholar] [CrossRef]
- Hassan, M.; Abbas, G.; Li, N.; Afzal, A.; Haider, Z.; Ahmed, S.; Xu, X.; Pan, C.; Peng, Z. Significance of Flexible Substrates for Wearable and Implantable Devices: Recent Advances and Perspectives. Adv. Mater. Technol. 2022, 7, 2100773. [Google Scholar] [CrossRef]
- Belaineh, D.; Brooke, R.; Sani, N.; Say, M.G.; Håkansson, K.M.O.; Engquist, I.; Berggren, M.; Edberg, J. Printable Carbon-Based Supercapacitors Reinforced with Cellulose and Conductive Polymers. J. Energy Storage 2022, 50, 104224. [Google Scholar] [CrossRef]
- Zhou, Y.; Cheng, X.; Tynan, B.; Sha, Z.; Huang, F.; Islam, M.S.; Zhang, J.; Rider, A.N.; Dai, L.; Chu, D.; et al. High-Performance Hierarchical MnO2/CNT Electrode for Multifunctional Supercapacitors. Carbon 2021, 184, 504–513. [Google Scholar] [CrossRef]
- Liu, D.; Liu, J.; Wang, Q.; Du, P.; Wei, W.; Liu, P. PANI Coated Microporous Graphene Fiber Capable of Subjecting to External Mechanical Deformation for High Performance Flexible Supercapacitors. Carbon 2019, 143, 147–153. [Google Scholar] [CrossRef]
- Delivery, A.; Yahya, E.B.; Jummaat, F.; Amirul, A.A.; Adnan, A.S.; Olaiya, N.G.; Abdullah, C.K.; Rizal, S.; Mohamad Haafiz, M.K.; Khalil, H.P.S. A Review on Revolutionary Natural Biopolymer-Based Aerogels for Antibacterial Delivery. Antibiotics 2020, 9, 648. [Google Scholar]
- Xiong, C.; Zhang, Y.; Ni, Y. Recent Progress on Development of Electrolyte and Aerogel Electrodes Applied in Supercapacitors. J. Power Sources 2023, 560, 232698. [Google Scholar] [CrossRef]
- Qin, J.K.; Wang, C.; Zhen, L.; Li, L.J.; Xu, C.Y.; Chai, Y. Van Der Waals Heterostructures with One-Dimensional Atomic Crystals. Prog. Mater. Sci. 2021, 122, 100856. [Google Scholar] [CrossRef]
- Nehra, M.; Dilbaghi, N.; Marrazza, G.; Kaushik, A.; Abolhassani, R.; Mishra, Y.K.; Kim, K.H.; Kumar, S. 1D Semiconductor Nanowires for Energy Conversion, Harvesting and Storage Applications. Nano Energy 2020, 76, 104991. [Google Scholar] [CrossRef]
- Yang, Z.; Tian, J.; Yin, Z.; Cui, C.; Qian, W.; Wei, F. Carbon Nanotube- and Graphene-Based Nanomaterials and Applications in High-Voltage Supercapacitor: A Review. Carbon 2019, 141, 467–480. [Google Scholar] [CrossRef]
- Yin, Q.; Jia, H.; Liu, G.; Ji, Q. Tailoring the Mechanical Performance of Carbon Nanotubes Buckypaper by Aramid Nanofibers towards Robust and Compact Supercapacitor Electrode. Adv. Funct. Mater. 2022, 32, 2111177. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, X.; Heng, Z.; Chen, Y.; Zou, H.; Liang, M. Robust and Flexible Cellulose Nanofiber/Multiwalled Carbon Nanotube Film for High-Performance Electromagnetic Interference Shielding. Ind. Eng. Chem. Res. 2018, 57, 17152–17160. [Google Scholar] [CrossRef]
