Effect of Sterilization on the Dimensional and Mechanical Behavior of Polylactic Acid Pieces Produced by Fused Deposition Modeling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design and Data Collection
2.2. Statistical Analysis
Listing 1. Nonparametric comparison code. |
#to import data [66]. install.packages(“readxl”) library(readxl) Z <- read_excel(“dir/data.xlsx”,col_names = TRUE) #to name factors; sterile, infill, Treatment. Z$sterile <- as.factor(Z$sterile) Z$sterile =factor(Z$sterile,labels= c(“control”,”sterile”)) #assumption 1. Correlation among variables [67]. > corz <- cor(Z, y=NULL, method = “pearson”) round(cor2z,2) #assumption 2. Variables must be continuous. #assumption 3. Non-parametric data. To group treatments. Group1 <- subset(Z,Tr==“Control-Infill-30%”) … Group9 <- subset(Z,Tr==“Sterile-infill-90%”) #variable Lt Behavior in group 1. qqnorm(Group1$Lt) qqline(Group1$Lt) #assumption 4. Homogeneous variance among groups [68]. install.packages(“car”) library(car) #Variance among treatments related to Lt variable [69]. leveneTest(Z$Lt ~ Z$Tr, Z = Z) install.packages(“FSA”) library(FSA) #Kruskal-Wallis’ test and Dunn’s Test for Lt Vector variable respect to treatments column Tr. Lt <- c(Z$Lt) kruskal.test(Lt,Z$Tr) dunnTest(Lt,Z$Tr,method=“bonferroni”) |
Listing 2. Multivariable analysis code. |
#to make a data copy. Z <- datapla2 #to disable factors columns (sterile, infill, Treatment) into the dataset. datapla2$Tr <- NULL #to normalize data. Data range between 0 and 1 for dimensionless comparison [70]. set.seed(250) #to make the results reproducible data.norm <- rnorm(nrow(datapla2)) # to shuffle rows using normal distribution. datapla2 <- datapla2[order(data.norm),] #data reorganization by the vector. normalize <- function(x){ + return((x-min(x))/(max(x)-min(x)))} # to define function. Data.N<-as.data.frame(lapply(datapla2[,c(1,2,3,4,5,6,7,8,9,10,11,12)], normalize)) #to apply the normalize function in data. #libraries [71,72,73,74] library(factoextra) library(cluster) library(ggplot2) library (stats) #clustering data with hierarchical method [64,75,76] #to define linkage methods m m <- c(“average”, “single”, “complete”, “ward”) names(m) <- c(“average”, “single”, “complete”, “ward”) #function to compute agglomerative coefficient ac <- function(x) {agnes(data.N, method = x)$ac} sapply(m, ac) # calculate agglomerative coefficient near to 1. #to calculate number of clusters k vs gap statistic, iterations B ≥ 500. gap_stat <- clusGap(data.N, FUN = hcut, nstart = 25, K.max = 10, B = 500) fviz_gap_stat(gap_stat) #results depend on the biggest jump in within-cluster distance after uniformity. #distance matrix calculation. res.dist = dist(x = data.N, method = “euclidean”) #hierarchical method. res.hc <- hclust(d = res.dist, method = “ward.D”) # Cluster dendrogram. fviz_dend(x = res.hc, cex = 0.7, lwd = 0.7) # Principal component analysis PCA plot. fviz_cluster(object = list(data=data.N, cluster=cutree(res.hc, k=5))) # to determine cluster by sample. g <-cutree(res.hc, k=5) table(g) g_pla <- cbind(data.N[,-1],g) print(g_pla) |
3. Results
3.1. Data Collection
3.2. Nonparametric comparison
3.3. Multivariable Analysis
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Paxton, N.C.; Nightingale, R.C.; Woodruff, M.A. Capturing Patient Anatomy for Designing and Manufacturing Personalized Prostheses. Curr. Opin. Biotechnol. 2022, 73, 282–289. [Google Scholar] [CrossRef] [PubMed]
- Pérez Davila, S.; González Rodríguez, L.; Chiussi, S.; Serra, J.; González, P. How to Sterilize Polylactic Acid Based Medical Devices? Polymers 2021, 13, 2115. [Google Scholar] [CrossRef] [PubMed]
- Chidambaranathan, A.S.; Balasubramanium, M. Comprehensive Review and Comparison of the Disinfection Techniques Currently Available in the Literature. J. Prosthodont. 2019, 28, e849–e856. [Google Scholar] [CrossRef] [PubMed]
- Gradwohl, M.; Chai, F.; Payen, J.; Guerreschi, P.; Marchetti, P.; Blanchemain, N. Effects of Two Melt Extrusion Based Additive Manufacturing Technologies and Common Sterilization Methods on the Properties of a Medical Grade PLGA Copolymer. Polymers 2021, 13, 572. [Google Scholar] [CrossRef]
- Amza, C.G.; Zapciu, A.; Baciu, F.; Vasile, M.I.; Popescu, D. Aging of 3d Printed Polymers under Sterilizing Uv-c Radiation. Polymers 2021, 13, 4467. [Google Scholar] [CrossRef]
