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Abstract: Wearable energy storage devices require high mechanical stability and high-capacitance flex-
ible electrodes. In this study, we design a flexible supercapacitor electrode consisting of 1-dimensional
carbon nanotubes (CNT), cellulose nanofibrils (CNF), and manganese dioxide nanowires (MnO2

NWs). The flexible and conductive CNT/CNF-MnO2 NWs suspension was first prepared via ultra-
sonic dispersion approach, followed by vacuum filtration and hot press to form the composite paper
electrode. The morphological studies show entanglement between CNT and CNF, which supports
the mechanical properties of the composite. The CNT/CNF-MnO2 NWs electrode exhibits lower
resistance when subjected to various bending angles (−120–+120◦) compared to the CNT/CNF elec-
trode. In addition, the solid-state supercapacitor also shows a high energy density of 38 µWh cm−2

and capacitance retention of 83.2% after 5000 cycles.

Keywords: cellulose nanofibrils; supercapacitor; MnO2 nanowires; paper electrode

1. Introduction

Energy storage with efficient conversion has emerged as a growing research area to
meet the demands of modern technology and to address the issues related to sustainable
energy [1]. Energy storage and energy harvesting are two different topics with widespread
applications, including mechanical to electrical energy and electrical to electrochemical
energy conversion and on the same platform [2]. For the past few years, supercapacitors
have attracted a great deal of research interest in the field of energy storage owing to their
low cost, long cycle life, higher power, and energy density [3]. Supercapacitors (SC) are
promising technology for next-generation flexible storage devices owing to their high-
power density, rapid charging/discharging, and longer cycle life than dielectric capacitors
and batteries [4,5].

In general, supercapacitors can be divided into two categories, namely electrical
double-layer capacitors (EDLCs) and pseudocapacitors depending on the active materials
and charge storage mechanism [6]. EDLCs, for example, use carbon as the electrode material
and do not undergo redox reactions during the charge–discharge process, but instead store
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and release energy through the rapid adsorption/desorption process of electrolyte ions on
the surface of the electrode material in contact with the electrolyte [7,8]. As a result, this
type of supercapacitor has a high-power density and a very quick charge and discharge
rate, allowing it to complete the full charge and discharge operation in a relatively short
period. The surface area of the electrode in contact with the electrolyte and adsorbed ions is
an important factor that defines the energy storage capacity of such a supercapacitor, while
the conductivity and particular structure of the electrode material are secondary factors [9].
The primary drawback of EDLCs is their lower energy density, hence the development of
pseudocapacitors-based supercapacitors, which enable the charge and discharge process on
the electrode surface via a fast and reversible redox reaction. This type of supercapacitor has
greater energy storage capability due to the redox reaction during the charge and discharge
process and mostly employs metal oxides and conductive polymers as electrode materials,
and the surface chemicals of these materials allow the redox reactions to occur. It has a
high energy density, often three times that of EDLCs [10]. However, the pseudocapacitors
have redox processes that require more time for the charge and discharge time than those
of EDLCs, which lowers their power density. At the same time, the electrode materials
of pseudocapacitors supercapacitors are prone to active material separation and three-
dimensional shape degradation after various cycles of charge–discharge processes [11].

