Biodegradability of Gel-Forming Superabsorbents for Soil Conditioning: Kinetic Assessment Based on CO2 Emissions
Abstract
:1. Introduction
- Adaptation of new equipment to biodegradation studies of gel-forming soil conditioners;
- Obtaining and typing experimental kinetic curves of CO2 emission during gel incubation;
- Development of their physically based models for an adequate description of experimental data and calculation of basic biodegradability indicators in the form of half-lives of the studied materials;
- Analysis of the biodegradability of superabsorbents depending on their composition and incubation conditions;
- Methodological comparison of the results with previously obtained estimates based on BOD analysis and explanation of the reasons for their possible discrepancies.
2. Materials and Methods
3. Results
3.1. Respirometric Curves and Their Description
3.2. Mathematical Modeling of Respirometric Curves
3.3. Calculated Indicators of Biodegradability of Superabsorbents (Half-Lives)
4. Discussion
4.1. Comparison with Known Data and Discussion on the Biodegradability of Synthetic Superabsorbents
4.2. Methodological Aspects of the Study (Comparison of CO2 and BOD Analysis Data)
5. Conclusions
6. Patents
- patent RU 2726561 (https://findpatent.ru/patent/272/2726561.html, accessed on 22 May 2023);
- patent RU 2639789 (http://www.findpatent.ru/patent/263/2639789.html, accessed on 22 May 2022).
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Puoci, F.; Iemma, F.; Spizzirri, U.G.; Cirillo, G.; Curcio, M.; Picci, N. Polymer in Agriculture: A Review. Am. J. Agric. Biol. Sci. 2008, 3, 299–314. [Google Scholar] [CrossRef]
- Zohuriaan-Mehr, M.J.; Kabiri, K. Superabsorbent polymer materials: A review. Iran. Polym. J. 2008, 17, 451–477. [Google Scholar]
- Wu, L.; Liu, M.; Rui-Liang, R.L. Preparation and Properties of a Double-coated slow-release NPK Compound Fertilizer with Superabsorbent and Water-retention. Bioresour. Technol. 2008, 99, 547–554. [Google Scholar] [CrossRef]
- Campos, E.V.R.; De Oliveira, J.L.; Fraceto, L.F.; Singh, B. Polysaccharides as Safer Release Systems for Agrochemicals. Agron. Sustain. Dev. 2015, 35, 47–66. [Google Scholar] [CrossRef]
- Behera, S.; Mahanwar, P.A. Superabsorbent Polymers in Agriculture and Other Applications: A review. Polym. Plast. Technol. Mater. 2020, 59, 341–356. [Google Scholar] [CrossRef]
- Smagin, A.V.; Sadovnikova, N.B.; Smagina, M.V. Synthetic Gel Structures in Soils for Sustainable Potato Farming. Sci. Rep. 2019, 9, 18588. [Google Scholar] [CrossRef]
- Ostrand, M.S.; De Sutter, T.M.; Daigh, A.L.M.; Limb, R.F.; Steele, D.D. Superabsorbent polymer characteristics, properties, and applications. Agrosyst. Geosci. Environ. 2020, 3, e20074. [Google Scholar] [CrossRef]
- Novoskoltseva, O.A.; Panova, I.G.; Loiko, N.G.; Nikolaev, Y.A.; Litmanovich, E.A.; Yaroslavov, A.A. Polyelectrolytes and Polycomplexes for Stabilizing Sandy Grounds. Polym. Sci. Ser. B 2021, 63, 488–495. [Google Scholar] [CrossRef]
- Smagin, A.V.; Budnikov, V.I.; Sadovnikova, N.B.; Kirichenko, A.V.; Belyaeva, E.A.; Krivtsova, V.N. Gel-Forming Soil Conditioners of Combined Action: Laboratory Tests for Functionality and Stability. Polymers 2022, 14, 4665. [Google Scholar] [CrossRef]
- Smagin, A.V.; Sadovnikova, N.B.; Belyaeva, E.A.; Krivtsova, V.N.; Shoba, S.A.; Smagina, M.V. Gel-Forming Soil Conditioners of Combined Action: Field Trials in Agriculture and Urban Landscaping. Polymers 2022, 14, 5131. [Google Scholar] [CrossRef]