- Wangsgard, W.; Winters, M. Validation of a Sterilization Dose for Products Manufactured Using a 3D Printer. Radiat. Phys. Chem. 2018, 143, 38–40. [Google Scholar] [CrossRef]
- Fuentes, J.M.; Arrieta, M.P.; Boronat, T.; Ferrándiz, S. Effects of Steam Heat and Dry Heat Sterilization Processes on 3D Printed Commercial Polymers Printed by Fused Deposition Modeling. Polymers 2022, 14, 855. [Google Scholar] [CrossRef]
- Rutala, W.A.; Weber, D.J. Disinfection and Sterilization in Health Care Facilities: An Overview and Current Issues. Infect. Dis. Clin. North Am. 2016, 30, 609–637. [Google Scholar] [CrossRef]
- Abbas, K.; Balc, N.; Bremen, S.; Skupin, M. Crystallization and Aging Behavior of Polyetheretherketone PEEK within Rapid Tooling and Rubber Molding. J. Manuf. Mater. Process. 2022, 6, 93. [Google Scholar] [CrossRef]
- Fabrizio, M.; Strano, M.; Farioli, D.; Giberti, H. Extrusion Additive Manufacturing of PEI Pellets. J. Manuf. Mater. Process. 2022, 6, 157. [Google Scholar] [CrossRef]
- Pereira, T.; Kennedy, J.V.; Potgieter, J. A Comparison of Traditional Manufacturing vs Additive Manufacturing, the Best Method for the Job. Procedia Manuf. 2019, 30, 11–18. [Google Scholar] [CrossRef]
- Fitzgerald, A.; McDonald, P.; Devine, D.; Fuenmayor, E. Transfer and Optimisation of Injection Moulding Manufacture of Medical Devices Using Scientific Moulding Principles. J. Manuf. Mater. Process. 2021, 5, 113. [Google Scholar] [CrossRef]
- Ziaee, M.; Hershman, R.; Mahmood, A.; Crane, N.B. Fabrication of Demineralized Bone Matrix/Polycaprolactone Composites Using Large Area Projection Sintering (LAPS). J. Manuf. Mater. Process. 2019, 3, 30. [Google Scholar] [CrossRef] [Green Version]
- Cho, K.T.; Nunez, L.; Shelton, J.; Sciammarella, F. Investigation of Effect of Processing Parameters for Direct Energy Deposition Additive Manufacturing Technologies. J. Manuf. Mater. Process. 2023, 7, 105. [Google Scholar] [CrossRef]
- Picard, M.; Mohanty, A.K.; Misra, M. Recent Advances in Additive Manufacturing of Engineering Thermoplastics: Challenges and Opportunities. RSC Adv. 2020, 10, 36058–36089. [Google Scholar] [CrossRef]
- Egan, P.F. Design for Additive Manufacturing: Recent Innovations and Future Directions. Designs 2023, 7, 83. [Google Scholar] [CrossRef]
- Wurm, M.C.; Möst, T.; Bergauer, B.; Rietzel, D.; Neukam, F.W.; Cifuentes, S.C.; Von-Wilmowsky, C. In-Vitro Evaluation of Polylactic Acid (PLA) Manufactured by Fused Deposition Modeling. J. Biol. Eng. 2017, 11, 29. [Google Scholar] [CrossRef] [Green Version]
- Cano-Vicent, A.; Tambuwala, M.M.; Hassan, S.S.; Barh, D.; Aljabali, A.A.A.; Birkett, M.; Arjunan, A.; Serrano-Aroca, Á. Fused Deposition Modelling: Current Status, Methodology, Applications and Future Prospects. Addit. Manuf. 2021, 47, 102378. [Google Scholar] [CrossRef]
- Rohani Shirvan, A.; Nouri, A.; Wen, C. Structural Polymer Biomaterials. Struct. Biomater. Prop. Charact. Sel. 2021, 395–439. [Google Scholar] [CrossRef]
- Kwarcinski, J.; Boughton, P.; van Gelder, J.; Damodaran, O.; Doolan, A.; Ruys, A. Clinical Evaluation of Rapid 3D Print-Formed Implants for Surgical Reconstruction of Large Cranial Defects. ANZ J. Surg. 2021, 91, 1226–1232. [Google Scholar] [CrossRef]
- Garg, B.; Gupta, M.; Singh, M.; Kalyanasundaram, D. Outcome and Safety Analysis of 3D-Printed Patient-Specific Pedicle Screw Jigs for Complex Spinal Deformities: A Comparative Study. Spine J. 2019, 19, 56–64. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Yang, C.; Sun, C.; Yan, X.; He, J.; Shi, C.; Liu, C.; Li, D.; Jiang, T.; Huang, L. Fused Deposition Modeling PEEK Implants for Personalized Surgical Application: From Clinical Need to Biofabrication. Int. J. Bioprinting 2022, 8, 225–243. [Google Scholar] [CrossRef]
- Damon, A.; Clifton, W.; Valero-Moreno, F.; Nottmeier, E. Orientation Planning in the Fused Deposition Modeling 3D Printing of Anatomical Spine Models. Cureus 2020, 12, e7081. [Google Scholar] [CrossRef] [Green Version]
- Nery, B.; Rivero, L.R.; Camporeze, B.; Costa, R.A.F.; Pereira, L.C.; Quaggio, E.; Ferreira, J.P.U.; Nery, C.S.A. Use of Three-Dimensional Reconstruction in 3D Molds as an Adjuvant in the Treatment of Cranial and Spinal Pathologies: Technical Details and Case Report. Interdiscip. Neurosurg. 2021, 24, 100953. [Google Scholar] [CrossRef]
- Abbady, H.E.M.A.; Klinkenberg, E.T.M.; de Moel, L.; Nicolai, N.; van der Stelt, M.; Verhulst, A.C.; Maal, T.J.J.; Brouwers, L. 3D-Printed Prostheses in Developing Countries: A Systematic Review. Prosthet. Orthot. Int. 2022, 46, 19–30. [Google Scholar] [CrossRef] [PubMed]
