Different Polymers for the Base of Removable Dentures? Part I: A Narrative Review of Mechanical and Physical Properties
Abstract
:1. Introduction
2. Mechanical Properties of Polymer Biomaterials (PMMA, Polyamide, and PEEK)
3. Different Materials Incorporated in PMMA, Polyamide, and PEEK Improve Their Physical Characteristics
4. New Fabrication Processes Improve the Properties of Dentures
4.1. Advantages for Milling Dentures
4.2. Indication for Printing Dentures
4.3. Manufacturing Specificity of PEEK
5. Polymer Choice According to Indications
5.1. Chewing Efficiency
5.2. Fracture Cracks in the Denture Base
6. Future Prospects
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Olshansky, S.J.; Carnes, B.A. Ageing and Health. Lancet 2010, 375, 25. [Google Scholar] [CrossRef] [PubMed]
- Peres, M.A.; Macpherson, L.M.D.; Weyant, R.J.; Daly, B.; Venturelli, R.; Mathur, M.R.; Listl, S.; Celeste, R.K.; Guarnizo-Herreño, C.C.; Kearns, C.; et al. Oral diseases: A global public health challenge. Lancet 2019, 394, 249–260. [Google Scholar] [CrossRef] [PubMed]
- United Nations. World Population Prospects 2019: Highlights; United Nations: New York, NY, USA, 2019. [Google Scholar]
- Khan, A.A.; Fareed, M.A.; Alshehri, A.H.; Aldegheishem, A.; Alharthi, R.; Saadaldin, S.A.; Zafar, M.S. Mechanical properties of the modified denture base materials and polymerization methods: A systematic review. IJMS 2022, 23, 5737. [Google Scholar] [CrossRef] [PubMed]
- Ali, U.; Karim, K.J.B.A.; Buang, N.A. A review of the properties and applications of poly (methyl methacrylate) (PMMA). Polym. Rev. 2015, 55, 678–705. [Google Scholar] [CrossRef]
- Aguirre, B.C.; Chen, J.-H.; Kontogiorgos, E.D.; Murchison, D.F.; Nagy, W.W. Flexural strength of denture base acrylic resins processed by conventional and CAD-CAM methods. J. Prosthet. Dent. 2020, 123, 641–646. [Google Scholar] [CrossRef] [PubMed]
- Jagger, D.C.; Jagger, R.G.; Allen, S.M.; Harrison, A. An investigation into the transverse and impact strength of ‘high strength’ denture base acrylic resins. J. Oral Rehabil. 2002, 29, 263–267. [Google Scholar] [CrossRef] [PubMed]
- Soygun, K.; Bolayir, G.; Boztug, A. Mechanical and thermal properties of polyamide versus reinforced pmma denture base materials. J. Adv. Prosthodont. 2013, 5, 153. [Google Scholar] [CrossRef] [PubMed]
- Wieckiewicz, M.; Opitz, V.; Richter, G.; Boening, K.W. Physical properties of polyamide-12 versus PMMA denture base material. Biomed. Res. Int. 2014, 2014, 150298. [Google Scholar] [CrossRef]
- Vojdani, M.; Giti, R. Polyamide as a Denture Base Material: A Literature Review. J. Dent. 2015, 16, 1–9. [Google Scholar]
- Shrivastava, S.P.; Dable, R.; Raj, A.P.N.; Mutneja, P.; Srivastava, S.B.; Haque, M. Comparison of Mechanical Properties of PEEK and PMMA: An In Vitro Study. J. Contemp. Dent. Pract. 2021, 22, 179–183. [Google Scholar]
- Khurshid, Z.; Nedumgottil, B.M.; Ali, R.M.M.; Bencharit, S.; Najeeb, S. Insufficient Evidence to Ascertain the Long-Term Survival of PEEK Dental Prostheses: A Systematic Review of Clinical Studies. Polymers 2022, 14, 2441. [Google Scholar] [CrossRef] [PubMed]
- Kurtz, S.M. Synthesis and processing of PEEK for surgical implants. In PEEK Biomaterials Handbook; Elsevier: Amsterdam, The Netherlands, 2012; pp. 9–22. [Google Scholar]
- Muhsin, S.A.; Hatton, P.V.; Johnson, A.; Sereno, N.; Wood, D.J. Determination of polyetheretherketone (PEEK) mechanical properties as a denture material. Saudi Dent. J. 2019, 31, 382–391. [Google Scholar] [CrossRef] [PubMed]
- Zafar, M.S. Prosthodontic Applications of Polymethyl Methacrylate (PMMA): An Update. Polymers 2020, 12, 2299. [Google Scholar] [CrossRef] [PubMed]
- Ucar, Y.; Akova, T.; Aysan, I. Mechanical properties of polyamide versus different PMMA denture base materials: Polyamide as denture base material. J. Prosthodont. 2012, 21, 173–176. [Google Scholar] [CrossRef] [PubMed]
- Machado, C.; Sanchez, E.; Azer, S.S.; Uribe, J.M. Comparative study of the transverse strength of three denture base materials. J. Dent. 2007, 35, 930–933. [Google Scholar] [CrossRef] [PubMed]
- Neshati, A.; Kouchak Dezfouli, N.; Sadafi, M.; Omidi, S. Compressive Strength of Three Types of Heat-Cure Acrylic Resins: Acropars, Acrosun, and Meliodent. J. Res. Dent. Maxillofac. Sci. 2021, 6, 14–17. [Google Scholar] [CrossRef]
- Alla, R.; Raghavendra, K.; Vyas, R.; Konakanchi, A. Conventional and contemporary polymers for the fabrication of denture prosthesis: Part I–overview, composition and properties. Int. J. Appl. Dent. Sci. 2015, 1, 82–89. [Google Scholar]
- Al-Dwairi, Z.N.; Al Haj Ebrahim, A.A.; Baba, N.Z. A Comparison of the Surface and Mechanical Properties of 3D Printable Denture-Base Resin Material and Conventional Polymethylmethacrylate (PMMA). J. Prosthodont. 2022, 32, 40–48. [Google Scholar] [CrossRef]
- Takabayashi, Y. Characteristics of denture thermoplastic resins for non-metal clasp dentures. Dent. Mater. J. 2010, 29, 353–361. [Google Scholar] [CrossRef]
- Yunus, N.; Rashid, A.A.; Azmi, L.L.; Abu-Hassan, M.I. Some Flexural Properties of a Nylon Denture Base Polymer. J. Oral Rehabil. 2005, 32, 65671. [Google Scholar] [CrossRef]
- Abhay, P.N.; Karishma, S. Comparative Evaluation of Impact and Flexural Strength of Four Commercially Available Flexible Denture Base Materials: An In Vitro Study. J. Indian Prosthodont. Soc. 2013, 13, 499–508. [Google Scholar] [CrossRef] [PubMed]
- Wadachi, J.; Sato, M.; Igarashi, Y. Evaluation of the rigidity of dentures made of injection-molded materials. Dent. Mater. J. 2013, 32, 508–511. [Google Scholar] [CrossRef] [PubMed]
- Maloo, L.M.; Toshniwal, S.H.; Reche, A.; Paul, P.; Wanjari, M.B. A Sneak Peek toward Polyaryletherketone (PAEK) Polymer: A Review. Cureus 2022, 14, e31042. [Google Scholar] [CrossRef] [PubMed]
- ISO 604; Plastics—Determination of compressive properties. ISO: Geneva, Switzerland, 2002.