- Mikula, P.; Mlnarikova, M.; Nadres, E.T.; Takahashi, H.; Babica, P.; Kuroda, K.; Blaha, L.; Sovadinova, I. Synthetic Biomimetic Polymethacrylates: Promising Platform for the Design of Anti-Cyanobacterial and Anti-Algal Agents. Polymers 2021, 13, 1025. [Google Scholar] [CrossRef]
- Sannino, A.; Demitri, C.; Madaghiele, M. Biodegradable Cellulose-based Hydrogels: Design and Applications. Materials 2009, 2, 353–373. [Google Scholar] [CrossRef]
- Smagin, A.V.; Sadovnikova, N.B.; Budnikov, V.I. Biodegradation of Aqueous Superabsorbents: Kinetic Assessment Using Biological Oxygen Demand Analysis. J. Compos. Sci. 2022, 7, 164. [Google Scholar] [CrossRef]
- Abdelmagid, H.M.; Tabatabai, M.A. Decomposition of Acrylamide in Soils. J. Environ. Qual. 1982, 11, 701–704. [Google Scholar] [CrossRef]
- Hiroki, A.; Hong, P.T.T.; Nagasawa, N.; Tamada, M. Biodegradability of Blend Hydrogels Based on Carboxymethyl Cellullose and Carboxymethyl Stach. Trans. Mater. Res. Soc. 2011, 36, 397–400. [Google Scholar] [CrossRef]
- Wilske, B.; Bai, M.; Lindenstruth, B.; Bach, M.; Rezaie, Z.; Frede, H.-G.; Breuer, L. Biodegradability of a polyacrylate superabsorbent in agricultural soil. Environ. Sci. Pollut. Res. 2014, 21, 9453. [Google Scholar] [CrossRef] [PubMed]
- Smagin, A.V.; Sadovnikova, N.B.; Smagina, M.V. Biodestruction of Strongly Swelling Polymer Hydrogels and Its Effect on the Water Retention Capacity of Soils. Eurasian Soil Sci. 2014, 47, 591–597. [Google Scholar] [CrossRef]
- Banedjschafie, S.; Durner, W. Water Retention Properties of a Sandy Soil with Superabsorbent Polymers as Affected by Aging and Water Quality. J. Plant Nutr. Soil Sci. 2015, 178, 798–806. [Google Scholar] [CrossRef]
- Zhao, L.; Bao, M.; Yan, M.; Lu, J. Kinetics and thermodynamics of biodegradation of hydrolyzed polyacrylamide under anaerobic and aerobic conditions. Bioresour. Technol. 2016, 216, 95–104. [Google Scholar] [CrossRef]
- Oksinska, M.P.; Magnucka, E.G.; Lejcus, K.; Pietr, S.J. Biodegradation of the cross-linked copolymer of acrylamide and potassium acrylate by soil bacteria. Environ. Sci. Pollut. Res. Int. 2016, 23, 5969. [Google Scholar] [CrossRef]
- Smagin, A.V.; Sadovnikova, N.B.; Vasenev, V.I.; Smagina, M.V. Biodegradation of Some Organic Materials in Soils and Soil Constructions: Experiments, Modeling and Prevention. Materials 2018, 11, 1889. [Google Scholar] [CrossRef]
- Xiong, B.; Loss, R.D.; Shields, D.; Pawlik, T.; Hochreiter, R.; Zydney, A.L.; Kumar, M. Polyacrylamide degradation and its implications in environmental systems. Clean Water 2018, 1, 17. [Google Scholar] [CrossRef]
- Kalita, N.K.; Bhasney, S.M.; Mudenur, C.; Kalamdhad, A.; Katiyar, V. End-of-life evaluation and biodegradation of Poly(lactic acid) (PLA)/polycaprolactone (PCL)/microcrystalline cellulose (MCC) polyblends under composting conditions. Chemosphere 2020, 247, 125875. [Google Scholar] [CrossRef] [PubMed]
- Kalita, N.K.; Hakkarainen, M. Integrating biodegradable polyesters in a circular economy. Curr. Opin. Green Sustain. Chem. 2023, 40, 100751. [Google Scholar] [CrossRef]
- Turioni, C.; Guerrini, G.; Squartini, A.; Morari, F.; Maggini, M.; Gross, S. Biodegradable Hydrogels: Evaluation of Degradation as a Function of Synthesis Parameters and Environmental Conditions. Soil Syst. 2021, 5, 47. [Google Scholar] [CrossRef]
- SNF Water Science. Available online: https://www.snf.com (accessed on 11 May 2022).