- Javaid, M.; Haleem, A.; Singh, R.P.; Suman, R.; Rab, S. Role of Additive Manufacturing Applications towards Environmental Sustainability. Adv. Ind. Eng. Polym. Res. 2021, 4, 312–322. [Google Scholar] [CrossRef]
- Espinosa, O.; Rodríguez-Lesmes, P.; Orozco, L.; Ávila, D.; Enríquez, H.; Romano, G.; Ceballos, M. Estimating Cost-Effectiveness Thresholds under a Managed Healthcare System: Experiences from Colombia. Health Policy Plan 2022, 37, 359–368. [Google Scholar] [CrossRef]
- Honigmann, P.; Sharma, N.; Schumacher, R.; Rueegg, J.; Haefeli, M.; Thieringer, F. In-Hospital 3D Printed Scaphoid Prosthesis Using Medical-Grade Polyetheretherketone (PEEK) Biomaterial. Biomed Res. Int. 2021, 2021, 1301028. [Google Scholar] [CrossRef]
- Mandolini, M.; Brunzini, A.; Facco, G.; Mazzoli, A.; Forcellese, A.; Gigante, A. Comparison of Three 3D Segmentation Software Tools for Hip Surgical Planning. Sensors 2022, 22, 5242. [Google Scholar] [CrossRef]
- Benady, A.; Meyer, J.S.; Freidin, D.; Ran, Y.; Golden, E.; Wong, K.C.; Dadia, S. A Review of 3D Printing in Orthopedic Oncology. J. 3d Print. Med. 2022, 6, 147–161. [Google Scholar] [CrossRef]
- Peel, S.; Eggbeer, D.; Burton, H.; Hanson, H.; Evans, P.L. Additively Manufactured versus Conventionally Pressed Cranioplasty Implants: An Accuracy Comparison. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2018, 232, 949–961. [Google Scholar] [CrossRef] [Green Version]
- Callahan, A.B.; Campbell, A.A.; Petris, C.; Kazim, M. Low-Cost 3D Printing Orbital Implant Templates in Secondary Orbital Reconstructions. Ophthalmic Plast. Reconstr. Surg. 2017, 33, 376–380. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Lu, Y.; Zhao, M.; Bosiakov, S.; Li, L. A Critical Review of Additive Manufacturing Techniques and Associated Biomaterials Used in Bone Tissue Engineering. Polymers 2022, 14, 2117. [Google Scholar] [CrossRef]
- Shahrubudin, N.; Koshy, P.; Alipal, J.; Kadir, M.H.A.; Lee, T.C. Challenges of 3D Printing Technology for Manufacturing Biomedical Products: A Case Study of Malaysian Manufacturing Firms. Heliyon 2020, 6, e03734. [Google Scholar] [CrossRef] [PubMed]
- DeStefano, V.; Khan, S.; Tabada, A. Applications of PLA in Modern Medicine. Eng. Regen. 2020, 1, 76–87. [Google Scholar] [CrossRef]
- Da-Silva, D.; Kaduri, M.; Poley, M.; Adir, O.; Krinsky, N.; Shainsky, J.; Schroeder, A. Biocompatibility, Biodegradation and Excretion of Polylactic Acid (PLA) in Medical Implants and Theranostic Systems. Chem. Eng. J. 2018, 340, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Lian, T.; Zhang, B.; Du, Y.; Du, K.; Xiang, N.; Jung, D.-W.; Wang, G.; Osaka, A. Design and Mechanical Compatibility of Nylon Bionic Cancellous Bone Fabricated by Selective Laser Sintering. Materials 2021, 14, 1965. [Google Scholar] [CrossRef]
- Neijhoft, J.; Henrich, D.; Kammerer, A.; Janko, M.; Frank, J.; Marzi, I. Sterilization of PLA after Fused Filament Fabrication 3D Printing: Evaluation on Inherent Sterility and the Impossibility of Autoclavation. Polymers 2023, 15, 369. [Google Scholar] [CrossRef]
- Pugliese, R.; Beltrami, B.; Regondi, S.; Lunetta, C. Polymeric Biomaterials for 3D Printing in Medicine: An Overview. Ann. 3d Print. Med. 2021, 2, 100011. [Google Scholar] [CrossRef]
- Ricles, L.M.; Coburn, J.C.; Prima, M.D.; Oh, S.S. Regulating 3D-Printed Medical Products. Sci. Transl. Med. 2018, 6521, 1–7. [Google Scholar] [CrossRef]
- Sadeque, M.; Balachandran, S.K. Overview of medical device processing. In Trends in Development of Medical Devices; Academic Press: Cambridge, MA, USA, 2020; pp. 177–188. [Google Scholar] [CrossRef]
- Culmone, C.; Smit, G.; Breedveld, P. Additive Manufacturing of Medical Instruments: A State-of-the-Art Review. Addit. Manuf. 2019, 27, 461–473. [Google Scholar] [CrossRef]
- Dai, Z.; Ronholm, J.; Tian, Y.; Sethi, B.; Cao, X. Sterilization Techniques for Biodegradable Scaffolds in Tissue Engineering Applications. J. Tissue Eng. 2016, 7, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, J. Understanding Gamma Sterilization. Biopharm Int. 2012, 25, 1–2. [Google Scholar]
- Told, R.; Ujfalusi, Z.; Pentek, A.; Kerenyi, M.; Banfai, K.; Vizi, A.; Szabo, P.; Melegh, S.; Bovari-Biri, J.; Pongracz, J.E.; et al. A State-of-the-Art Guide to the Sterilization of Thermoplastic Polymers and Resin Materials Used in the Additive Manufacturing of Medical Devices. Mater. Des. 2022, 223, 111119. [Google Scholar] [CrossRef]