Flexible supercapacitor electrodes have been designed and made for flexible energy
storage devices. In general, flexibility refers to the capacity of materials or devices to distort.
Bending, stretching, or softness can all be used to illustrate flexibility. The link between
bending ability, stretchability, and softness is related but not identical. A soft gadget, for
example, is normally bendable, but not vice versa. Typically, the capacity of materials
to bend is used to demonstrate flexibility [12]. The use of various active materials, such
as carbon nanomaterials (graphene and carbon nanotubes (CNT)), conducting polymers
(polyaniline and polypyrrole), and transition metal oxides (MnO2, MoO3, etc.) allows
the formation of these flexible materials due to the material’s unique structures [13–16].
However, most of these active materials are unable to form a free-standing film that is
mechanically stable. As a result, several attempts have been made to construct flexible
electrodes supported by flexible substrates, namely paper, fabric, yarn, and different
polymeric films serving as these flexible substrates [17]. Although this does not add
to the capacitance value, these substrates contribute significantly to the weight of the
device, which results in a low specific capacitance depending on the weight of the entire
device [18,19]. Therefore, it is essential to design freestanding electrodes with high specific
capacitance, robust mechanical flexibility, and outstanding cycle stability for the fabrication
of high-performance flexible supercapacitors [20]. Furthermore, the aerogel-structured
composite is a 3D solid network prepared by the sol–gel method [21]. This type of aerogel
structure is considered a good substrate material in many fields due to the ultra-high specific
surface area and excellent mechanical properties, which can be loaded with capacitor active
electrode materials, which have good energy storage properties [22].

One-dimensional (1D) material has been of great interest to researchers to explore
applications due to its robust flexibility by having a high aspect ratio geometry [23,24].
Carbon nanotubes (CNTs) made up of sp2 hybridized carbons possess high surface area
(1300 m2·g−1), high conductivity, and chemical stability, which is a suitable material for
energy storage applications based on the electrical double-layer principle [25,26]. However,
CNT tends to form a rigid film when it is used as electrode material, hence the incorporation
of 1D cellulose nanofibrils (CNF) will help to improve the flexibility and mechanical
strength of the composite film [27,28]. Cellulose is a common linear biopolymer composed
of glucose units that, in nature, form highly organised, long, and thin nanostructures.
CNFs are well-known for their low thermal expansion coefficient and high rigidity (elastic
modulus of 138 GPa) [29]. They generally have a width of 4 nm and a length of 500–2000 nm
when recovered from delignified wood fibres, depending on the raw material used and how
it was treated [30]. Because CNF are closely packed in the lamellae of the fibre wall, their
separation necessitates expensive and high-energy mechanical treatments. The inclusion
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of charged moieties in the cellulose backbone, on the other hand, can dramatically lower
the cost of the extraction process. These charges cause electrostatic repulsion between
neighbouring CNF, thereby counteracting the strong inter-fibrillar interactions that keep
the fibre wall together and allow for the rapid extraction of individualised CNF. The
production of a CNF-based electrode with various conductive materials has been performed
by various researchers. Zu et al. (2022) prepared a CNF and CNT porous hybrid foam
using physical blending via an ultrasonic homogenizer and then solution casting into
a mould, which allowed the mixing solution subjected to freeze drying to obtain the
hybrid foam sample [31]. Furthermore, conductive paper materials that were produced
by Chen et al. 2020 using CNF and silver nanowires, which were mixed in aqueous
dispersions and filtered to produce the film sample, exhibited a low electrical conductivity
of 1.7 × 10−8 S/cm [32]. Li et al. (2020) prepared a flexible heterogeneous multilayered
film consisting of CNF and graphene nanosheets via the alternating vacuum filtration
process. The electrical conductivity of the film can increase approximately 7–11 times when
the number of conductive layers is increased; however, the increasing ratio of graphene
nanosheet to CNF content will inhibit good electrical conductivity due to the imperfect
creation of layered conductive path in conductive layers [33]. Xu et al. (2019) reported
a cellulose nanofiber aerogel composite prepared via the supramolecular self-assembly
approach using polyaniline suspension mixing. The lightweight conductive supramolecular
aerogel with hierarchically porous 3D structures demonstrated a high conductivity of
0.372 mS/cm and a larger area-normalized capacitance of 59.26 mF/cm2. The flexible
supercapacitor device can achieve a high normalised capacitance of 291.01 F/g using a
flexible solid electrolyte consisting of a polyvinyl alcohol (PVA) solid matrix and a sulfuric
acid electrolyte. The supramolecular cellulose nanofiber aerogel produced exhibited fast
charge–discharge performance and excellent capacitance retention, which is better than
other 3D chemically cross-linked nanocellulose aerogels [34].