- Santos, M.C.G.; da Silva, D.R.; Pinto, P.S.; Ferlauto, A.S.; Lacerda, R.G.; Jesus, W.P.; da Cunha, T.H.R.; Ortega, P.F.R.; Lavall, R.L. Buckypapers of Carbon Nanotubes and Cellulose Nanofibrils: Foldable and Flexible Electrodes for Redox Supercapacitors. Electrochim. Acta 2020, 349, 136241. [Google Scholar] [CrossRef]
- Tanaka, F.; Iwata, T. Estimation of the Elastic Modulus of Cellulose Crystal by Molecular Mechanics Simulation. Cellulose 2006, 13, 509–517. [Google Scholar] [CrossRef]
- Klemm, D.; Kramer, F.; Moritz, S.; Lindström, T.; Ankerfors, M.; Gray, D.; Dorris, A. Nanocelluloses: A New Family of Nature-Based Materials. Angew. Chem. Int. Ed. 2011, 50, 5438–5466. [Google Scholar] [CrossRef]
- Zhu, P.; Wei, Y.; Kuang, Y.; Qian, Y.; Liu, Y.; Jiang, F.; Chen, G. Porous and Conductive Cellulose Nanofiber/Carbon Nanotube Foam as a Humidity Sensor with High Sensitivity. Carbohydr. Polym. 2022, 292, 119684. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Pang, L.; Li, Y.; Luo, H.; Duan, G.; Mei, C.; Xu, W.; Zhou, W.; Liu, K.; Jiang, S. Ultra-Thin and Highly Flexible Cellulose Nanofiber/Silver Nanowire Conductive Paper for Effective Electromagnetic Interference Shielding. Compos. Part A Appl. Sci. Manuf. 2020, 135, 105960. [Google Scholar] [CrossRef]
- Li, L.; Ma, Z.; Xu, P.; Zhou, B.; Li, Q.; Ma, J.; He, C.; Feng, Y.; Liu, C. Flexible and Alternant-Layered Cellulose Nanofiber/Graphene Film with Superior Thermal Conductivity and Efficient Electromagnetic Interference Shielding. Compos. Part A Appl. Sci. Manuf. 2020, 139, 106134. [Google Scholar] [CrossRef]
- Wang, D.-C.; Yu, H.-Y.; Qi, D.; Ramasamy, M.; Yao, J.; Tang, F.; Tam, K.C.; Ni, Q. Supramolecular Self-Assembly of 3D Conductive Cellulose Nanofiber Aerogels for Flexible Supercapacitors and Ultrasensitive Sensors. ACS Appl. Mater. Interfaces 2019, 11, 24435–24446. [Google Scholar] [CrossRef]
- Kang, L.; Huang, C.; Zhang, J.; Zhang, M.; Zhang, N.; He, Y.; Luo, C.; Wang, C.; Zhou, X.; Wu, X. A New Strategy for Synthesis of Hierarchical MnO2–Mn3O4 Nanocomposite via Reduction-Induced Exfoliation of MnO2 Nanowires and Its Application in High-Performance Asymmetric Supercapacitor. Compos. B Eng. 2019, 178, 107501. [Google Scholar] [CrossRef]
- Xu, Z.; Sun, S.; Cui, W.; Lv, J.; Geng, Y.; Li, H.; Deng, J. Interconnected Network of Ultrafine MnO2 Nanowires on Carbon Cloth with Weed-like Morphology for High-Performance Supercapacitor Electrodes. Electrochim. Acta 2018, 268, 340–346. [Google Scholar] [CrossRef]
- Lv, Z.; Luo, Y.; Tang, Y.; Wei, J.; Zhu, Z.; Zhou, X.; Li, W.; Zeng, Y.; Zhang, W.; Zhang, Y.; et al. Editable Supercapacitors with Customizable Stretchability Based on Mechanically Strengthened Ultralong MnO2 Nanowire Composite. Adv. Mater. 2018, 30, 1704531. [Google Scholar] [CrossRef]