- Harrington, R.E.; Guda, T.; Lambert, B.; Martin, J. Sterilization and disinfection of biomaterials for medical devices. In Biomaterials Science. An Introduction to Materials in Medicine; Elsevier: Amsterdam, The Netherlands, 2020; Volume 4, pp. 1431–1446. [Google Scholar] [CrossRef]
- Dey, A.; Yodo, N. A Systematic Survey of FDM Process Parameter Optimization and Their Influence on Part Characteristics. J. Manuf. Mater. Process. 2019, 3, 64. [Google Scholar] [CrossRef] [Green Version]
- Díaz Lantada, A.; Solórzano, W.; Martínez Cendrero, A.; Zapata Martínez, R.; Ojeda, C.; Munoz-Guijosa, J.M. Methods and technologies for the personalized design of open-source medical devices. In Engineering Open-Source Medical Devices; Springer: Cham, Switzerland, 2022; pp. 191–218. [Google Scholar] [CrossRef]
- Patterson, A.E.; Chadha, C.; Jasiuk, I.M. Identification and Mapping of Manufacturability Constraints for Extrusion-Based Additive Manufacturing. J. Manuf. Mater. Process. 2021, 5, 33. [Google Scholar] [CrossRef]
- Hernandez, R.; Slaughter, D.; Whaley, D.; Tate, J.; Asiabanpour, B. Analyzing the Tensile, Compressive, and Flexural Properties of 3D Printed ABS P430 Plastic Based on Printing Orientation Using Fused Deposition Modeling. In Proceedings of the Solid Freeform Fabrication Symposium, Austin, TX, USA, 8–10 August 2016; pp. 939–950. [Google Scholar]
- Afrose, M.F.; Masood, S.H.; Iovenitti, P.; Nikzad, M.; Sbarski, I. Effects of Part Build Orientations on Fatigue Behaviour of FDM-Processed PLA Material. Prog. Addit. Manuf. 2016, 1, 21–28. [Google Scholar] [CrossRef]
- ASTM F2971-13; Standard Practice for Reporting Data for Test Specimens Prepared by Additive Manufacturing; Annual Book of ASTM Standards. ASTM: West Conshohocken, PA, USA, 2021.
- ASTM DG38-14; Standard Test Method for Tensile Properties of Plastics. ASTM: West Conshohocken, PA, USA, 2020.
- eSUN 3D Printer Filament PLA Plus Parameter Information. Available online: https://www.esun3d.com/pla-pro-product/ (accessed on 19 June 2022).
- eSUN Data Sheet of ESUN 3D Filament. Available online: http://makemike.com/media/recursos/esun/date/Data Sheet for eSUN 3D Filament-201411.pdf (accessed on 18 June 2022).
- Madugula, S.K.; Giraud-Moreau, L.; Adragna, P.A.; Daniel, L. Infill Design Reinforcement of 3d Printed Parts Using Refinement Technique Adapted to Continuous Extrusion. J. Manuf. Mater. Process. 2021, 5, 71. [Google Scholar] [CrossRef]
- Montgomery, D.; Friedman, D. Statistical process control in a computer-integrated manufacturing environment. In Statistical Process Control in Automated Manufacturing; CRC Press: Boca Raton, FL, USA, 2020; ISBN 9781003065982. [Google Scholar]
- Di Angelo, L.; Di Stefano, P.; Guardiani, E. A Build-Time Estimator for Additive Manufactured Objects. In Proceedings of the International Conference of the Italian Association of Design Methods and Tools for Industrial Engineering, Modena, Italy, 9–10 September 2019; Springer Science and Business Media Deutschland GmbH: Berlin, Germany, 2020; pp. 925–935. [Google Scholar] [CrossRef]
- Fera, M.; Fruggiero, F.; Costabile, G.; Lambiase, A.; Pham, D.T. A New Mixed Production Cost Allocation Model for Additive Manufacturing (MiProCAMAM). Int. J. Adv. Manuf. Technol. 2017, 92, 4275–4291. [Google Scholar] [CrossRef]
- Thomas, D. The Manufacturing Cost Guide: A Primer—Version 1.0; Advanced Manufacturing Series (NIST AMS), National Institute of Standards and Technology; US Department of Commerce, National Institute of Standards and Technology: Gaithersburg, MD, USA, 2020. [Google Scholar] [CrossRef]
- Askeland, D.; Wright, W. Essentials of Materials Science and Engineering, 4th ed.; CENGAGE: Boston, MA, USA, 2019; ISBN 9781337629157. [Google Scholar]
- Atonal-Sánchez, J.; Beltrán-Fernández, J.A.; Hernández-Gómez, L.H.; Yazmin-Villagran, L.; Flores-Campos, J.A.; López-Lievano, A.; Moreno-Garibaldi, P. Termomechanical Analysis of 3D Printing Specimens (Acrylonitrile Butadiene Styrene). In Engineering Design Applications. Advanced Structured Materials; Öchsner, A., Altenbach, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2019; Volume 92, pp. 237–253. [Google Scholar] [CrossRef]
- RSR Kruskall-Wallis Test. Available online: https://rstatisticsandresearch.weebly.com/kruskall-wallis-test.html (accessed on 15 June 2022).