To further improve the energy density without sacrificing the power density of su-
percapacitor devices, combining CNT with other pseudocapacitive metal oxide materials
would be a promising approach to produce a better-performing supercapacitor. Manganese
dioxide nanowires (MnO2 NWs) attracted researchers to use them as an active material
in supercapacitors due to their high theoretical specific capacitance of 1400 F g−1 and nat-
ural abundance [35,36]. Lv et al. (2018) designed an editable and flexible supercapacitor
electrode based on ultralong MnO2 NWs and a CNT composite prepared via solution
mixing and vacuum filtration. This supercapacitor device, which can achieve a specific
capacitance of 227.2 mF cm−2 and maintain ~98% performance after 10,000 stretch cycles,
used polyvinyl alcohol/lithium chloride (LiCl) as an aqueous gel polymer electrolyte [37].
Sui et al. (2020) developed nitrogen-doped carbon nanowires with MnO2 via electrodepo-
sition of MnO2 on the carbon dioxide-activated polypyrrole nanowires. The asymmetric
supercapacitor, which achieves an energy density of 23.7 Wh kg−1 at 2000 W kg−1, used
a sodium sulphate electrolyte solution [38]. Sajjad et al. (2021) fabricated a 2 V aqueous
phosphine-based porous organic polymer/reduced graphene oxide/α-MnO2 asymmetric
supercapacitor with cycling stability of 96% retention (10,000 cycles) and a high specific
energy of 39 Wh kg−1 [39]. Jayachandran et al. (2021) studied the effect of various aqueous
electrolytes on the electrochemical of α-MnO2 nanorods, which achieved specific capac-
itance of 570 F g−1 at 1 A g−1 current density in the mixture electrolyte (1 M sodium
sulphate (Na2SO4) and 0.5 M potassium hydroxide (KOH)) and maintained capacitance
retention of ~80% after 10,000 cycles [40]. He et al. (2022) reported a hybrid cathode mate-
rial consisting of 2D Ti3C2Tx nanosheets and 1D MnO2 nanobelts prepared via a colloidal
solution filtering approach to generate an alternating MnO2/Ti3C2Tx stacked structure as a
flexible electrode for a supercapacitor [41]. The hybrid cathode is more electrochemically
stable toward anodic oxidation than pure Ti3C2Tx, which has a high gravimetric capaci-
tance of 315 F g−1 at 10 mV s−1 and a strong rate capability of 166 F g−1 at 100 mV·s−1.
Carbon fibre/polypyrrole fibre prepared by electrochemical deposition of polypyrrole
on the surface of carbon fibre was used as the negative electrode and a CNT/MnO2 film
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prepared by electrochemical deposition of manganese(II) acetate on the surface of the
CNT electrode was used as the positive electrode to create a flexible supercapacitor. The
device had a maximum areal capacitance of 66.27 mF·cm−2 and an areal energy density of
23.56 Wh·cm−2, which can maintain capacitance retention of 83% after 5000 cyclic stability
tests [42]. Zhao et al. (2022) reported the first liquid–liquid interface deposition with
electrostatic self-assembly of a MnO2@rGO core-shell nanosphere as material for flexible
supercapacitor applications. The built symmetric micro-supercapacitor had a high areal
energy density of 1.01 Wh·cm−2, with excellent cycling stability and a capacity retention
rate of nearly 100% after 2000 bending cycles [43].

In this study, a flexible CNT/CNF composite paper was formed via the ultrasonic
dispersion approach and combined with hydrothermally grown MnO2 NWs as the super-
capacitor electrode. The formation of the electrode was achieved using vacuum filtration to
obtain the composite film, which was then subjected to freeze drying to remove the exces-
sive water while maintaining the porosity of the electrode sample. Lastly, the composite
was hot pressed to form the electrode. The combination of conductive CNT and fibrous
CNF can improve the electrical and mechanical properties of the composite film, which
allows it to be flexible and simultaneously improves the energy density.