- UPL. Available online: https://www.upl-ltd.com (accessed on 11 May 2023).
- Smagin, A.V.; Sadovnikova, N.B.; Belyaeva, E.A. Hygroscopicity of gel-forming composite materials: Thermodynamic assessment and technological significance. J. Compos. Sci. 2022, 6, 269. [Google Scholar] [CrossRef]
- Bard, A.J.; Faulkner, L.R. Electrochemical Methods: Fundamentals and Applications, 2nd ed.; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2001; 833p. [Google Scholar]
- PASCO Scientific. Available online: https://www.pasco.com (accessed on 21 February 2023).
- Larson, R.J. Estimation of Biodegradation Potential of Xenobiotic Organic Chemicals. Appl. Environ. Microbiol. 1979, 38, 1153–1161. [Google Scholar] [CrossRef]
- Rosenkranz, F.; Chamy, R. (Eds.) Biodegradation—Life of Science; Pontificial Catholic University of Valparaiso Publ.: Valparaiso, Chile, 2013. [Google Scholar] [CrossRef]
- Baldera-Moreno, Y.; Pino, V.; Farres, A.; Banerjee, A.; Gordillo, F.; Andler, R. Biotechnological Aspects and Mathematical Modeling of the Biodegradation of Plastics under Controlled Conditions. Polymers 2022, 14, 375. [Google Scholar] [CrossRef]
- Kingsland, S. The Refractory Model: The Logistic Curve and the History of Population Ecology. Q. Rev. Biol. 1982, 57, 29–52. [Google Scholar] [CrossRef]
- Moser, A. Kinetics of batch fermentation. Biotechnology 1985, 2, 243–283. [Google Scholar]
- Patel, P.N.; Parmar, K.G.; Nakum, A.N.; Patel, M.N.; Patel, P.R.; Patel, V.R.; Sen, D.J. Biodegradable Polymers: An Ecofriendly Approach in Newer Millenium. Asian J. Biomed. Pharm. Sci. 2011, 1, 23–39. [Google Scholar]
- BS EN 13432:2000 Packaging. Requirements for Packaging Recoverable through Composting and Biodegradation. Available online: https://www.en-standard.eu/bs-en-13432-2000-packaging (accessed on 20 June 2023).
- ASTM D6400-23 Standard Specification for Compostable Plastics. Available online: https://www.astm.org/d6400-23.html (accessed on 20 June 2023).