- ISO 527; Plastics—Determination of tensile properties—Part 1: General principles. ISO: Geneva, Switzerland, 2019.
- Marei, M.K. Reinforcement of denture base resin with glass fillers. J. Prosthodont. 1999, 8, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Stipho, H.D. Effect of glass fiber reinforcement on some mechanical properties of autopolymerizing polymethyl methacrylate. J. Prosthet. Dent. 1998, 79, 580–584. [Google Scholar] [CrossRef] [PubMed]
- Jagger, D.; Harrison, A.; Jagger, R.; Milward, P. The effect of the addition of poly(methyl methacrylate) fibres on some properties of high strength heat-cured acrylic resin denture base material: Addition of fibres to high strength acrylic resin. J. Oral Rehabil. 2003, 30, 231–235. [Google Scholar] [CrossRef] [PubMed]
- Jagger, D.C.; Harrison, A.; Jandt, K.D. The reinforcement of dentures. J. Oral Rehabil. 1999, 26, 185–194. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.K.; Park, J.M.; Lee, M.H.; Jung, J.Y.; Li, S.; Wang, X. Effects of chairside polishinand brushing on surface roughness of acrylic denture base resins. J. Wuhan Univ. Technol.-Mat. Sci. Edit 2009, 24, 100–105. [Google Scholar] [CrossRef]
- Zarb, G.; Hobkirk, J.; Eckert, S.; Jacob, R. Prosthodontic Treatment for Edentulous Patients, 13th ed.; Mosby: St. Louis, MO, USA, 2013; pp. 153–154. [Google Scholar]
- Anusavice, K.J.; Shen, C.; Rawls, H.R. Phillips’ Science of Dental Materials; Elsevier Health Sciences: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Leão, R.D.S.; Maior, J.R.S.; Lemos, C.A.D.A.; Vasconcelos, B.C.D.E.; Montes, M.A.J.R.; Pellizzer, E.P.; Moraes, S.L.D. Complications with PMMA compared with other materials used in cranioplasty: A systematic review and meta-analysis. Braz. Oral Res. 2018, 32. [Google Scholar] [CrossRef]
- Schwitalla, A.; Müller, W.-D. PEEK Dental Implants: A review of the literature. J. Oral Implantol. 2013, 39, 743–749. [Google Scholar] [CrossRef]
- Moon, S.M.; Ingalhalikar, A.; Highsmith, J.M.; Vaccaro, A.R. Biomechanical rigidity of an all-polyetheretherketone anterior thoracolumbar spinal reconstruction construct: An in vitro corpectomy model. Spine J. 2009, 9, 330–335. [Google Scholar] [CrossRef] [PubMed]
- Xin, H.; Shepherd, D.E.T.; Dearn, K.D. Strength of poly-ether-ether-ketone: Effects of sterilisation and thermal ageing. Polym. Test. 2013, 32, 1001–1005. [Google Scholar] [CrossRef]
- Liebermann, A.; Wimmer, T.; Schmidlin, P.R.; Scherer, H.; Löffler, P.; Roos, M.; Stawarczyk, B. Physicomechanical characterization of polyetheretherketone and current esthetic dental cad/cam polymers after aging in different storage media. J. Prosthet. Dent. 2016, 115, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Skirbutis, G.; Dzingutė, A.; Masiliūnaitė, V.; Šulcaitė, G.; Žilinskas, J. A review of peekpolymer’s properties and its use in prosthodontics. Stomatologija 2017, 19, 19–23. [Google Scholar] [PubMed]
- Mark, J.E. Physical Properties of Polymers Handbook; Springer: New York, NY, USA, 2007; Volume 1076, pp. 3–8. [Google Scholar]
- Kutz, M. Handbook of Materials Selection; John Wiley& Sons. Inc., Publication: Hoboken, NJ, USA, 2002. [Google Scholar]
- Nguyen, L.G.; Kopperud, H.M.; Øilo, M. Water sorption and solubility of polyamide denture base materials. Acta Biomater. Odontol. Scand. 2017, 3, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Hamanaka, I.; Iwamoto, M.; Lassila, L.; Vallittu, P.; Shimizu, H.; Takahashi, Y. Influence of water sorption on mechanical properties of injection-molded thermoplastic denture base resins. Acta Odontol. Scand. 2014, 72, 859–865. [Google Scholar] [CrossRef] [PubMed]
- Al-Dwairi, Z.N.; Tahboub, K.Y.; Baba, N.Z.; Goodacre, C.J.; Özcan, M. A Comparison of the Surface Properties of CAD/CAM and Conventional Polymethylmethacrylate (PMMA). J. Prosthodont. 2019, 28, 452–457. [Google Scholar] [CrossRef] [PubMed]
- Sultana, N.; Ahmed, S.; Nandini, V.V.; Lathief, J.; Boruah, S. An In Vitro Comparison of microbial adhesion on three different denture base materials and its relation to surface roughness. Cureus 2023, 15, 37085. [Google Scholar] [CrossRef]
- Shah, J. Comparative evaluation of sorption, solubility and microhardness of heat cure polymethylmethacrylate denture base resin & flexible denture base resin. J. Clin. Diagn. Res. 2014, 8, ZF01–ZF04. [Google Scholar]