2. Materials and Methods
2.1. Materials

Kenaf core powders (60–80 mesh) were obtained from the Malaysian Agricultural Re-
search and Development Institute (MARDI). A single-walled carbon nanotube (CNT) with
a length-to-diameter ratio of 103–104 was purchased from Tuball™ (Leudelange, Luxem-
bourg). Sodium chlorite (NaClO2, 80%) and polyvinyl alcohol (PVA, Mw = 86,000 g/mol)
were purchased from Acros Organics (Geel, Belgium). Acetic acid (96%), nitric acid (HNO3,
65%), acetone (>99.8%), ammonium fluoride (NH4F, ≥98%), phosphoric acid (H3PO4, 85%),
sodium chloride (NaCl, ≥99.5%), and sodium sulfate (Na2SO4, >99%) were purchased
from Merck Millipore (Burlington, MA, USA). Potassium permanganate (KMnO4, >99%)
was purchased from Fisher Scientific (Waltham, MA, USA).

2.2. Methodology
2.2.1. Preparation of CNF Dispersion

Kenaf core powder was used to obtain the CNF, which was reported in our previous
work [44]. Briefly, kenaf core powder had undergone a delignification process using
1.875 g/g of NaClO2 and 1.25 g/g of acetic acid six times. After that, the kenaf core powder
was filtered and washed with deionised water and acetone until it reached neutral pH. A
mixture solution containing 0.1 wt% of delignified kenaf core powder and 0.1 mM NaCl was
prepared for defibrillation to obtain CNF. Then, the defibrillation process was performed
using a high-shear laboratory mixer (Silverson, L5M-A, East Longmeadow, MA, USA) at
10,000 rpm for 16 h to produce CNF.

2.2.2. Preparation of CNT Dispersion

First, 0.1 wt% of CNT was dispersed in a 20% HNO3 solution using an ultrasonication
probe for 30 min. Then, the solution was refluxed at 60 ◦C for 6 h to remove impurities in
the CNT. Subsequently, the CNT solution was filtered and washed with deionised water
until a neutral pH was obtained, followed by being oven-dried at 60 ◦C for 12 h.

2.2.3. Synthesis of MnO2 NWs

First, 0.5 mol of KMnO4 and 0.5 mol of NH4F were dissolved in deionised water and
stirred for 30 min. Then, the solution was transferred into a stainless-steel Teflon autoclave.
The hydrothermal process was performed at 180 ◦C for 3 h. Then, the product was washed
with deionised water three times via centrifugation at 8000 rpm for 15 min. After that, the
MnO2 NWs were oven-dried at 60 ◦C for 12 h.
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2.2.4. Fabrication of CNT/CNF Electrode and CNT/CNF-MnO2 NWs Electrode

First, 0.07 wt% of CNF and 0.1 wt% of CNT were mixed in a 1:1 weight ratio and
then subjected to an ultrasonic probe for 30 min to obtain a homogenous solution. Then,
the dispersed solution was filtered using a membrane filter with a diameter of 47 mm to
obtain a CNT/CNF film. The film was then freeze-dried for 24 h at −105 ◦C until all the
ice crystals were removed from the film. Then, the freeze-dried film was hot pressed for
10 min at 120 ◦C. To fabricate the CNT/CNF-MnO2 NWs electrode, the procedure was
repeated with the addition of a 0.5 ratio of the as-synthesised MnO2 NWs.