- Zhao, Y. Data Clustering in R. Available online: https://www.rdatamining.com/documents (accessed on 18 June 2022).
- Garnica, I.; López, C.; Güiza, V. [Dataset]. Tensile Test Data on PLA Samples with and without Sterilization. Mendeley Data V2. 2023. Available online: https://data.mendeley.com/datasets/kf5p3yf76k/2 (accessed on 1 August 2023). [CrossRef]
- Wickham, H.; Bryan, J. Readxl: Read Excel Files; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Wei, T.; Simko, V. R Package “Corrplot”: Visualization of a Correlation Matrix. Statistician 2017, 56, e24. [Google Scholar]
- Fox, J.; Weisberg, S. An {R} Companion to Applied Regression, 2nd ed.; Sage: Thousand Oaks, CA, USA, 2011. [Google Scholar]
- Ogle, D. FSA: Fisheries Stock Analysis. R Package Version 2018, 17, 636. [Google Scholar]
- Han, J.; Kamber, M.; Pei, J. Data transformation and data discretization. In Data Mining: Concepts and Techniques; Elsevier: Amsterdam, The Netherlands, 2011; pp. 111–118. ISBN 9780123814807. [Google Scholar]
- Kassambara, A.; Mundt, F. Package ‘Factoextra’. Extract and Visualize the Results of Multivariate Data Analyses. 2022. Available online: https://cran.r-project.org/web/packages/factoextra/factoextra.pdf (accessed on 17 October 2022).
- Maechler, M.; Rousseeuw, P.; Struyf, A.; Hubert, M.; Hornik, K. Cluster: Cluster Analysis Basics and Extensions. R Package. 2022. Available online: https://cran.r-project.org/web/packages/cluster/index.html (accessed on 12 November 2022).
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016; ISBN 978-3-319-24277-4. [Google Scholar]
- R Core Team. The R Stats Package; R Core Team: Vienna, Austria, 2023. [Google Scholar]
- Hahsler, M. Cluster Analysis. An R Companion for Introduction to Data Mining. 2021. Available online: https://mhahsler.github.io/Introduction_to_Data_Mining_R_Examples/book/clustering-analysis.html (accessed on 5 February 2023).
- Isaac, J. Hierarchical Cluster in R. Available online: https://rpubs.com/jaimeisaacp/760355 (accessed on 13 February 2023).
- Grimes, C.E.; Bowman, K.G.; Dodgion, C.M.; Lavy, C.B.D. Systematic Review of Barriers to Surgical Care in Low-Income and Middle-Income Countries. World J. Surg. 2011, 35, 941–950. [Google Scholar] [CrossRef] [PubMed]
- Meara, J.G.; Leather, A.J.M.; Hagander, L.; Alkire, B.C.; Alonso, N.; Ameh, E.A.; Bickler, S.W.; Conteh, L.; Dare, A.J.; Davies, J.; et al. Global Surgery 2030: Evidence and Solutions for Achieving Health, Welfare, and Economic Development; Lancet Publishing Group: London, UK, 2015; Volume 386. [Google Scholar] [CrossRef]
- Kumar, R.; Lim, J.; Mekary, R.A.; Rattani, A.; Dewan, M.C.; Sharif, S.Y.; Osorio-Fonseca, E.; Park, K.B. Traumatic Spinal Injury: Global Epidemiology and Worldwide Volume. World Neurosurg. 2018, 113, e345–e363. [Google Scholar] [CrossRef] [PubMed]
- Ravindra, V.M.; Senglaub, S.S.; Rattani, A.; Dewan, M.C.; Härtl, R.; Bisson, E.; Park, K.B.; Shrime, M.G. Degenerative Lumbar Spine Disease: Estimating Global Incidence and Worldwide Volume. Glob. Spine J. 2018, 8, 784–794. [Google Scholar] [CrossRef] [Green Version]
- Apriawan, T.; Permana, K.R.; Darlan, D.; Arifianto, M.R.; Fitra, F.; Alfauzi, A.; Bajamal, A.H. Polylactic Acid Implant for Cranioplasty with 3-Dimensional Printing Customization: A Case Report. Open Access Maced. J. Med. Sci. 2020, 8, 151–155. [Google Scholar] [CrossRef]