- Lai, Y.; Lui, H.; Lee, S. In vitro color stability, stain resistance, and water sorption of four removable gingival flange materials. J. Prosthet. Dent. 2003, 90, 293–300. [Google Scholar] [CrossRef]
- Abuzar, M.A.; Bellur, S.; Duong, N.; Kim, B.B.; Lu, P.; Palfreyman, N.; Surendran, D.; Tran, V.T. Evaluating surface roughness of a polyamide denture base material in comparison with poly (methyl methacrylate). J. Oral Sci. 2010, 52, 577–581. [Google Scholar] [CrossRef] [PubMed]
- Porojan, L.; Toma, F.R.; Bîrdeanu, M.I.; Vasiliu, R.D.; Uțu, I.-D.; Matichescu, A. Surface characteristics and color stability of dental peek related to water saturation and thermal cycling. Polymers 2022, 14, 2144. [Google Scholar] [CrossRef] [PubMed]
- Porojan, L.; Toma, F.R.; Vasiliu, R.D.; Topală, F.-I.; Porojan, S.D.; Matichescu, A. Optical properties and color stability of dental peek related to artificial ageing and staining. Polymers 2021, 13, 4102. [Google Scholar] [CrossRef] [PubMed]
- ISO 1567; Dentistry—Denture base polymers. ISO: Geneva, Switzerland, 1999.
- Chuchulska, B.; Zlatev, S. Linear dimensional change and ultimate tensile strength of polyamide materials for denture bases. Polymers 2021, 13, 3446. [Google Scholar] [CrossRef] [PubMed]
- Zidan, S.; Silikas, N.; Alhotan, A.; Haider, J.; Yates, J. Investigating the mechanical properties of zro2-impregnated pmma nanocomposite for denture-based applications. Materials 2019, 12, 1344. [Google Scholar] [CrossRef] [PubMed]
- Aydogan Ayaz, E.; Durkan, R. Influence of acrylamide monomer addition to the acrylic denture-base resins on mechanical and physical properties. Int. J. Oral Sci. 2013, 5, 229–235. [Google Scholar] [CrossRef] [PubMed]
- Li, G.H.; Chen, S.; Grymak, A.; Waddell, J.N.; Kim, J.J.; Choi, J.J.E. Fibre-reinforced and repaired PMMA denture base resin: Effect of placement on the flexural strength and load-bearing capacity. J. Mech. Behav. Biomed. Mater. 2021, 124, 104828. [Google Scholar] [CrossRef]
- Hayran, Y.; Keskin, Y. Flexural strength of polymethyl methacrylate copolymers as a denture base resin. Dent. Mater. J. 2019, 38, 678–686. [Google Scholar] [CrossRef] [PubMed]
- Ranganathan, A.; Karthigeyan, S.; Chellapillai, R.; Rajendran, V.; Balavadivel, T.; Velayudhan, A. Effect of Novel Cycloaliphatic Comonomer on the Flexural and Impact Strength of Heat-Cure Denture Base Resin. J. Oral Sci. 2021, 63, 14–17. [Google Scholar] [CrossRef]
- Sahin, O.; Ozdemir, A.K.; Turgut, M.; Boztug, A.; Sumer, Z. Investigation of flexural strength and cytotoxicity of acrylic resin copolymers by using different polymerization methods. J. Adv. Prosthodont. 2015, 7, 98. [Google Scholar] [CrossRef]
- Yang, A.; Zhao, D.; Wu, Y.; Xu, C. Effect of polyimide addition on mechanical properties of PMMA-based denture material. Dent. Mater. J. 2017, 36, 560–565. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Huang, M.; Dang, P.; Xie, J.; Zhang, X.; Yan, X. PEEK in fixed dental prostheses: Application and adhesion improvement. Polymers 2022, 14, 2323. [Google Scholar] [CrossRef] [PubMed]
- Stepashkin, A.A.; Mohammad, H.; Makarova, E.D.; Odintsova, Y.V.; Laptev, A.I.; Tcherdyntsev, V.V. Deformation behavior of single carbon fibers impregnated with polysulfone by polymer solution method. Polymers 2023, 15, 570. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, B.; Azak, A.N.; Alp, G.; Ekşi, H. Use of CAD-CAM technology for the fabrication of complete dentures: An alternative technique. J. Prosthet. Dent. 2017, 118, 140–143. [Google Scholar] [CrossRef] [PubMed]
- Janeva, N.M.; Kovacevska, G.; Elencevski, S.; Panchevska, S.; Mijoska, A.; Lazarevska, B. Advantages of CAD/CAM versus conventional complete dentures—A review. Open Access Maced. J. Med. Sci. 2018, 6, 1498–1502. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, M.; Kamnoedboon, P.; McKenna, G.; Angst, L.; Schimmel, M.; Özcan, M.; Müller, F. CAD-CAM removable complete dentures: A systematic review and meta-analysis of trueness of fit, biocompatibility, mechanical properties, surface characteristics, color stability, time-cost analysis, clinical and patient-reported outcomes. J. Dent. 2021, 113, 103777. [Google Scholar] [CrossRef] [PubMed]
- Takaichi, A.; Fueki, K.; Murakami, N.; Ueno, T.; Inamochi, Y.; Wada, J.; Arai, Y.; Wakabayashi, N. A systematic review of digital removable partial dentures. part ii: Cad/cam framework, artificial teeth, and denture base. J. Prosthodont. Res. 2022, 66, 53–67. [Google Scholar] [CrossRef] [PubMed]