- Sui, Z.; Chang, Z.; Xu, X.; Li, Y.; Zhu, X.; Zhao, C.; Chen, Q. Direct Growth of MnO2 on Highly Porous Nitrogen-Doped Carbon Nanowires for Asymmetric Supercapacitors. Diam. Relat. Mater. 2020, 108, 107988. [Google Scholar] [CrossRef]
- Sajjad, M.; Kang, K.; Wu, Z.; Ma, Y.; Tao, R.; Qiu, L. Phosphine-Based Porous Organic Polymer/RGO Composite Anode and α-MnO2 Nanowire Cathode Cooperatively Enabling High-Voltage Aqueous Asymmetric Supercapacitors. J. Energy Storage 2021, 40, 102772. [Google Scholar] [CrossRef]
- Jayachandran, M.; Rose, A.; Maiyalagan, T.; Poongodi, N.; Vijayakumar, T. Effect of Various Aqueous Electrolytes on the Electrochemical Performance of α-MnO2 Nanorods as Electrode Materials for Supercapacitor Application. Electrochim. Acta 2021, 366, 137412. [Google Scholar] [CrossRef]
- He, Z.; Wang, Y.; Li, Y.; Ma, J.; Song, Y.; Wang, X.; Wang, F. Superior Pseudocapacitive Performance and Mechanism of Self-Assembled MnO2/MXene Films as Positive Electrodes for Flexible Supercapacitors. J. Alloys Compd. 2022, 899, 163241. [Google Scholar] [CrossRef]
- Xu, Y.; Yan, Y.; Lu, W.; Yarlagadda, S.; Xu, G. High-Performance Flexible Asymmetric Fiber-Shaped Supercapacitor Based on CF/PPy and CNT/MnO2 Composite Electrodes. ACS Appl. Energy Mater. 2021, 4, 10639–10645. [Google Scholar] [CrossRef]
- Zhao, J.; Ma, Z.; Qiao, C.; Fan, Y.; Qin, X.; Shao, G. Spectroscopic Monitoring of the Electrode Process of MnO2 @rGO Nanospheres and Its Application in High-Performance Flexible Micro-Supercapacitors. ACS Appl. Mater. Interfaces 2022, 14, 34686–34696. [Google Scholar] [CrossRef] [PubMed]
- Azmi, A.; Lau, K.S.; Chin, S.X.; Khiew, P.S.; Zakaria, S.; Chia, C.H. Zinc Oxide-Filled Polyvinyl Alcohol–Cellulose Nanofibril Aerogel Nanocomposites for Catalytic Decomposition of an Organic Dye in Aqueous Solution. Cellulose 2021, 28, 2241–2253. [Google Scholar] [CrossRef]
- Lau, K.S.; Chin, S.X.; Tan, S.T.; Lim, F.S.; Sea Chang, W.; Chin Yap, C.; Jumali, M.H.H.; Zakaria, S.; Chook, S.W.; Chia, C.H. Silver Nanowires as Flexible Transparent Electrode: Role of PVP Chain Length. J. Alloys Compd. 2019, 803, 165–171. [Google Scholar] [CrossRef]
- Wen, Z.Q.; Li, M.; Li, F.; Zhu, S.J.; Liu, X.Y.; Zhang, Y.X.; Kumeria, T.; Losic, D.; Gao, Y.; Zhang, W.; et al. Morphology-Controlled MnO2–Graphene Oxide–Diatomaceous Earth 3-Dimensional (3D) Composites for High-Performance Supercapacitors. Dalton Trans. 2016, 45, 936–942. [Google Scholar] [CrossRef]
- Basri, S.; Kamarudin, S.K.; Wan Daud, W.R.; Yaakob, Z.; H.khadum, A.A. Study on Kinetic Energy of a Novel Metal Composite for Anode Catalyst in Direct Methanol Fuel Cell. Int. J. Energy Res. 2015, 39, 181–190. [Google Scholar] [CrossRef]
- Nguyen, V.H.; Shim, J.J. Green Synthesis and Characterization of Carbon Nanotubes/Polyaniline Nanocomposites. J. Spectrosc. 2015, 2015, 179–186. [Google Scholar] [CrossRef]
