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Abstract: To successfully implement additive manufacturing (AM) techniques for custom medical
device (MD) production with low-cost resources, it is imperative to understand the effect of common
and affordable sterilization processes, such as formaldehyde or steam sterilization, on pieces manufac-
tured by AM. In this way, the performance of low-risk MDs, such as biomodels and surgical guides,
could be assessed for complying with safety, precision, and MD delivery requirements. In this context,
the aim of the present work was to evaluate the effect of formaldehyde and steam sterilization on the
dimensional and mechanical stability of standard polylactic acid (PLA) test pieces produced by fused
deposition modeling (FDM). To achieve this, PLA samples were sterilized according to the steriliza-
tion protocol of a public hospital in the city of Bucaramanga, Colombia. Significant changes regarding
mechanical and dimensional properties were found as a function of manufacturing parameters. This
research attempts to contribute to the development of affordable approaches for the fabrication of
functional and customized medical devices through AM technologies, an issue of particular interest
for low- and middle-income countries.

Keywords: additive manufacturing; material extrusion (MEX); polylactic acid (PLA); sterilization

1. Introduction

In recent decades, technological advances have led to the development of customized
medical devices (MD, see Table 1), which are intended to provide functional and esthetic
restoration to patients affected by trauma, injury, or pathologies in different parts of the
body, including the musculoskeletal system [1]. To be used in a surgical scenario, the MD
must undergo sterilization, a process that can have detrimental effects on MD integrity,
and, therefore, must be carefully chosen to prevent MD failure [2]. In the 1950s, with
the emergence of plastic materials for medical applications, different low-temperature
sterilization techniques were developed, which promoted microbial inactivation without
MD physical alterations [3]. Examples of these are (1) sterilization with ethylene oxide
(C2H4O) at concentrations between 200-450 mg/L, temperatures from 37–66 ◦C, and cycles
between 1–6 h, and (2) plasma sterilization with hydrogen peroxide (H2O2), which is
carried out at temperatures of around 37–44 ◦C, concentrations of 6 mg/L, and 50 to 70 min
cycles. More recently developed sterilization techniques include gamma [4] and ultraviolet
irradiation [5]. The first one can penetrate intricate areas within the MD but can potentially
induce chemical degradation of polymeric materials; on the other hand, UV irradiation is
more affordable, although it only provides partial sterilization of the device [6].

From a financial viewpoint, the abovementioned sterilization techniques often re-
quire expensive specialized equipment [7]. In the context of developing countries, such
as Colombia, where public hospitals most commonly have access to steam sterilization
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(121–132 ◦C) and formaldehyde sterilization (65–80 ◦C) systems [8], the use of high-
temperature sterilization methods is essentially unavoidable. Its affordability and fast
sterilization cycles make steam sterilization the preferred approach when dealing with
reusable metal MDs or plastic MDs fabricated from highly resistant materials, such as
polyether ether ketone (PEEK) [9] or polyetherimide (PEI) [10].

Table 1. List of Abbreviations.

Abbreviation Description Abbreviation Description

δ Standard deviation. MPa Mega Pascals
T Diameter. p Density
ε unit strain percentage PCA Principal Component Analysis
σ stress P-A Adjusted p-value

AM Additive Manufacturing P-Ua Unadjusted p-value
ABS Acrylonitrile butadiene styrene PLA Polylactic acid

ASTM American Society of Testing and Materials. PE Polyethylene
Avg Average PEI Polyetherimide
CAD Computer-aided Design PMMA Polymethylmethacrylate
CAE Computer-aided Engineering PEEK Polyether-ether-ketone
CAM Computer-aided Manufacturing Q1 1st quartile
CNC Computerized Numerical Control Q3 3rd quartile
COP Colombian pesos SM Subtractive Manufacturing

E Young’s modulus STL Stereolithography
e Nominal thickness Sy Yield Strength

elong Elongation at Break Su Ultimate strength
FDM Fused deposition modeling Tg Glass transition