- Steinmassl, P.-A.; Klaunzer, F.; Steinmassl, O.; Dumfahrt, H.; Grunert, I. Evaluation of currently available CAD/CAM denture systems. Int. J. Prosthodont. 2017, 30, 116–122. [Google Scholar] [CrossRef] [PubMed]
- Kattadiyil, M.T.; Jekki, R.; Goodacre, C.J.; Baba, N.Z. Comparison of treatment outcomes in digital and conventional complete removable dental prosthesis fabrications in a predoctoral setting. J. Prosthet. Dent. 2015, 114, 818–825. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira Limírio, J.P.J.; Gomes, J.M.d.L.; Alves Rezende, M.C.R.; Lemos, C.A.A.; Rosa, C.D.D.R.D.; Pellizzer, E.P. Mechanical properties of polymethyl methacrylate as a denture base: Conventional versus CAD-CAM resin—A systematic review and meta-analysis of in vitro studies. J. Prosthet. Dent. 2022, 128, 1221–1229. [Google Scholar] [CrossRef]
- Prpić, V.; Schauperl, Z.; Ćatić, A.; Dulčić, N.; Čimić, S. Comparison of mechanical properties of 3d-printed, cad/cam, and conventional denture base materials. J. Prosthodont. 2020, 29, 524–528. [Google Scholar] [CrossRef] [PubMed]
- Zissis, A.; Yannikakis, S.; Jagger, R.G.; Waters, M.G. Wettability of Denture Materials. Quintessence Int. 2001, 32, 457–462. [Google Scholar] [PubMed]
- Kul, E.; Aladağ, L.İ.; Yesildal, R. Evaluation of Thermal Conductivity and Flexural Strength Properties of Poly (Methyl Methacrylate) Denture Base Material Reinforced with Different Fillers. J. Prosthet. Dent. 2016, 116, 803–810. [Google Scholar] [CrossRef]
- Kiran, A.; Amin, F.; Lone, M.A.; Moheet, I.A.; Lone, M.M.; Mahmood, S.; Zafar, M.S. Influence of processing techniques on microhardness and impact strength of conventional and reinforced heat cured acrylic resin: A comparative study. Mater. Plast. 2021, 58, 239–246. [Google Scholar] [CrossRef]
- Al-Dwairi, Z.N.; Tahboub, K.Y.; Baba, N.Z.; Goodacre, C.J. A Comparison of the Flexural and Impact Strengths and Flexural Modulus of CAD/CAM and Conventional Heat-cured Polymethyl Methacrylate (PMMA). J. Prosthodont. 2020, 29, 341–349. [Google Scholar] [CrossRef] [PubMed]
- Abualsaud, R.; Gad, M.M. Flexural strength of CAD/CAM denture base materials: Systematic review and meta-analysis of in-vitro studies. J. Int. Soc. Prev. Community Dent. 2022, 12, 160. [Google Scholar] [CrossRef] [PubMed]
- Ayman, A.-D. The residual monomer content and mechanical properties of CAD\CAM resins used in the fabrication of complete dentures as compared to heat cured resins. Electron. Physician 2017, 9, 4766. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, A.B.V.; Valente, M.L.d.C.; Sessa, J.P.N.; Gubitoso, B.; Schiavon, M.A.; Reis, A.C. dos. Adhesion of Biofilm, Surface Characteristics, and Mechanical Properties of Antimicrobial Denture Base Resin. J. Adv. Prosthodont. 2023, 15, 80. [Google Scholar] [CrossRef]
- Meirowitz, A.; Rahmanov, A.; Shlomo, E.; Zelikman, H.; Dolev, E.; Sterer, N. Effect of Denture Base Fabrication Technique on Candida Albicans Adhesion In Vitro. Materials 2021, 14, 221. [Google Scholar] [CrossRef]
- Choi, J.J.E.; Uy, C.E.; Ramani, R.S.; Waddell, J.N. Evaluation of Surface Roughness, Hardness and Elastic Modulus of Nanoparticle Containing Light-Polymerized Denture Glaze Materials. J. Mech. Behav. Biomed. Mater. 2020, 103, 103601. [Google Scholar] [CrossRef] [PubMed]
- De Foggi, C.C.; Machado, A.L.; Zamperini, C.A.; Fernandes, D.; Wady, A.F.; Vergani, C.E. Effect of Surface Roughness on the Hydrophobicity of a Denture-base Acrylic Resin and C Andida Albicans Colonization. J. Investig. Clin. Dent. 2016, 7, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Abdulwahhab, S.S. High-Impact Strength Acrylic Denture Base Material Processed by Autoclave. J. Prosthodont. Res. 2013, 57, 2886293. [Google Scholar] [CrossRef] [PubMed]
- Schaefer, R.J. Mechanical Properties of Rubber. In Harris’ Shock and Vibration Handbook, 6th ed.; Piersol, A., Paez, T., Eds.; McGraw-Hill Companies Inc.: New York, NY, USA, 2010; pp. 33–41. [Google Scholar]
- Rickman, L.J.; Padipatvuthikul, P.; Satterthwaite, J.D. Contemporary denture base resins: Part 1. Dent. Update 2012, 39, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Gad, M.; Fouda, S.; Al-Harbi, F.; Näpänkangas, R.; Raustia, A. PMMA denture base material enhancement: A review of fiber, filler, and nanofiller addition. Int. J. Nanomed. 2017, 12, 3801–3812. [Google Scholar] [CrossRef] [PubMed]