- Lentz, R.D.; Andrawes, F.F.; Barvenik, F.W.; Koehn, A.C. Acrylamide Monomer Leaching from Polyacrylamide-treated Irrigation Furrows. J. Environ. Qual. 2008, 37, 2293–2298. [Google Scholar] [CrossRef] [PubMed]
- Nyyssola, A.; Ahlgren, J. Microbial degradation of polyacrylamide and the deamination product polyacrylate. Int. Biodeter. Biodegr. 2019, 139, 24–33. [Google Scholar] [CrossRef]
- Croll, B.T.; Arkell, G.M.; Hodge, R.P.J. Residues of acrylamide in water. Water Res. 1974, 8, 989–993. [Google Scholar] [CrossRef]
- Lande, S.S.; Bosch, S.J.; Howard, P.H. Degradation and Leaching of Acrylamide in soil. J. Environ. Qual. 1979, 8, 133–137. [Google Scholar] [CrossRef]
- Shanker, R.; Ramakrishna, C.; Seth, P.K. Microbial Degradation of Acrylamide Monomer. Arch. Microb. 1990, 154, 192–198. [Google Scholar] [CrossRef]
- Sojka, R.E.; Entry, J.A. Influence of Polyacrylamide Application to Soil on Movement of Microorganisms in Runoff Water. Environ. Pollut. 2000, 108, 405–412. [Google Scholar] [CrossRef]
- Fontaine, S.; Mariotti, A.; Abbadie, L. The priming effect of organic matter: A question of microbial competition? Soil Biol. Biochem. 2003, 35, 837–843. [Google Scholar] [CrossRef]
- Hennecke, D.; Bauer, A.; Herrchen, M.; Wischerhoff, E.; Gores, F. Cationic polyacrylamide copolymers (PAMs): Environmental half life determination in sludgetreated soil. Environ. Sci. Eur. 2018, 30, 16. [Google Scholar] [CrossRef]
- Adjuik, T.A.; Nokes, S.E.; Montross, M.D. Biodegradability of bio-based and synthetic hydrogels as sustainable soil amendments: A review. J. Appl. Polym. Sci. 2023, 140, e53655. [Google Scholar] [CrossRef]
- Cloutier, M.; Mantovani, D.; Rosei, F. Antibacterial Coatings: Challenges, Perspectives, and Opportunities. Trends Biotechnol. 2015, 33, 637–651. [Google Scholar] [CrossRef]
- De Lucca, J.; Boue, S.; Sien, T.; Cleveland, T.E.; Walsh, T.J. Silver Enhances the in Vitro Antifungal Activity of the Saponin, CAY-1. Mycoses 2011, 54, e1–e8. [Google Scholar] [CrossRef]
- Kim, S.W.; Jung, J.H.; Lamsal, K.; Kim, Y.S.; Min, J.S.; Lee, Y.S. Antifungal effect of silver nanoparticles (AgNPs) against various plant pathogenic fungi. Mycobiology 2012, 40, 53–58. [Google Scholar] [CrossRef]