- Alshomer, F.; Alfaqeeh, F.; Alariefy, M.; Altweijri, I.; Alhumsi, T. Low-Cost Desktop-Based Three-Dimensional-Printed Patient-Specific Craniofacial Models in Surgical Counseling, Consent Taking, and Education of Parent of Craniosynostosis Patients: A Comparison with Conventional Visual Explanation Modalities. J. Craniofacial Surg. 2019, 30, 1652–1656. [Google Scholar] [CrossRef]
- Ortiz-Sanchez, M.; Solarte-Toro, J.C.; Alzate, C.A.C. Food Waste Valorization Applying the Biorefinery Concept in the Colombian Context: Pre-Feasibility Analysis of the Organic Kitchen Food Waste Processing. Biochem. Eng. J. 2023, 194, 108864. [Google Scholar] [CrossRef]
- Rueda-Duran, C.A.; Ortiz-Sanchez, M.; Cardona-Alzate, C.A. Detailed Economic Assessment of Polylactic Acid Production by Using Glucose Platform: Sugarcane Bagasse, Coffee Cut Stems, and Plantain Peels as Possible Raw Materials. Biomass Convers. Biorefinery 2022, 12, 4419–4434. [Google Scholar] [CrossRef]
- Morales, M.A.; Maranon, A.; Hernandez, C.; Michaud, V.; Porras, A. Colombian Sustainability Perspective on Fused Deposition Modeling Technology: Opportunity to Develop Recycled and Biobased 3D Printing Filaments. Polymers 2023, 15, 528. [Google Scholar] [CrossRef]
- Neches, R.Y.; Flynn, K.J.; Zaman, L.; Tung, E.; Pudlo, N. On the Intrinsic Sterility of 3D Printing. PeerJ 2016, 4, e2661. [Google Scholar] [CrossRef] [Green Version]
- Perez, M.; Blck, M.; Espalin, D.; Winker, R.; Hoppe, T.; Medina, F.; Wicker, R. Sterilization of FDM-Manufactured Parts. In Proceedings of the Twenty-third Annual International Solid Freeform Fabrication Symposium—An Additive Manufacturing Conference, Austin, TX, USA, 6–8 August 2012; pp. 285–296. [Google Scholar]
- Shaik, Y.P.; Schuster, J.; Shaik, A.; Mohammed, M.; Katherapalli, H.R. Effect of Autoclave Pressure and Temperature on Consolidation of Layers and Mechanical Properties of Additively Manufactured (Fdm) Products with Pla. J. Manuf. Mater. Process. 2021, 5, 114. [Google Scholar] [CrossRef]
- Chen, J.V.; Tanaka, K.S.; Dang, A.B.C.; Dang, A. Identifying a Commercially-Available 3D Printing Process That Minimizes Model Distortion after Annealing and Autoclaving and the Effect of Steam Sterilization on Mechanical Strength. 3D Print. Med. 2020, 6, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romanov, V.; Samuel, R.; Chaharlang, M.; Jafek, A.R.; Frost, A.; Gale, B.K. FDM 3D Printing of High-Pressure, Heat-Resistant, Transparent Microfluidic Devices. Anal. Chem. 2018, 90, 10450–10456. [Google Scholar] [CrossRef] [PubMed]
- Frizziero, L.; Santi, G.M.; Leon-Cardenas, C.; Ferretti, P.; Sali, M.; Gianese, F.; Crescentini, N.; Donnici, G.; Liverani, A.; Trisolino, G.; et al. Heat Sterilization Effects on Polymeric, FDM-Optimized Orthopedic Cutting Guide for Surgical Procedures. J. Funct. Biomater. 2021, 12, 63. [Google Scholar] [CrossRef] [PubMed]
Abbreviation | Description | Abbreviation | Description |
---|---|---|---|
δ | Standard deviation. | MPa | Mega Pascals |
Ɵ | Diameter. | p | Density |
Ԑ | unit strain percentage | PCA | Principal Component Analysis |
σ | stress | P-A | Adjusted p-value |
AM | Additive Manufacturing | P-Ua | Unadjusted p-value |
ABS | Acrylonitrile butadiene styrene | PLA | Polylactic acid |
ASTM | American Society of Testing and Materials. | PE | Polyethylene |
Avg | Average | PEI | Polyetherimide |
CAD | Computer-aided Design | PMMA | Polymethylmethacrylate |
CAE | Computer-aided Engineering | PEEK | Polyether-ether-ketone |
CAM | Computer-aided Manufacturing | Q1 | 1st quartile |
CNC | Computerized Numerical Control | Q3 | 3rd quartile |