- Hada, T.; Suzuki, T.; Minakuchi, S.; Takahashi, H. Reduction in maxillary complete denture deformation using framework material made by computer-aided design and manufacturing systems. J. Mech. Behav. Biomed. Mater. 2020, 103, 103514. [Google Scholar] [CrossRef]
- Goodacre, B.J.; Goodacre, C.J. Additive manufacturing for complete denture fabrication: A narrative review. J. Prosthodont. 2022, 31, 47–51. [Google Scholar] [CrossRef] [PubMed]
- Fueki, K.; Inamochi, Y.; Wada, J.; Arai, Y.; Takaichi, A.; Murakami, N.; Ueno, T.; Wakabayashi, N. A systematic review of digital removable partial dentures. part I: Clinical evidence, digital impression, and maxillomandibular relationship record. J. Prosthodont. Res. 2022, 66, 40–52. [Google Scholar] [CrossRef] [PubMed]
- Zeidan, A.A.E.; Sherif, A.F.; Baraka, Y.; Abualsaud, R.; Abdelrahim, R.A.; Gad, M.M.; Helal, M.A. Evaluation of the effect of different construction techniques of CAD-CAM milled, 3D-printed, and polyamide denture base resins on flexural strength: An in vitro comparative study. J. Prosthodont. 2023, 32, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Sharaf, M.Y.; Eskander, A.E. PEEK versus metallic attachment-retained obturators for patient satisfaction: A randomized controlled trial. Eur. J. Dent. 2022, 16, 80–95. [Google Scholar] [CrossRef] [PubMed]
- Luo, C.; Liu, Y.; Peng, B.; Chen, M.; Liu, Z.; Li, Z.; Kuang, H.; Gong, B.; Li, Z.; Sun, H. PEEK for oral applications: Recent advances in mechanical and adhesive properties. Polymers 2023, 15, 386. [Google Scholar] [CrossRef]
- Kurtz, S.M.; Devine, J.N. PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials 2007, 28, 4845–4869. [Google Scholar] [CrossRef] [PubMed]
- Adler, S.; Kistler, S.; Kistler, F.; Lermer, J.; Neugebauer, J. Compression-moulding rather than milling: A wealth of possible applications for high performance polymers. Quintessenz Zahntech. 2013, 39, 2–10. [Google Scholar]
- Tannous, F.; Steiner, M.; Shahin, R.; Kern, M. Retentive forces and fatigue resistance of thermoplastic resin clasps. Dent. Mater. 2012, 28, 273–278. [Google Scholar] [CrossRef] [PubMed]
- Peng, T.-Y.; Ogawa, Y.; Akebono, H.; Iwaguro, S.; Sugeta, A.; Shimoe, S. Finite-element analysis and optimization of the mechanical properties of polyetheretherketone (PEEK) clasps for removable partial dentures. J. Prosthet. Dent. 2020, 64, 250–256. [Google Scholar] [CrossRef] [PubMed]
- Sikder, P.; Challa, B.T.; Gummadi, S.K. A comprehensive analysis on the processing-structure-property relationships of FDM-Based 3-D printedpolyetheretherketone (PEEK) structures. Materialia 2022, 22, 101427. [Google Scholar] [CrossRef]
- Liu, Y.; Fang, M.; Zhao, R.; Liu, H.; Li, K.; Tian, M.; Niu, L.; Xie, R.; Bai, S. Clinical applications of polyetheretherketone in removable dental prostheses: Accuracy characteristics, and performance. Polymers 2022, 14, 4615. [Google Scholar] [CrossRef] [PubMed]
- El Magri, A.; El Mabrouk, K.; Vaudreuil, S.; Chibane, H.; Touhami, M.E. Optimization of printing parameters for improvement of mechanical and thermal performances of 3D printed poly(ether ether ketone) parts. J. Appl. Polym. Sci. 2020, 137, 49087. [Google Scholar] [CrossRef]
- Abd El Rahim, N. Patient satisfaction, retentive characteristics and masticatory efficiency in maxillary single denture wearers with different denture bases: A randomized crossover clinical trial. Al-Azhar Dent. Girls 2021, 8, 81–90. [Google Scholar] [CrossRef]
- Al-Wakeel, B.; Sakr, M.H.; Baraka, Y. Comparison of Biting Force and Masticatory Efficiencyin Patient with Different Denture Base Material. Al-Azhar J. Dent. Sci. 2018, 21, 401–405. [Google Scholar] [CrossRef]
- Ramadan, M.; Sakr, M.H.; Al-Kholy, R.M. Clinical evaluation of chewing efficiency for flexible removable partial dentures in bilateral free-end saddle cases. Al-Azhar J. Dent. Sci. 2018, 21, 189–195. [Google Scholar] [CrossRef]
- Macura-Karbownik, A.; Chladek, G.; Żmudzki, J.; Kasperski, J. Chewing efficiency and occlusal forces in pmma, acetal and polyamide removable partial denture wearers. Acta Bioeng. Biomech. 2016, 18, 137–144. [Google Scholar] [PubMed]
- Dhiman, R.; Chowdhury, S.R. Midline fractures in single maxillary complete acrylic vs flexible dentures. Med. J. Armed Forces India 2009, 65, 141–145. [Google Scholar] [CrossRef] [PubMed]
- Hazari, P. A comparison of masticatory performance and efficiency of complete dentures made with high impact and flexible resins: A pilot study. JCDR 2015, 9, ZC29. [Google Scholar] [CrossRef] [PubMed]