- Langdon, K.A.; McLaughlin, M.J.; Kirby, J.K.; Merrington, G. Influence of Soil Properties and Soil Leaching on the Toxicity of Ionic Silver to Plants. Environ. Toxicol. Chem. 2015, 34, 2503–2512. [Google Scholar] [CrossRef]
- Rai, M.K.; Deshmukh, S.D.; Ingle, A.P.; Gade, A.K. Silver Nanoparticles: The Powerful Nanoweapon Against Multidrug-Resistant Bacteria. J. Appl. Microbiol. 2012, 112, 841–852. [Google Scholar] [CrossRef] [PubMed]
- Schlich, K.; Klawonn, T.; Terytze, K.; Hund-Rinke, K. Effects of Silver Nanoparticles and Silver Nitrate in the Earthworm Reproduction Test. Environ. Toxicol. Chem. 2013, 32, 181–187. [Google Scholar] [CrossRef]
- Xue, Y.; Xiao, H.; Zhang, Y. Antimicrobial Polymeric Materials with Quaternary Ammonium and Phosphonium Salts. Int. J. Mol. Sci. 2015, 16, 3626–3655. [Google Scholar] [CrossRef] [PubMed]
- Certini, G.; Scalenghe, R. (Eds.) Soils: Basic Concepts and Future Challenges; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Mc Coy, B.J.; Rolston, D.E. Convective transport of gases in moist porous media. Environ. Sci. Technol. 1992, 26, 2468–2476. [Google Scholar] [CrossRef]
- Lamichhane, P.; Sharma, P.; Kelly, A.L.; Risbo, J.; Rattray, F.P.; Sheehan, J.J. Solubility of carbon dioxide in renneted casein matrices: Effect of pH, salt, temperature, partial pressure, and moisture to protein ratio. Food Chem. 2021, 336, 127625. [Google Scholar] [CrossRef] [PubMed]
Superabsorbent | Composition | C% | Wh% | pH |
---|---|---|---|---|
Aquasorb | AcK, PAA *, | 39.5 ± 0.5 | 32 ± 3 | 7.3 ± 0.1 |
Zeba | PAA, AcK, starch | 46.6 ± 0.7 | 11 ± 5 | 7.0 ± 0.1 |
A11 | AcAm, PAA, PAA-biocatalysis waste | 45.0 ± 0.6 | 30 ± 2 | 7.2 ± 0.1 |
A11-Ag | AcAm, PAA, PAA-biocatalysis waste, silver | 45.0 ± 0.4 | 30 ± 4 | 7.3 ± 0.1 |
A22 | AcNa, PAA, peat | 47.5 ± 0.5 | 31 ± 2 | 7.4 ± 0.1 |
A22-Ag | AcNa, PAA, peat, silver | 47.5 ± 0.3 | 35 ± 3 | 7.4 ± 0.1 |
Approximation Parameters for Models (1) and (2): | Statistical Indicators: | ||||
---|---|---|---|---|---|
a | b or r | x0 | p-Value | R2 | s |
Aquasorb–W * | |||||
0.618 ± 0.002 | 68.51 ± 1.86 | – | <0.0001 | 0.956 | 0.028 |
Aquasorb–Cex | |||||
0.789 ± 0.005 | 8.97 ± 0.09 | 0.564 ± 0.001 | <0.0001 | 0.998 | 0.019 |
Zeba–W | |||||
0.0008 ± 0.0001 | 0.0012 ± 0.0001 | – | 0.0013 | 0.999 | 0.010 |
Zeba–Cex | |||||
0.547 ± 0.003 | 11.56 ± 0.19 | 0.422 ± 0.001 | <0.0001 | 0.998 | 0.015 |