COP | Colombian pesos | SM | Subtractive Manufacturing |
E | Young’s modulus | STL | Stereolithography |
e | Nominal thickness | Sy | Yield Strength |
elong | Elongation at Break | Su | Ultimate strength |
FDM | Fused deposition modeling | Tg | Glass transition |
G-Code | Geometric Code | TR | Treatment |
Lc | Nominal rated length | USD | American dollars |
Lt | Total nominal length | UV-light | Ultraviolet light |
Max | Maximum | W | Nominal minor width |
Min | Minimum | Wo | Nominal width |
MD | Medical Device | Z | Statistical value |
MEX | Material extrusion | Z-axis | Perpendicular axe to the printing bed |
Property | Value |
---|---|
Density (p) | 1.01 g/cm3 |
Melting point | 220–260 °C |
Yield Strength (Sy) | 62.63 MPa |
Elongation at Break (elong) | 4.43% |
Ultimate Strength (Su) | 65.02 MPa |
Flexural Modulus | 2504.4 MPa |
Item | Unit | COP | USD |
---|---|---|---|
PLA filament material | g | 80 | 0.0264 |
3D printer depreciation | min | 9.13 | 0.0030 |
Energy consumption | kJ | 0.012 | 3.33 × 10−6 |
Maintenance | min | 2.28 | 0.0008 |
Sample Identification | Dimensional Properties | Mechanical Properties | Cost USD | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Sample | Sterilized | Infill % | Treatment | Lt mm | Wo mm | W mm | e mm | E MPa | Sy MPa | Su MPa | Elong % | |
1 | No | 30 | TR-1 | 115.2 | 19.1 | 6.3 | 4.0 | 769.4 | 21.5 | 26.1 | 7.4 | 0.39 |
2 | 115.2 | 19.1 | 6.3 | 4.1 | 794.1 | 20.6 | 27.4 | 5.1 | 0.39 | |||
3 | 115.4 | 19.1 | 6.3 | 4.1 | 792.8 | 20.2 | 26.0 | 7.2 | 0.39 | |||
4 | Yes | TR-2 | 113.5 | 18.8 | 6.3 | 4.1 | 850.4 | 12.9 | 13.3 | 2.0 | 0.39 | |
5 | 113.9 | 18.8 | 6.2 | 4.1 | 850.4 | 13.3 | 13.9 | 2.1 | 0.39 | |||
6 | 113.6 | 18.9 | 6.2 | 4.1 | 915.2 | 10.3 | 10.9 | 1.9 | 0.39 | |||
7 | No | 60 | TR-3 | 115.3 | 19.2 | 6.3 | 4.1 | 792.1 | 24.4 | 28.4 | 11.5 | 0.43 |
8 | 115.3 | 19.2 | 6.3 | 4.1 | 792.1 | 24.4 | 28.4 | 11.5 | 0.43 | |||
9 | 115.2 | 19.1 | 6.3 | 4.1 | 820.0 | 25.8 | 30.1 | 9.0 | 0.43 | |||
10 | Yes | TR-4 | 113.5 | 18.8 | 6.2 | 4.2 | 1028.5 | 19.8 | 20.2 | 2.3 | 0.43 | |
11 | 113.5 | 18.8 | 6.2 | 4.1 | 1036.6 | 20.8 | 23.3 | 2.8 | 0.43 | |||
12 | 113.4 | 18.9 | 6.3 | 4.2 | 1044.0 | 17.1 | 17.2 | 2.1 | 0.43 | |||
13 | No | 90 | TR-5 | 115.3 | 19.2 | 6.4 | 4.2 | 1015.7 | 30.5 | 34.8 | 10.4 | 0.49 |
14 | 115.4 | 19.2 | 6.4 | 4.3 | 989.8 | 29.2 | 33.6 | 6.0 | 0.49 | |||
15 | 115.5 | 19.3 | 6.1 | 4.4 | 1181.5 | 38.0 | 44.4 | 7.2 | 0.49 | |||
16 | Yes | TR-6 | 113.4 | 18.9 | 6.4 | 4.1 | 1447.7 | 11.7 | 14.3 | 1.1 | 0.49 | |
17 | 113.9 | 18.9 | 6.4 | 4.0 | 1295.9 | 20.6 | 22.4 | 2.1 | 0.48 | |||
18 | 113.8 | 18.8 | 6.4 | 4.1 | 1241.1 | 16.4 | 16.7 | 1.7 | 0.48 |
Kruskal-Wallis’ Test | Lt | Wo | W | e | E | Sy | Su | elong |
---|---|---|---|---|---|---|---|---|
Chi-Squared | 14.09 | 15.18 | 9.28 | 13.96 | 15.72 | 14.77 | 16.27 | 15.43 |
Degree of freedom | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 |
p-value | 0.015 | 0.0096 | 0.098 | 0.016 | 0.0076 | 0.011 | 0.0061 | 0.0087 |
Variable | Dull Test | Treatment Comparison | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | ||
TR1 | TR2 | TR3 | TR4 | TR5 | ||||||||||||
TR2 | TR3 | TR4 | TR5 | TR6 | TR3 | TR4 | TR5 | TR6 | TR4 | TR5 | TR6 | TR5 | TR6 | TR6 | ||
Lt | Z | 1.8 | 0.2 | 2.3 | −0.7 | 1.7 | −1.5 | 0.5 | −2.4 | 0.0 | 2.0 | −0.9 | 1.5 | −2.9 | −0.5 | 2.4 |
P-Ua | 0.1 | 0.8 | 0.02 | 0.5 | 0.1 | 0.1 | 0.6 | 0.01 | 1.0 | 0.04 | 0.4 | 0.1 | 0.003 | 0.6 | 0.02 | |