- Julien, C.; Massot, M. Spectroscopic Studies of the Local Structure in Positive Electrodes for Lithium Batteries. Phys. Chem. Chem. Phys. 2002, 4, 4226–4235. [Google Scholar] [CrossRef]
- Maile, N.C.; Mahadik, S.B.; Takale, M.V.; Fulari, V.J. Surface Deformation Studies of MnO 2 Film by Double Exposure Digital Holographic Interferometry Technique. Mater. Res. Express 2019, 6, 045204. [Google Scholar] [CrossRef]
- Ma, S.; Ye, X.; Jiang, X.; Cen, W.; Jiang, W.; Wang, H. First Principles Calculation of Mechanical, Dynamical and Thermodynamic Properties of MnO2 with Four Crystal Phases. J. Alloys Compd. 2021, 852, 157007. [Google Scholar] [CrossRef]
- Wesełucha-Birczyńska, A.; Fra̧czek-Szczypta, A.; Długoń, E.; Paciorek, K.; Bajowska, A.; Kościelna, A.; Błazewicz, M. Application of Raman Spectroscopy to Study of the Polymer Foams Modified in the Volume and on the Surface by Carbon Nanotubes. Vib. Spectrosc. 2014, 72, 50–56. [Google Scholar] [CrossRef]
- Pandit, B.; Rondiya, S.R.; Dzade, N.Y.; Shaikh, S.F.; Kumar, N.; Goda, E.S.; Al-Kahtani, A.A.; Mane, R.S.; Mathur, S.; Salunkhe, R.R. High Stability and Long Cycle Life of Rechargeable Sodium-Ion Battery Using Manganese Oxide Cathode: A Combined Density Functional Theory (DFT) and Experimental Study. ACS Appl. Mater. Interfaces 2021, 13, 11433–11441. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yuan, L.; Liu, R.; He, H.; Hao, J.; Lu, Y.; Wang, Y.; Liang, G.; Yuan, G.; Guo, Z. Engineering Textile Electrode and Bacterial Cellulose Nanofiber Reinforced Hydrogel Electrolyte to Enable High-Performance Flexible All-Solid-State Supercapacitors. Adv. Energy Mater. 2021, 11, 2003010. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, D.; Yang, K.; Luo, M.; Yang, P.; Zhou, X. Mxene (Ti3C2T )/Cellulose Nanofiber/Porous Carbon Film as Free-Standing Electrode for Ultrathin and Flexible Supercapacitors. Chem. Eng. J. 2021, 413, 127524. [Google Scholar] [CrossRef]
- Xiong, C.; Zheng, C.; Nie, S.; Qin, C.; Dai, L.; Xu, Y.; Ni, Y. Fabrication of Reduced Graphene Oxide-Cellulose Nanofibers Based Hybrid Film with Good Hydrophilicity and Conductivity as Electrodes of Supercapacitor. Cellulose 2021, 28, 3733–3743. [Google Scholar] [CrossRef]
- Wang, W.; Yang, Y.; Chen, Z.; Deng, Z.; Fan, L.; Guo, W.; Xu, J.; Meng, Z. High-Performance Yarn Supercapacitor Based on Directly Twisted Carbon Nanotube@bacterial Cellulose Membrane. Cellulose 2020, 27, 7649–7661. [Google Scholar] [CrossRef]
- Li, Z.; Tian, M.; Sun, X.; Zhao, H.; Zhu, S.; Zhang, X. Flexible All-Solid Planar Fibrous Cellulose Nonwoven Fabric-Based Supercapacitor via Capillarity-Assisted Graphene/MnO2 Assembly. J. Alloys Compd. 2019, 782, 986–994. [Google Scholar] [CrossRef]