A11–W | |||||
0.801 ± 0.002 | 10.84 ± 0.11 | – | <0.0001 | 0.987 | 0.022 |
A11–Ag–W | |||||
0.799 ± 0.005 | 9.56 ± 0.18 | – | <0.0001 | 0.965 | 0.037 |
A11–Cex | |||||
0.559 ± 0.007 | 9.35 ± 0.14 | 0.522 ± 0.001 | <0.0001 | 0.996 | 0.024 |
A11–Ag–Cex | |||||
0.768 ± 0.004 | 5.93 ± 0.14 | – | <0.0001 | 0.981 | 0.028 |
A22–W | |||||
0.499 ± 0.005 | 19.90 ± 0.89 | – | <0.0001 | 0.968 | 0.035 |
A22–Ag–W | |||||
0.589 ± 0.007 | 14.55 ± 0.64 | – | <0.0001 | 0.955 | 0.041 |
A22–Cex | |||||
0.397 ± 0.005 | 13.81 ± 0.42 | 0.646 ± 0.001 | <0.0001 | 0.997 | 0.019 |
A22–Ag–Cex | |||||
0.621 ± 0.017 | 4.83 ± 0.19 | – | <0.0001 | 0.991 | 0.023 |
Scaling Parameters: | Half-Lives, Years: | ||||
---|---|---|---|---|---|
Cmax, g/m3 | Ct *, g/m3 | Tmax, hr | T0.5min–T0.5fin | T0.5mod | T0.5term |
Aquasorb–W | |||||
9.6 | 23.3 | 71.8 | 1.91–3.53 | 3.40 ± 0.04 | 1.40 ± 0.02 |
Aquasorb–Cex | |||||
103.0 | 147.8 | 71.8 | 0.12–0.45 | 0.58 ± 0.01 | 0.40 ± 0.01 |
Zeba–W | |||||
27.6 | 50.9 | 62.8 | 0.59–0.59 | 0.56 ± 0.07 | 0.32 ± 0.05 |
Zeba–Cex | |||||
134.0 | 210.1 | 59.0 | 0.11–0.23 | 0.24 ± 0.04 | 0.15 ± 0.02 |
A11–W | |||||
20.4 | 43.2 | 64.4 | 0.67–2.71 | 3.17 ± 0.06 | 1.50 ± 0.03 |
A11-Ag–W | |||||
3.6 | 8.8 | 50.2 | 3.18–10.86 | 13.84 ± 0.48 | 5.70 ± 0.20 |
A11–Cec | |||||
135.0 | 188.6 | 55.5 | 0.08–0.14 | 0.18 ± 0.03 | 0.13 ± 0.02 |
A11–Ag–Cex | |||||
22.0 | 42.6 | 60.0 | 0.59–2.76 | 2.38 ± 0.06 | 1.22 ± 0.03 |
A22–W | |||||
1.8 | 4.8 | 23.7 | 3.48–6.07 | 5.49 ± 0.10 | 2.07 ± 0.05 |
A22–Ag–W | |||||
2.4 | 7.1 | 60.0 | 6.64–13.90 | 12.26 ± 0.34 | 4.20 ± 0.12 |
A22–Cex | |||||
54.0 | 99.2 | 48.0 | 0.19–0.26 | 0.31 ± 0.05 | 0.17 ± 0.02 |
A22–Ag–Cex | |||||
16.0 | 31.3 | 83.0 | 1.41–3.37 | 3.38 ± 0.17 | 1.68 ± 0.08 |
Gels: | AQ p. * | AQ e. | ZB p. | ZB e. | A11 p. | A11-Ag p. | A11 e. | A11-Ag e. | A22 p. | A22-Ag p. | A22 e. | A22-Ag e. |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Parametric ANOVA (LSD test) | ||||||||||||
AQ p. | 1.5 × 10−2 | 1.9 × 10−2 | 8.2 × 10−3 | 6.1 × 10−1 | 1.0 × 10−9 | 7.0 × 10−3 | 3.3 × 10−1 | 5.5 × 10−2 | 3.2 × 10−10 | 9.6 × 10−3 | 8.9 × 10−1 | |
AQ e. | 1.5 × 10−2 | 9.2 × 10−1 | 8.1 × 10−1 | 5.1 × 10−2 | 2.0 × 10−13 | 7.7 × 10−1 | 1.3 × 10−1 | 4.5 × 10−5 | 6.7 × 10−14 | 8.6 × 10−1 | 2.1 × 10−2 | |