- Al-Jammali, Z. Clinical evaluation of maximum bite force in patient with heat cure acrylic and flexible partial dentures. Med. J. Bab 2017, 14, 509–517. [Google Scholar]
- Fueki, K.; Ohkubo, C.; Yatabe, M.; Arakawa, I.; Arita, M.; Ino, S.; Kanamori, T.; Kawai, Y.; Kawara, M.; Komiyama, O.; et al. Clinical application of removable partial dentures using thermoplastic resin. part II: Material properties and clinical features of non-metal clasp dentures. J. Prosthodont. Res. 2014, 58, 71–84. [Google Scholar] [CrossRef]
- Hamanaka, I.; Takahashi, Y.; Shimizu, H. Mechanical properties of injection-molded thermoplastic denture base resins. Acta Odontol. Scand. 2011, 69, 75–79. [Google Scholar] [CrossRef] [PubMed]
- Fayad, M.; Harby, N. Masticatory performance and bite force evaluation in completely edentulous patients rehabilitated with different thermoplastic denture base materials. Egypt. Dent. J. 2017, 63, 1861–1869. [Google Scholar] [CrossRef]
- Reis, J.M.D.S.N.; Vergani, C.E.; Pavarina, A.C.; Giampaolo, E.T.; Machado, A.L. Effect of Relining, Water Storage and Cyclic Loading on the Flexural Strength of a Denture Base Acrylic Resin. J. Dent. 2006, 34, 420–426. [Google Scholar] [CrossRef] [PubMed]
- Geckili, O.; Bilhan, H.; Mumcu, E.; Tuncer, N. The influence of maximum bite force on patient satisfaction and quality of life of patients wearing mandibular implant overdentures. J. Oral Implantol. 2012, 38, 271–277. [Google Scholar] [CrossRef]
- Rismanchian, M.; Bajoghli, F.; Mostajeran, Z.; Fazel, A.; Eshkevari, P. Effect of implants on maximum bite force in edentulous patients. J. Oral Implantol. 2009, 35, 196–200. [Google Scholar] [CrossRef] [PubMed]
- Polychronakis, N.; Sarafianou, A.; Zissis, A.; Papadopoulos, T. The influence of thermocycling on the flexural strength of a polyamide denture base material. Acta Stomatol. Croat. 2017, 51, 309–315. [Google Scholar] [CrossRef] [PubMed]
- Vozza, I.; Manzon, L.; Passarelli, P.C.; Pranno, N.; Poli, O.; Grippaudo, C. The effects of wearing a removable-partial-denture on the bite forces: A cross-sectional study. Int. J. Environ. Res. Public Health 2021, 18, 11401. [Google Scholar] [CrossRef] [PubMed]
- Barapatre, D.; Somkuwar, S.; Mishra, S.; Chowdhary, R. The effects of reinforcement with nanoparticles of polyetheretherketone, zirconium oxide and its mixture on flexural strength of pmma resin. Eur. Oral Res. 2022, 56, 61–66. [Google Scholar] [CrossRef] [PubMed]
- Beyli, M.S.; von Fraunhofer, J.A. An analysis of causes of fracture of acrylic resin dentures. J. Prosthet. Dent. 1981, 46, 238–241. [Google Scholar] [CrossRef] [PubMed]
- Uzun, G.; Hersek, N.; Tinçer, T. Effect of five woven fiber reinforcements on the impact and transverse strength of a denture base resin. J. Prosthet. Dent. 1999, 81, 616–620. [Google Scholar] [CrossRef] [PubMed]
- AlQahtani, M.; Haralur, S.B. Influence of different repair acrylic resin and thermocycling on the flexural strength of denture base resin. Medicina 2020, 56, 50. [Google Scholar] [CrossRef] [PubMed]
- Becerra, J.; Mainjot, A.; Hüe, O.; Sadoun, M.; Nguyen, J. Influence of high-pressure polymerization on mechanical properties of denture base resins. J. Prosthodont. 2021, 30, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Abdul Amir, R.H. Enhancement of denture-based material pmma by incorporation of silanized halloysite nanotubes. Wiad. Lek. 2021, 74, 2293–2296. [Google Scholar] [CrossRef] [PubMed]
- Duarte, F.; Cuerva, C.; Fernández-Lodeiro, C.; Fernández-Lodeiro, J.; Jiménez, R.; Cano, M.; Lodeiro, C. Polymer Micro and Nanoparticles Containing B (III) Compounds as Emissive Soft Materials for Cargo Encapsulation and Temperature-Dependent Applications. Nanomaterials 2021, 11, 3437. [Google Scholar] [CrossRef] [PubMed]
- Rokaya, D.; Srimaneepong, V.; Sapkota, J.; Qin, J.; Siraleartmukul, K.; Siriwongrungson, V. Polymeric materials and films in dentistry: An overview. J. Adv. Res. 2018, 14, 25–34. [Google Scholar] [CrossRef]
- Tigmeanu, C.V.; Ardelean, L.C.; Rusu, L.-C.; Negrutiu, M.-L. Additive manufactured polymers in dentistry, current state-of-the-art and future perspectives-a review. Polymers 2022, 14, 3658. [Google Scholar] [CrossRef] [PubMed]
- Javaid, M.; Haleem, A.; Singh, R.P.; Rab, S.; Suman, R.; Kumar, L. Significance of 4D printing for dentistry: Materials, process, and potentials. J. Oral Biol. Craniofacial Res. 2022, 12, 388–395. [Google Scholar] [CrossRef] [PubMed]