2.3. Characterisation

Thin-film X-ray diffraction (XRD) was performed using an XRD diffractometer (Bruker,
AXS D8 Advance, Baden, Switzerland) scanning from 2θ = 5–80◦ equipped with an X-ray
source of Cu Kα radiation = 1.5418 Å. The Raman spectra of the samples were obtained
using Raman micro-spectroscopy (Technospex, uRaman-Ci, Singapore) equipped with a
532 nm laser and an optical microscope (Nikon Eclipse Ci L, Tokyo, Japan) with exposure
power and exposure time of 1 mW and 5 s, respectively. The IR spectra were obtained using
a Fourier Transform Infrared (FTIR) spectrometer (Bruker, Alpha, Ettlingen, Germany).
The morphologies of the samples were measured using a field emission scanning electron
microscope (FESEM, Schottky SU5000, Tokyo, Japan) with an electron high tension of 3 kV.
The specific surface area of the electrode was analysed using Brunauer, Emmett, and Teller
(BET) analysis (Micromeritics, ASAP 2010, Norcross, GA, USA), with degassing at 353 K
for 90 min and then analysed at 99 K. The resistance measurement of the electrode was
performed using the setup in a previous report [45]. The samples were placed onto a
sample holder, which was subjected to various bending angles from +120 to −120◦. The
resistance of the sample was measured from the furthest side using a digital multimetre
(VC97, VICTOR, Xi’an, China).

An asymmetrical supercapacitor device was fabricated using a CNT/CNF electrode as
anode and CNT/CNF-MnO2 NWs electrode as the cathode, and a gel polymer electrolyte
consisting of 1 M LiCl in PVA solution. The dimension of the electrode was 2 × 1 cm
(L × W) with a mass of 9–11 mg. The thickness of the electrode is 0.07–0.08 mm. The
cyclic voltammetry (CV) and galvanostatic charge–discharge (GCD) were analysed with
a potential window of 0–0.8 V. Electrochemical Impedance Spectroscopy (EIS) analyses
were conducted at open circuit potential from a 10,000–0.01 Hz frequency range and an
amplitude of 5 mV.

3. Results and Discussion

The XRD diffraction peaks for CNT/CNF and CNT/CNF-MnO2 NWs composites are
shown in Figure 1a. The board peak at 16.3◦ corresponds to the (110) plane of the CNF,
whereas for CNT, the peaks centred at 22.5◦ and 44.7◦ correlated to the (002) and (100)
plane, respectively. For the CNT/CNF-MnO2 NWs electrode, the diffraction peak at 16.3◦,
28.7◦, 37.6◦, and 62.8◦ represent the tetragonal phase of α-MnO2 (JCPDS No. 44-0141) and
the peak at 23.4◦ is due to the presence of δ-MnO2 (JCPDS No. 80-1098). This result is
consistent with a previous report [46]. Additionally, the observed peaks at 33.4◦ and 44.8◦

correspond to Mn2O3 (JCPDS No. 24-0508).
The Raman spectra (Figure 1b) for MnO2 NWs show a peak at 631 cm−1, which

corresponds to the Ag mode of α-MnO2. It also shows a shoulder peak around 560 cm−1,
which corresponds to the A1g mode of δ-MnO2 [47]. The presence of α and δ phase MnO2
further confirms the findings of the XRD analysis. For the CNT/CNF composite, it shows
the typical peaks for carbon nanomaterials. The G band at 1588 cm−1 corresponds to the
E2g mode vibration of graphitic bonding. There is a small shoulder peak at 1569 cm−1,
which arose from the interaction between the different CNT shells [48,49]. The 2D band at
2670 cm−1 was attributed to the multiple layers of CNT stacking. Moreover, the presence
of MnO2 NWs in the composite does disturb the order of the graphitic structure in the CNT.
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Moreover, the peak at 155 cm−1 can be ascribed to the dominant external mode from the
translational motion of MnO6 units in α-MnO2 [50].
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Figure 1c shows the FTIR spectrum of the composite. The broad peak at around
3000–3500 cm−1 corresponding to OH groups’ presence in the CNF could be responsible
for the formation of intermolecular hydrogen bonding between CNF. There is no peak shift
(3339 cm−1) with the incorporation of MnO2 NWs, indicating that it does not change the
hydrogen bond vibration. The peaks at around 2916, 1241, and 1053 cm−1 can be ascribed
to the CH, C-OC, and C-OH groups, respectively, due to the presence of glucopyranose
monomers in CNF [51]. Interestingly, the CNT/CNF-MnO2 NWs showed a visible peak
compared to CNT/CNF due to the presence of MnO2 decreasing the hydrophilicity of
the sample [52], which reduced the absorbed water on the CNF molecules. Furthermore,
the peaks around 1666 and 1428 cm−1 are attributed to the C=C group in the backbone
structure of MWCNT. The peak at around 1730 cm−1 corresponds to C=O groups due to
the oxidation of CNT in nitric acid solution.