ZB p. | 1.9 × 10−2 | 9.2 × 10−1 | 7.3 × 10−1 | 6.4 × 10−2 | 2.8 × 10−13 | 6.9 × 10−1 | 1.6 × 10−1 | 6.3 × 10−5 | 9.3 × 10−14 | 7.8 × 10−1 | 2.7 × 10−2 | |
ZB e. | 8.2 × 10−3 | 8.1 × 10−1 | 7.3 × 10−1 | 3.0 × 10−2 | 9.1 × 10−14 | 9.5 × 10−1 | 8.1 × 10−2 | 2.0 × 10−5 | 3.1 × 10−14 | 9.5 × 10−1 | 1.2 × 10−2 | |
A11 p. | 6.1 × 10−1 | 5.1 × 10−2 | 6.4 × 10−2 | 3.0 × 10−2 | 1.7 × 10−10 | 2.6 × 10−2 | 6.5 × 10−1 | 1.6 × 10−2 | 5.3 × 10−11 | 3.4 × 10−2 | 7.0 × 10−1 | |
A11-Ag p. | 1.0 × 10−9 | 2.0 × 10−13 | 2.8 × 10−13 | 9.1 × 10−14 | 1.7 × 10−10 | 7.6 × 10−14 | 3.5 × 10−11 | 1.1 × 10−6 | 7.4 × 10−1 | 1.1 × 10−13 | 6.5 × 10−10 | |
A11 e. | 7.0 × 10−3 | 7.7 × 10−1 | 6.9 × 10−1 | 9.5 × 10−1 | 2.6 × 10−2 | 7.6 × 10−14 | 7.2 × 10−2 | 1.7 × 10−5 | 2.6 × 10−14 | 9.1 × 10−1 | 1.0 × 10−2 | |
A11-Ag e. | 3.3 × 10−1 | 1.3 × 10−1 | 1.6 × 10−1 | 8.1 × 10−2 | 6.5 × 10−1 | 3.5 × 10−11 | 7.2 × 10−2 | 5.0 × 10−3 | 1.1 × 10−11 | 9.1 × 10−2 | 4.1 × 10−1 | |
A22 p. | 5.5 × 10−2 | 4.5 × 10−5 | 6.3 × 10−5 | 2.0 × 10−5 | 1.6 × 10−2 | 1.1 × 10−6 | 1.7 × 10−5 | 5.0 × 10−3 | 3.3 × 10−7 | 2.5 × 10−5 | 4.1 × 10−2 | |
A22-Ag p. | 3.2 × 10−10 | 6.7 × 10−14 | 9.3 × 10−14 | 3.1 × 10−14 | 5.3 × 10−11 | 7.4 × 10−1 | 2.6 × 10−14 | 1.1 × 10−11 | 3.3 × 10−7 | 3.8 × 10−14 | 2.0 × 10−10 | |
A22 e. | 9.6 × 10−3 | 8.6 × 10−1 | 7.8 × 10−1 | 9.5 × 10−1 | 3.4 × 10−2 | 1.1 × 10−13 | 9.1 × 10−1 | 9.1 × 10−2 | 2.5 × 10−5 | 3.8 × 10−14 | 1.4 × 10−2 | |
A22-Ag e. | 8.9 × 10−1 | 2.1 × 10−2 | 2.7 × 10−2 | 1.2 × 10−2 | 7.0 × 10−1 | 6.5 × 10−10 | 1.0 × 10−2 | 4.1 × 10−1 | 4.1 × 10−2 | 2.0 × 10−10 | 1.4 × 10−2 | |
Nonparametric ANOVA (Newman–Keuls test) | ||||||||||||
AQ p. | 1.4 × 10−1 | 1.3 × 10−1 | 1.3 × 10−1 | 8.6 × 10−1 | 1.3 × 10−4 | 1.4 × 10−1 | 7.6 × 10−1 | 5.5 × 10−2 | 1.7 × 10−4 | 1.2 × 10−1 | 8.9 × 10−1 | |
AQ e. | 1.4 × 10−1 | 9.2 × 10−1 | 9.7 × 10−1 | 2.0 × 10−1 | 1.3 × 10−4 | 9.9 × 10−1 | 2.8 × 10−1 | 9.6 × 10−4 | 1.4 × 10−4 | 8.6 × 10−1 | 1.4 × 10−1 | |
ZB p. | 1.3 × 10−1 | 9.2 × 10−1 | 9.9 × 10−1 | 1.5 × 10−1 | 1.4 × 10−4 | 9.9 × 10−1 | 1.6 × 10−1 | 9.7 × 10−4 | 1.3 × 10−4 | 9.6 × 10−1 | 1.2 × 10−1 | |
ZB e. | 1.3 × 10−1 | 9.7 × 10−1 | 9.9 × 10−1 | 2.4 × 10−1 | 1.5 × 10−4 | 9.6 × 10−1 | 3.9 × 10−1 | 7.5 × 10−4 | 1.8 × 10−4 | 9.5 × 10−1 | 1.4 × 10−1 | |