Polymeric Biomaterials | Various Mechanical Properties | |||||||
---|---|---|---|---|---|---|---|---|
Tensile Strength (MPa) | Elastic Modulus (GPa, ISO 2 GPa) Young’s Modulus | Flexural Strength (MPa) ISO More Than 68 MPa | Compressive Strength MPa | Elongation at Break (%) | Flexural Modulus (1.2–2.2 GPa) | Impact Strength (KJ/m2) | Hardness (kg/cm2 or VHN) | |
Heat-cured PMMA Meliodent: compressive; SR ivocap: injection molded; Lucitone 199 | Mushin et al. [14]: PMMA HC (65 ± 5) PMMA pressed: (68 ± 9) | Mushin et al. [14]: PMMA HC (3.63 ± 0.02) PMMA pressed (3.78 ± 0.02) Zafar MS et al. [15]: HC PMMA (3.89 ± 1.32) | Ucar et al. [16]: Meliodent (81.1 ± 1) Ucar et al. [16]: SR ivocap (69.8 ± 1.4) Machado et al. [17]: Lucitone 199 (87.12 ± 8.1) Shrivastava et al. [11]: Lucitone 199 (84.05) | Neshati et al. [18]: Meliodent (71.9 ± 5.3) | Alla et al. [19] (4) | Ucar et al. [16]: Meliodent compression (1.70 ± 0.23) Ucar et al. [16]: SR ivocap injection (0.85 ± 0.27) | Al-Dwairi [20] et al.: Meliodent (14.75) | Ucar et al. [16]: Meliodent compression (16.9 ± 1.0 kg/cm2) Ucar et al. [16]: Sr Ivocap injection (13.5 ± 1.4 kg/cm2) |
Polyamide Valplast Lucitone FRS Flexite supreme Deflex, Breflex | Takabayashi et al. [21]: Valplast (45) Lucitone FRS (70) Flexite supreme (75) | Takabayashi et al. [21]: Valplast: (0.82 ± 0.11). Lucitone FRS: 1.63 ± 0.08). Flexite supreme (1.57 ± 0.11) Soygun et al. [8]: Valplast values were lower than those of PMMA conventionnel | Ucar et al. [16]: Deflex (78.3 ± 1.0) Yunus et al. [22]: Lucitone FRS is significantly lower than Meliodent and comparable with Lucitone 199. Takabayashi et al. [21]: Valplast, Lucitone FRS, and Flexite Supreme were lower according to the ISO standard (higher flexibility). | Abhay et al. [23]: Valplast (NR) Wadachi et al. [24]: Valplast (NR) | (11.94 ± 0.14) | Ucar et al. [16]: Deflex injection (0.70 ± 0.13) Yunus et al. [22]: Lucitone FRS (1.71) | Soygun et al. [8]: Valplast was higher than PMMA conventionnel. | Ucar et al. [16]: Deflex injection (7.5 ± 1.0 kg/cm2) |
PEEK Carbon-reinforced (CFR-PEEK) Maloo et al. [25] 2022 | Mushin et al. [14]: PEEK milled (Invi-bio and JuvoraLtd UK) (118 ± 5), PEEK pressed (97 ± 4) Maloo et al. [25]: PEEK (100, 69) | Mushin et al. [14]: PEEK milled (5.59 ± 0.03), PEEK pressed (4.93 ± 0.02) Maloo et al. [25] PEEK (3, 5) | Shrivastava et al. [11]: PEEK (183.3 ± 4.79) Maloo et al. [25]: PEEK. (163, 88). | PEEK, ISO 604 [26] (120) Maloo et al. [25] PEEK. (118–169) | PEEK, DIN ISO 527 [27] (20) | PEEK, DIN ISO 527 (3.7) | Mushin et al. [14]: PEEK milled (4 ± 0.1), PEEK pressed (4.8 ± 0.4) | Maloo et al. [25]: PEEK (26–29 VHN) |
Polymeric Biomaterials | Clinical Properties | ||||
---|---|---|---|---|---|
Density (g/cm3) at Room Temperature | Water Absorption, ISO (<32 μg/mm3) | Solubility, ISO (<1.6 μg/mm3) | (%) and Time for Water Absorption at Saturation | Roughness (below Threshold of Accepted Norm of 0.2 μm) | |
PMMA heat polymerized | Mark et al. [41]: PMMA (1.18) Kutz et al. [42] | Nguyen et al. [43]: SR Ivocap HIP (25.8) | Nguyen et al. [43]: SR Ivocap HIP (<0.6) slight increase in weight (p < 0.5) | Nguyen et al. [43]: SR ivocap HIP 32 days Hamanaka et al. [44] PMMA 30 days | Al Dwairi et al. [45] 2019. Meliodent (0.22 ± 0.07) Sultana N et al. [46] 2023 SR Ivocap HI (0.0669 ± 0.02 µm) |
Polyamide molded injection | Nguyen et al. [43]: polyamide (1.14) | Nguyen et al. [43]: Breflex (30.4), Valplast (13.6) Tagabayashi et al. [21]: Valplast (17). Lucitone FRS (39); Flexite supreme: (13). | Nguyen et al. [43]: Breflex and Valplast (net increase in weight) (p < 0.5) Shah J et al. [47] Flexite < PMMA Acron | Nguyen et al. [43]: Breflex 45 days Valplast 35 days (3.0) Lai YL et al. [48] Polyamides. 56 days | Abuzar et al. [49]: Flexiplast unpolished (1.11 ± 0.17), polished (0.14 ± 0.02); still noticeably rougher (>3 times) than the acrylic after polishing Sultana N et al. [46] 2023 Macro Flexi (0.1971 ± 0.02 µm) |
PEEK Bio HPP (ceramic-reinforced), Finoframe 100% PEEK, Juvora medical 100% nature. | Maloo et al. [25]: PEEK (1.30–1.54) Skirbutis et al. [40] | Maloo et al. [25]: PEEK (0.1–0.5) Liebermann et al. [39] | Maloo et al. [25]: PEEK (<0.03) | Porojan et al. [50]: Bio HPP Finoframe PEEK Juvora medical PEEK 7 days (0.21–0.27); the weight changes in subsequent weeks were lower than 0.05%. | Porojan et al. [51]: Bio HPP (0.09 ± 0.01). Finoframe (0.08 ± 0.01). Juvora (0.08 ± 0.01) |