Table 1 shows the BET analysis results for the CNT/CNF and CNT/CNF-MnO2,
which describes the changes in the specific surface area of the electrode with the presence
of MnO2 NWs. The decreases in BET surface area, pore volume, and pore size are due
to the presence of MnO2, which could disrupt the arrangement in the CNT/CNF matrix.
Interestingly, the resistance of the CNT/CNF-MnO2 NWs composite had a lower value
compared with the CNT/CNF electrode due to the more compact structural arrangement
of CNT in the electrode matrix, which correlates with the BET analysis. Furthermore,
the resistance of the electrodes at various bending angles (Figure 2) was measured and
the results show that the CNT/CNF MnO2 NWs electrode was more stable and robust
and maintained the resistance when applied at different bending angles compared to the
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CNT/CNF electrode. However, for the CNT/CNF electrode, the resistance values at higher
bending degrees are asymmetric, suggesting the breakdown of the electrode structure due
to multiple consecutive bending from −120◦ to +120◦.

Table 1. Nitrogen absorption properties of CNT/CNF and CNT/CNF-MnO2 electrodes.

Sample BET Surface Area (m2·g−1) Pore Volume (cm3·g−1) Pore Size (Å)

CNT/CNF electrode 129.5 0.331 102.2
CNT/CNF-MnO2

NWs electrode 113.0 0.282 100.0
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Figure 2. Resistance measurements of CNT/CNF and CNT/CNF-MnO2 NWs electrodes as function
of bending angle.

Figure 3a,b show the FESEM images of as-synthesised MnO2 NWs, with an average
diameter of 40 ± 5 nm and length of ~30 µm, thus an aspect ratio of 750 was obtained.
Furthermore, the FESEM image of the CNT/CNF electrode (Figure 3c) indicates the CNT
is distributed uniformly parallel to the exfoliated CNF, while the CNT/CNF-MnO2 NWs
also show a diameter of ~40 nm for MnO2 NWs, indicating the ultrasonic probe dispersion
process does not introduce structural changes to the MnO2 NWs.

The surface chemical composition of the CNT/CNF-MnO2 NWs electrode was further
analysed by XPS to investigate the oxidation states of MnO2 as shown in Figure 4. From the
narrow scan of C1s, the deconvoluted peaks at 284.54 eV correspond to the C-C and C=C
bonds’ presence in the CNT and CNF. Moreover, the deconvoluted peak at 286.24 eV corre-
lated to the C-O bond arising from ether in the monomer unit of cellulose and glycosidic
linkage of the polymer backbone chain of the CNF. The deconvoluted peak at 287.68 eV
was ascribed to the carboxylic acid group’s presence in the oxidized CNT. Furthermore, the
O1s spectra show two peaks at 532.44 and 529.74 eV, which are attributed to the Mn-O-Mn
bond from the MnO2 structure and the C=O bond arising from the cellulosic structure
of CNF, respectively. Moreover, the Mn2p spectra show that the deconvoluted peaks at
642.38, 646.33, 653.67, and 654.43 eV are ascribed to Mn3+2p3/2, Mn4+2p3/2, Mn3+2p1/2,
and Mn4+2p1/2, respectively. Furthermore, the spin-energy separation calculated from both
Mn2p3/2 and Mn2p1/2 peaks is 11.5 eV, which implied that the Mn4+ ion was dominant in
CNT/CNF, hence it is in good agreement with a previous study [53].
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luted (b) C1s, (c) O1s, and (d) Mn2p XPS spectra.