- Aswathy, N.R.; Palai, A.K.; Ramadoss, A.; Mohanty, S.; Nayak, S.K. Fabrication of Cellulose Acetate-Chitosan Based Flexible 3D Scaffold-like Porous Membrane for Supercapacitor Applications with PVA Gel Electrolyte. Cellulose 2020, 27, 3871–3887. [Google Scholar] [CrossRef]
- Wei, Y.; Zheng, M.; Luo, W.; Dai, B.; Ren, J.; Ma, M.; Li, T.; Ma, Y. All Pseudocapacitive MXene-MnO2 Flexible Asymmetric Supercapacitor. J. Energy Storage 2022, 45, 103715. [Google Scholar] [CrossRef]
Sample | BET Surface Area (m2·g−1) | Pore Volume (cm3·g−1) | Pore Size (Å) |
---|---|---|---|
CNT/CNF electrode | 129.5 | 0.331 | 102.2 |
CNT/CNF-MnO2 NWs electrode | 113.0 | 0.282 | 100.0 |
No. | Electrodes | Electrolyte Used | Current Density (mA·cm−2) | Areal Capacitance (mF·cm−2) | Scan Rate (mVs−1) | Current Density (A·g−1) | Specific Capacitance (F·g−1) | Ref. |
---|---|---|---|---|---|---|---|---|
1 | PANI/RGO/PMFT | BC/PAM/H2SO4 | 1 | 564 | - | - | - | [54] |
2 | MXene (Ti3C2Tx)/cellulose nanofiber/porous carbon film | PVA/KOH | 0.1 | 143 | - | 0.3 | 72.1 | [55] |
3 | Reduced graphene oxide-cellulose nanofibers | PVA/H3PO4 | - | 120 | 100 | - | - | [56] |
4 | Twisting CNT@BC membrane/Ppy | PVA/H2SO4 | 0.8 | 458 | - | - | - | [57] |
5 | Nonwoven cellulose/graphene/MnO2 | PVA/H2SO4 | 0.5 | 139 | - | - | - | [58] |
6 | Cellulose acetate/chitosan/rGO/NiO/Fe3O4 | PVA/NaNO2 | - | 17 | 5 | - | - | [59] |
7 | MnO2/Carbon fiber | PVA/H2SO4 | - | - | - | 1.5 | 20.5 | [60] |
8 | CNT/CNF-MnO2 NWs | PVA/LiCl | 0.5 | 619 | - | - | 158.7 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chin, S.X.; Lau, K.S.; Ginting, R.T.; Tan, S.T.; Khiew, P.S.; Chia, C.H.; Wongchoosuk, C. Facile Preparation of Carbon Nanotubes/Cellulose Nanofibrils/Manganese Dioxide Nanowires Electrode for Improved Solid-Sate Supercapacitor Performances. Polymers 2023, 15, 3758. https://doi.org/10.3390/polym15183758
Chin SX, Lau KS, Ginting RT, Tan ST, Khiew PS, Chia CH, Wongchoosuk C. Facile Preparation of Carbon Nanotubes/Cellulose Nanofibrils/Manganese Dioxide Nanowires Electrode for Improved Solid-Sate Supercapacitor Performances. Polymers. 2023; 15(18):3758. https://doi.org/10.3390/polym15183758
Chicago/Turabian StyleChin, Siew Xian, Kam Sheng Lau, Riski Titian Ginting, Sin Tee Tan, Poi Sim Khiew, Chin Hua Chia, and Chatchawal Wongchoosuk. 2023. "Facile Preparation of Carbon Nanotubes/Cellulose Nanofibrils/Manganese Dioxide Nanowires Electrode for Improved Solid-Sate Supercapacitor Performances" Polymers 15, no. 18: 3758. https://doi.org/10.3390/polym15183758
APA StyleChin, S. X., Lau, K. S., Ginting, R. T., Tan, S. T., Khiew, P. S., Chia, C. H., & Wongchoosuk, C. (2023). Facile Preparation of Carbon Nanotubes/Cellulose Nanofibrils/Manganese Dioxide Nanowires Electrode for Improved Solid-Sate Supercapacitor Performances. Polymers, 15(18), 3758. https://doi.org/10.3390/polym15183758