G-Code Geometric Code TR Treatment
Lc Nominal rated length USD American dollars
Lt Total nominal length UV-light Ultraviolet light

Max Maximum W Nominal minor width
Min Minimum Wo Nominal width
MD Medical Device Z Statistical value

MEX Material extrusion Z-axis Perpendicular axe to the printing bed

In terms of manufacturing processes, MDs are standardly produced in long series by
subtractive manufacturing (SM) processes such as turning, numerical control machining
(CNC), casting, or injection [11,12]. Titanium alloys (Ti6Al4V), polyethylene (PE), and
polymethylmethacrylate (PMMA) have been employed as the base materials to produce
sutures, fixings, bone cement, and implants through SM techniques. Nonetheless, SM
technologies fail to be the most effective approach for custom MD fabrication due to
geometric limitations [13], cost overruns [14], as well as material and energy waste [15].
To overcome these obstacles, additive manufacturing (AM) has emerged as a sustainable
production alternative for customized MDs. Particular attention has been focused on the
use of fused deposition modeling (FDM) due to its inexpensive nature, as well as the fact
that it allows both the extrusion of a wide range of polymers, such as PLA [16,17], and the
fabrication of highly complex structures [18]. The latter becomes key to surgical scenarios
that require patient-specific devices [16,19]. In this sense, from cranioplasty implants [20]
and screw guides for spine surgery [21] to chest wall reconstruction devices [22], FDM has
been successfully tested in the clinical setting. Likewise, FDM-printed PLA anatomical
models have been evaluated for effective preoperative planning, yielding promising results
for cranial and spinal surgery [23,24].

Despite these encouraging outcomes, the implementation of AM technologies for the
creation of customized MDs remains hindered by significant challenges that are primarily
related to the high cost of medical-grade materials, as well as the software and hardware that
support its application, which in turn limits the possibilities for technological assimilation in
developing countries [25,26]. In the case of Colombia, regular medical insurance coverage
(around 5000–6000 USD per patient per year [27]) would not be nearly enough to afford
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custom MD fabrication through 3D printing [28,29]. As a result, local orthopedic surgeons
are often limited to using two-dimensional (2D) radiography as a guiding tool for surgical
procedures, despite the great level of uncertainty and error it can bring [30]. In the best-case
scenario, when financial resources are available, surgeons resort to foreign providers to
obtain customized MDs. This solution implies high costs [31,32], long delivery times,
and sometimes, poor MD fitting due to either the patient’s biological changes or partially
fulfilled MD design requirements [33,34]. Therefore, in most cases, outsourcing custom
MDs can become an extraordinarily inefficient and exhausting process for the medical
system.

In the face of these facts, increasing attention has been drawn to the use of more afford-
able, FDA-approved materials for FDM processing, such as polylactic acid (PLA) [35,36]
and nylon [37], which have been reported for the manufacture of MDs for orthopedic
implants and scaffolds. Despite their low cost and biocompatibility, PLA and nylon-based
MDs produced by FDM are still susceptible to physical and dimensional damage upon
exposure to high-temperature steam sterilization [38]. Therefore, to comply with custom
MD fabrication by AM standards [39,40] and fulfill MD cleaning and sterilization require-
ments [41,42], the dimensional stability of the polymeric piece is key to ensuring proper
fitting and mechanical performance during the surgical procedure (surgical guides) or after
surgery (implants). Despite the relevance and enormous potential of FDM for medical
applications, especially in low- and middle-income regions, the issue of MD dimensional
and mechanical stability after sterilization has been scarcely discussed. In the case of PLA,
the chemical stability of the polymer can be compromised by steam autoclave steriliza-
tion [43], whereas gamma irradiation approaches can induce PLA degradation when using
the recommended doses for effective sterilization (20–30 kGy) [44]. Thus, to successfully
implement FDM for custom MD production with economic resources, such as PLA, it is im-
perative to understand the impact of common and affordable sterilization processes, such
as formaldehyde or steam sterilization, on the properties of the manufactured devices [45].