P-A | 1.0 | 1.0 | 0.4 | 1.0 | 1.0 | 1.0 | 1.0 | 0.2 | 1.0 | 0.6 | 1.0 | 1.0 | 0.05 | 1.0 | 0.2 | |
Wo | Z | 1.9 | −0.5 | 1.6 | −1.3 | 1.0 | −2.3 | −0.3 | −3.1 | −0.8 | 2.0 | −0.8 | 1.5 | −2.8 | −0.5 | 2.3 |
P-Ua | 0.1 | 0.6 | 0.1 | 0.2 | 0.3 | 0.02 | 0.8 | 0.002 | 0.4 | 0.04 | 0.4 | 0.1 | 0.005 | 0.6 | 0.02 | |
P-A | 0.9 | 1.0 | 1.0 | 1.0 | 1.0 | 0.3 | 1.0 | 0.03 | 1.0 | 0.6 | 1.0 | 1.0 | 0.1 | 1.0 | 0.3 | |
e | Z | −0.8 | −1.6 | −2.3 | −3.1 | −0.4 | −0.8 | −1.5 | −2.3 | 0.4 | −0.7 | −1.5 | 1.2 | −0.8 | 1.9 | 2.7 |
P-Ua | 0.4 | 0.1 | 0.02 | 0.002 | 0.7 | 0.4 | 0.1 | 0.02 | 0.7 | 0.5 | 0.1 | 0.2 | 0.4 | 0.1 | 0.007 | |
P-A | 1.0 | 1.0 | 0.3 | 0.03 | 1.0 | 1.0 | 1.0 | 0.3 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.9 | 0.1 |
Variable | Dull Test | Treatment Comparison | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | ||
TR1 | TR2 | TR3 | TR4 | TR5 | ||||||||||||
TR2 | TR3 | TR4 | TR5 | TR6 | TR3 | TR4 | TR5 | TR6 | TR4 | TR5 | TR6 | TR5 | TR6 | TR6 | ||
E | Z | −1.1 | −0.1 | −2.2 | −2.0 | −3.1 | 1.0 | −1.1 | −0.9 | −2.1 | −2.1 | −1.9 | −3.1 | 0.2 | −0.9 | −1.1 |
P-Ua | 0.3 | 0.9 | 0.03 | 0.05 | 0.002 | 0.3 | 0.3 | 0.4 | 0.04 | 0.03 | 0.1 | 0.002 | 0.8 | 0.4 | 0.3 | |
P-A | 1.0 | 1.0 | 0.4 | 0.7 | 0.03 | 1.0 | 1.0 | 1.0 | 0.6 | 0.5 | 0.8 | 0.03 | 1.0 | 1.0 | 1.0 | |
Sy | Z | 1.6 | −1.0 | 0.4 | −1.7 | 0.9 | −2.6 | −1.2 | −3.3 | −0.7 | 1.4 | −0.7 | 1.9 | −2.1 | 0.5 | 2.6 |
P-Ua | 0.1 | 0.3 | 0.7 | 0.1 | 0.4 | 0.01 | 0.2 | 0.001 | 0.5 | 0.2 | 0.5 | 0.1 | 0.04 | 0.6 | 0.009 | |
P-A | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.1 | 1.0 | 0.02 | 1.0 | 1.0 | 1.0 | 0.8 | 0.6 | 1.0 | 0.1 | |
Su | Z | 2.1 | −0.7 | 0.8 | −1.4 | 1.2 | −2.8 | −1.2 | −3.4 | −0.8 | 1.5 | −0.7 | 1.9 | −2.2 | 0.4 | 2.6 |
P-Ua | 0.04 | 0.5 | 0.4 | 0.2 | 0.2 | 0.006 | 0.2 | 0.001 | 0.4 | 0.1 | 0.5 | 0.1 | 0.03 | 0.7 | 0.009 | |
P-A | 0.6 | 1.0 | 1.0 | 1.0 | 1.0 | 0.1 | 1.0 | 0.009 | 1.0 | 1.0 | 1.0 | 0.8 | 0.4 | 1.0 | 0.1 | |
elong | Z | 1.9 | −1.0 | 1.0 | −0.2 | 2.1 | −2.9 | −0.9 | −2.1 | 0.2 | 2.0 | 0.8 | 3.1 | −1.1 | 1.1 | 2.3 |
P-Ua | 0.1 | 0.3 | 0.3 | 0.9 | 0.03 | 0.004 | 0.4 | 0.04 | 0.8 | 0.05 | 0.4 | 0.002 | 0.3 | 0.3 | 0.02 | |
P-A | 0.8 | 1.0 | 1.0 | 1.0 | 0.5 | 0.1 | 1.0 | 0.6 | 1.0 | 0.7 | 1.0 | 0.03 | 1.0 | 1.0 | 0.3 |
Average | Single | Complete | Ward |
---|---|---|---|
0.843705 | 0.761088 | 0.891512 | 0.927438 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garnica-Bohórquez, I.; Güiza-Argüello, V.R.; López-Gualdrón, C.I. Effect of Sterilization on the Dimensional and Mechanical Behavior of Polylactic Acid Pieces Produced by Fused Deposition Modeling. Polymers 2023, 15, 3317. https://doi.org/10.3390/polym15153317
Garnica-Bohórquez I, Güiza-Argüello VR, López-Gualdrón CI. Effect of Sterilization on the Dimensional and Mechanical Behavior of Polylactic Acid Pieces Produced by Fused Deposition Modeling. Polymers. 2023; 15(15):3317. https://doi.org/10.3390/polym15153317
Chicago/Turabian StyleGarnica-Bohórquez, Israel, Viviana R. Güiza-Argüello, and Clara I. López-Gualdrón. 2023. "Effect of Sterilization on the Dimensional and Mechanical Behavior of Polylactic Acid Pieces Produced by Fused Deposition Modeling" Polymers 15, no. 15: 3317. https://doi.org/10.3390/polym15153317
APA StyleGarnica-Bohórquez, I., Güiza-Argüello, V. R., & López-Gualdrón, C. I. (2023). Effect of Sterilization on the Dimensional and Mechanical Behavior of Polylactic Acid Pieces Produced by Fused Deposition Modeling. Polymers, 15(15), 3317. https://doi.org/10.3390/polym15153317