Parameters | ||||||
---|---|---|---|---|---|---|
Polymeric Biomaterials | Contact Angle (Zissis et al. [71] 2001) | Surface Roughness (Ra) 0.2 µm Acceptable (Kul et al. [72] Dent 2016) | Vickers Hardness Number (VHN) | Flexural Strength MPa ISO: 65 MPa (Prpic et al. [70] 2020) | Flexural Modulus | Impact Strength kJ/m2 |
PMMA heat-polymerized Meliodent | Al Dwairi et al. [20] 2022: Meliodent (66.71 ± 3.38°) | Al Dwairi et al. [20] 2022: (0.22 ± 0.07 µm) | (18.11 ± 0.65) (differs with level of residual monomers) Al Dwairi et al. [20] 2022. Increased with copolymer Kiran et al. [73] 2021 | Al Dwairi et al. [20] 2022: (92.44 ± 7.91) | Al Dwairi et al. [20] (2.084.99 ± 180.33 MPa) | Al Dwairi et al. [74] 2020): (16.64 ± 1.69 kJ/m2) (14.76 ± 2.11 kJ/m2) |
3D-printed resin NextDent Dentona Asiga | Al Dwairi et al. [20] 2022: NextDent: (72.73 ± 2.10°), Dentona: (70.20 ± 2.43°) Asiga: (73.44 ± 2.74°) | Al Dwairi et al. [20]: Nextdent: (0.22 ± 0.07 µm) Dentona: (0.21 ± 0.06) Asiga: (0.19 ± 0.03 µm) | Al Dwairi et al. [20]: Dentona: (16.41 ± 0.96). Asiga: (16.24 ± 0.79) Next Dent: (16.20 ± 0.93) | Al Dwairi et al. [20]: Dentona: (81.33 ± 5.88). Asiga: (79.33 ± 6.07) Next Dent: (74.89 ± 8.44) | Al Dwairi et al. [20]: Nextdent > 2 GPa Dentona and Asiga < 2 GPa with bending before fracture. Dentona and Asiga exhibited considerable bending before fracture | Al Dwairi et al. [20]: Dentona: (17.98 ± 1.76 kJ/m2) Asiga: (16.76 ± 1.75 kJ/m2) Next Dent: (1.20 ± 0.69 kJ/m2) |
Milled PMMA AvaDent Tizian-Shütz | Al-Dwairi et al. [45] 2019: Avadent: (72.87 ± 4.83°) Tizian-Shütz: (69.53 ± 3.87°) | Al Dwairi et al. [45] 2019: Avadent: (0.16 ± 0.03 µm) Tizian-Shütz: (0.12 ± 0.02 µm) | Al-Dwairi et al. [45] 2019: Avadent: (20.62 ± 0.33) Tizian-Shütz: (19.80 ± 1.08) | Abualsau et al., 2020. [75]: High pressure and high temperature improved the mechanical properties FS of 3D-printed < FS of milled PMMA | NR | Al Dwairi et al. [74] 2020: (24.56 ± 2.63 to 29.56 ± 6.94 kJ/m2). Superiority of milled PMMA/3D-printed and HC-PMMA. (Abualsau et al., 2020 [75]) |
Results | Modified surface wettability varies with chemical composition, topography, and salivary pellicule. | Not significant, but differs between different polishing techniques (p > 0.05). | Measure the resistance material (p < 0.05). Milled PMMA had higher values/heat-polymerized PMMA (Prpic 2020 [70]) (Ayman et al. [76] 2017) | Measure compressive, tensile, and shear stresses of materials p < 0.05 | Higher flexural strength is advantageous for rigidity and stiffness (p < 0.05). | No statistically significant difference between Meliodent and 3D-printed resin (p < 0.05) |
Effects | High hydrophobicity of 3D-printed denture base increases retain stain, plaque, and water sorption more than HC PMMA (Al-Dwairi et al. [45] 2019, Teixeira et al. [77] 2023, Meirowitz, A et al. [78] 2021) | Smooth denture surfaces reduce microbial adhesion and plaque (Choi et al. [79] 2020) (Foggi et al. [80] 2016) | Measure of how material resists plastic deformation during abrasion and mastication. Abdulwahhab et al. [81] 2013 | Prpic et al. [70] 2020 found 3D (Next dent) had lower FS than milled PMMA, polyamide, and HC PMMA. Aguirre et al. [6]: rubber can favor resistance to deformation (Shaefer et al. [82]; 2010) | Ucar et al. [16] 2012: Not lower than 2 GPa | Reflects vulnerability of denture fracture. Superiority of milled pre-polymerized PMMA due to high temperature and pressure values (Prpic et al. [70] 2020). Improve IS by rubber particle; Rickman et al. [83] 2012. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Le Bars, P.; Bandiaky, O.N.; Le Guéhennec, L.; Clouet, R.; Kouadio, A.A. Different Polymers for the Base of Removable Dentures? Part I: A Narrative Review of Mechanical and Physical Properties. Polymers 2023, 15, 3495. https://doi.org/10.3390/polym15173495
Le Bars P, Bandiaky ON, Le Guéhennec L, Clouet R, Kouadio AA. Different Polymers for the Base of Removable Dentures? Part I: A Narrative Review of Mechanical and Physical Properties. Polymers. 2023; 15(17):3495. https://doi.org/10.3390/polym15173495
Chicago/Turabian StyleLe Bars, Pierre, Octave Nadile Bandiaky, Laurent Le Guéhennec, Roselyne Clouet, and Alain Ayepa Kouadio. 2023. "Different Polymers for the Base of Removable Dentures? Part I: A Narrative Review of Mechanical and Physical Properties" Polymers 15, no. 17: 3495. https://doi.org/10.3390/polym15173495