In this way, the performance of MDs, including biomodels and surgical guides, could
be assessed towards complying with safety, precision, and MD delivery requirements [46],
as well as improving control over fabrication parameters (orientation, and infill percentage,
for example [47]), which are also crucial for an accurate computer design process (CAD-
CAE-CAM) [48,49]. In this context, the aim of the present work was to evaluate the effect
of formaldehyde and steam sterilization on the dimensional and mechanical stability of
standard PLA test pieces produced by FDM using different fabrication parameters. To
achieve this, PLA samples were sterilized according to the sterilization protocol of a public
hospital in the city of Bucaramanga, Colombia. This research attempts to contribute to the
development of affordable approaches for the fabrication of functional and customized
medical devices through FDM technologies, an issue of particular interest for low- and
middle-income countries.

2. Materials and Methods

Test specimens were designed using CAD software (SolidWorks Education 2020-2021,
Dassault Systemes, Vélizy-Villacoublay, France) and segmented for AM by means of free
software (CURA 4.6.1, Ultimaker, Utrecht, The Netherlands). A computer with Intel®

Core™ i5-4590 CPU @ 3.30 GHz, 16 GB of RAM, and a 64-bit Windows 8.1 operating
system (Optiplex 9020, Dell, Round Rock, TX, USA) was also used. Based on the reports
by Hernández et al. [50] and Afrose et al. [51], the highest performance of extruded fibers
occurs in the YX direction, following the provisions of ASTM F2971-13 [52]. Thus, the
machine coordinate system and sample orientation were defined as fixed variables to
reduce the number of pieces to be manufactured, as illustrated in Figure 1.

Sample geometry for the stress test was selected based on ASTM D638-14 (type
IV specimen), as shown in Figure 2 [53]. The selected type of specimen allowed for the
comparison of material stiffness between sterilized samples and their corresponding control
group (non-sterilized samples). PLA filament (1.75 mm diameter, esun3d, Shenzhen, China)
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was chosen as the printing and Supporting Material, and its properties are described in
Table 2.
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Table 2. Commercial PLA filament properties. Source: based on esun3d [54,55].

Property Value

Density (p) 1.01 g/cm3

Melting point 220–260 ◦C
Yield Strength (Sy) 62.63 MPa

Elongation at Break (elong) 4.43%
Ultimate Strength (Su) 65.02 MPa

Flexural Modulus 2504.4 MPa

In terms of the 3D printing process, the following variables were defined for all
samples: (1) wall thickness: 0.8 mm; (2) layer thickness in the z-axis: 0.2 mm; (3) printing
speed: 40 mm/s; (4) extrusion temperature: 210 ◦C; and (5) printer bed temperature: 40 ◦C.
A raft-type printing base was also included to improve piece adhesion onto the printer bed.
These parameters were configured in the slicing software CURA (4.6.1, Ultimaker, Utrecht,
The Netherlands) to generate the geometric code (G-Code) file for each sample group.

2.1. Experimental Design and Data Collection

A mixed two- and three-level 31-21 experimental design was used. The first factor
was sterilization, with two levels: sterilized and non-sterilized. The second factor was
infill percentage, with three levels: 30%, 60%, and 90% infill [56]. A total of 6 treatments
were obtained to determine the possible dimensional or mechanical resistance changes for
sterilized PLA pieces relative to their non-sterilized counterparts [57]. By printing 3 samples
per treatment, a total of 18 specimens were manufactured without any fabrication issues,
deformations, or adhesion problems between layers. [56]. An FDM open-source device
(BGC Smart Tech, Voxel3d, Bogotá, Colombia) was used to build the specimens. Machine
specifications were defined as follows: 300 × 300 × 300 mm for build volume; 0.4 mm for
extrusion nozzle; 0.1 mm for z-axis resolution; and an aluminum build platform covered
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with adhesive tape (Scotch-Blue # 2090, 3M, Saint Paul, Minnesota, USA) as the build sheet.
Six samples were printed for each type of filling density.