The electrodes were fabricated into an asymmetrical supercapacitor device to deter-
mine the performance and the results are shown in Figure 5. The GCD measurement also
shows a symmetrical triangular shape, which is the same as the CNT/CNF-MnO2 NWs
electrode analysis, but the charge–discharge time decreases due to lower ionic mobility
and accessibility in the gel electrolyte compared to the aqueous electrolyte system. The
GCD results are displayed in a Ragone plot, and this asymmetrical supercapacitor device
can obtain a power density and energy density of 0.81 W cm−2 and 0.038 mWh cm−2,



Polymers 2023, 15, 3758 9 of 13

respectively. Furthermore, it was tested for its cyclic stability for 5000 cycles at 2 mA cm−2

and maintained good capacitance retention at 83.2% and a coulombic efficiency of 79.8%,
indicating a successful supercapacitor device had been produced. Moreover, the impedance
spectrum was fitted with an electrical equivalent circuit showing the solution resistance
(Rs) and charge-transfer resistance (Rct) of 10.7 and 21.3 Ω, respectively. Comparison on the
results of the solid-state supercapacitor device performance with previous reported studies
is tabulated in Table 2.
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Figure 5. (a) GCD measurements at various charge–discharge rates and its (b) Ragone plot,
(c) cyclic stability measured at 2 mA·cm−2 for 5000 cycles, and (d) EIS plot for asymmetrical device
CNT/CNF|PVA-LiCl|CNT/CNF-MnO2 NWs.

Table 2. Comparison of solid-state supercapacitor device performances.

No. Electrodes Electrolyte
Used

Current
Density

(mA·cm−2)

Areal
Capacitance
(mF·cm−2)

Scan Rate
(mVs−1)

Current
Density
(A·g−1)

Specific
Capacitance

(F·g−1)
Ref.

1 PANI/RGO/PMFT BC/PAM/H2SO4 1 564 - - - [54]

2
MXene (Ti3C2Tx)/

cellulose nanofiber/
porous carbon film

PVA/KOH 0.1 143 - 0.3 72.1 [55]

3
Reduced graphene

oxide-cellulose
nanofibers

PVA/H3PO4 - 120 100 - - [56]

4 Twisting CNT@BC
membrane/Ppy PVA/H2SO4 0.8 458 - - - [57]

5 Nonwoven
cellulose/graphene/MnO2

PVA/H2SO4 0.5 139 - - - [58]

6
Cellulose ac-

etate/chitosan/rGO/
NiO/Fe3O4

PVA/NaNO2 - 17 5 - - [59]

7 MnO2/Carbon fiber PVA/H2SO4 - - - 1.5 20.5 [60]
8 CNT/CNF-MnO2 NWs PVA/LiCl 0.5 619 - - 158.7 This work

PMFT = poly(diallyldimethylammonium chloride)-modified fibre textile. BC= bacterial cellulose. PAM = poly-
acrylamide. Ppy = polypyrrole.
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4. Conclusions

In this study, a CNT/CNF electrode was fabricated using an ultrasonic probe disper-
sion method as a free-standing flexible electrode and α-MnO2 NWs were incorporated
into the CNT/CNF electrode matrix, which was used as a supercapacitor electrode device.
The structural analysis of the MnO2 shows the presence of a crystal phase of the MnO2,
which is beneficial in the electrochemical capacitor properties. The characterisation shows
that CNT/CNF-MnO2 NWs electrodes have individual nanowires attached to the sur-
face of the CNT/CNF matrix, which allows the maximum exposed surface area of MnO2
NWs, which can maintain good electrical properties upon various bending angles. The
supercapacitor device can obtain a power density and energy density of 0.81 W cm−2 and
0.038 mWh cm−2, respectively, and can maintain good capacitance retention at 83.2% after
5000 cycles.
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