A11 p. | 8.6 × 10−1 | 2.0 × 10−1 | 1.5 × 10−1 | 2.4 × 10−1 | 1.3 × 10−4 | 2.7 × 10−1 | 6.5 × 10−1 | 7.5 × 10−2 | 1.4 × 10−4 | 2.1 × 10−1 | 7.0 × 10−1 | |
A11-Ag p. | 1.3 × 10−4 | 1.3 × 10−4 | 1.4 × 10−4 | 1.5 × 10−4 | 1.3 × 10−4 | 1.8 × 10−4 | 1.4 × 10−4 | 1.2 × 10−4 | 7.4 × 10−1 | 1.4 × 10−4 | 1.7 × 10−4 | |
A11 e. | 1.4 × 10−1 | 9.9 × 10−1 | 9.9 × 10−1 | 9.6 × 10−1 | 2.7 × 10−1 | 1.8 × 10−4 | 4.5 × 10−1 | 7.8 × 10−4 | 1.3 × 10−4 | 9.9 × 10−1 | 1.5 × 10−1 | |
A11-Ag e. | 7.6 × 10−1 | 2.8 × 10−1 | 1.6 × 10−1 | 3.9 × 10−1 | 6.5 × 10−1 | 1.4 × 10−4 | 4.5 × 10−1 | 3.9 × 10−2 | 1.4 × 10−4 | 3.2 × 10−1 | 6.8 × 10−1 | |
A22 p. | 5.5 × 10−2 | 9.6 × 10−4 | 9.7 × 10−4 | 7.5 × 10−4 | 7.5 × 10−2 | 1.2 × 10−4 | 7.8 × 10−4 | 3.9 × 10−2 | 1.3 × 10−4 | 7.3 × 10−4 | 1.0 × 10−1 | |
A22-Ag p. | 1.7 × 10−4 | 1.4 × 10−4 | 1.3 × 10−4 | 1.8 × 10−4 | 1.4 × 10−4 | 7.4 × 10−1 | 1.3 × 10−4 | 1.4 × 10−4 | 1.3 × 10−4 | 1.5 × 10−4 | 1.3 × 10−4 | |
A22 e. | 1.2 × 10−1 | 8.6 × 10−1 | 9.6 × 10−1 | 9.5 × 10−1 | 2.1 × 10−1 | 1.4 × 10−4 | 9.9 × 10−1 | 3.2 × 10−1 | 7.3 × 10−4 | 1.5 × 10−4 | 1.3 × 10−1 | |
A22-Ag e. | 8.9 × 10−1 | 1.4 × 10−1 | 1.2 × 10−1 | 1.4 × 10−1 | 7.0 × 10−1 | 1.7 × 10−4 | 1.5 × 10−1 | 6.8 × 10−1 | 1.0 × 10−1 | 1.3 × 10−4 | 1.3 × 10−1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smagin, A.V.; Sadovnikova, N.B.; Belyaeva, E.A.; Korchagina, C.V. Biodegradability of Gel-Forming Superabsorbents for Soil Conditioning: Kinetic Assessment Based on CO2 Emissions. Polymers 2023, 15, 3582. https://doi.org/10.3390/polym15173582
Smagin AV, Sadovnikova NB, Belyaeva EA, Korchagina CV. Biodegradability of Gel-Forming Superabsorbents for Soil Conditioning: Kinetic Assessment Based on CO2 Emissions. Polymers. 2023; 15(17):3582. https://doi.org/10.3390/polym15173582
Chicago/Turabian StyleSmagin, Andrey V., Nadezhda B. Sadovnikova, Elena A. Belyaeva, and Christina V. Korchagina. 2023. "Biodegradability of Gel-Forming Superabsorbents for Soil Conditioning: Kinetic Assessment Based on CO2 Emissions" Polymers 15, no. 17: 3582. https://doi.org/10.3390/polym15173582
APA StyleSmagin, A. V., Sadovnikova, N. B., Belyaeva, E. A., & Korchagina, C. V. (2023). Biodegradability of Gel-Forming Superabsorbents for Soil Conditioning: Kinetic Assessment Based on CO2 Emissions. Polymers, 15(17), 3582. https://doi.org/10.3390/polym15173582