Moreover, PLA sample sterilization was performed following the sterilization pro-
tocol of a public hospital in the city of Bucaramanga, Colombia. For each type of infill,
3 specimens were subjected to sterilization, whereas the remaining 3 specimens were used
as the control group (without sterilization). Sterilized samples were initially exposed to
formaldehyde steam sterilization (640 autoclave, CISA, Lucca, Italy) at 16 mg/L and 65 ◦C
through a 2 h sterilization cycle. Subsequently, samples were rested for a week at room
temperature to remove any formaldehyde traces, following a second treatment via steam
sterilization (Ritter M11 Autoclave, Midmark, Versailles, OH, USA) for 30 min at 132.2 ◦C.
Sample dimensions were measured after sample fabrication as well as at the end of the ster-
ilization process. Wo, W, and e values (Figure 2) were collected using an analog micrometer
(Ubermann, Santiago, Chile), while Lt was measured with a digital calibrator (Ubermann,
Santiago, Chile). Similarly, sample mass was measured using a digital scale (AS220.R2,
Radwag, Miami, FL, USA).

Additionally, the cost and time required for PLA sample fabrication were estimated
based on the building time on the FDM equipment and the amount of material that was
used [58]. Although there are different cost models associated with AM [59], direct costs are
generally considered derived from raw material consumption, whereas indirect costs are
related to 3D printer usage (energy, maintenance, and equipment depreciation). The costs
associated with human labor were omitted [60], as well as the sterilization costs, the latter
because final parts are usually delivered by the manufacturer in an unsterilized condition.
The data used to calculate sample manufacturing costs are summarized in Table 3.

Table 3. Estimated sample manufacturing costs. Reference prices in Colombian pesos (COP) and US
dollars (USD).

Item Unit COP USD

PLA filament material g 80 0.0264
3D printer depreciation min 9.13 0.0030

Energy consumption kJ 0.012 3.33 × 10−6

Maintenance min 2.28 0.0008

Furthermore, sample mechanical properties were evaluated via tensile tests in a
universal mechanical tester (Model Bionix, MTS, Eden Prairie, MN, USA), following ASTM
D638-14 and using a constant strain rate of 3.75 mm/min [53]. Mechanical data were
analyzed according to Askeland and Wright [61]. The unit strain percentage E (mm/mm)
was obtained from the division between the calibrated length (Lc) and the elongation data.
Also, the stress σ (N/mm2) was calculated from the ratio between the force and the initial
cross-sectional area (W × e), as depicted in Figure 2. Based on these data, it was possible to
obtain the following sample properties: Young’s modulus (E, MPa), yield stress (Sy, MPa),
tensile strength (Su, MPa), and elongation percentage (elong) or elongation ductility [62].

2.2. Statistical Analysis

Data statistical analysis was performed employing the R Studio software (V 4.3.1,
R Foundation, Vienna, Austria). Analysis was divided into two sections: The first section,
using the Kruskal–Wallis test to compare non-parametric groups [63]. This method requires
the verification of four assumptions: (1) independence of variables, which can be verified
by Pearson’s correlation for non-parametric data; (2) dependent variables must be con-
tinuous; (3) a normal data distribution is not required; (4) variance between groups must
be homogeneous, a condition that is verified through Bartlett’s test or Levene’s test. The
Kruskal–Wallis test was followed by Dunn’s test to identify statistical differences between
treatments. A portion of the R code that was used is shown below in Listing 1 (describing
comments in italic).
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The second section used hierarchical clustering analysis and principal component
analysis (PCA) to obtain similarities among normalized data to identify factors that sum-
marize most of the variation [64]. A portion of the R code that was used is shown below in
listing 2 (describing comments in italic). Find the complete code for Listing 1 and 2 in the
dataset [65].

Listing 1. Nonparametric comparison code.

#to import data [66].
install.packages(“readxl”)
library(readxl)
Z <- read_excel(“dir/data.xlsx”,col_names = TRUE)
#to name factors; sterile, infill, Treatment.
Z$sterile <- as.factor(Z$sterile)
Z$sterile =factor(Z$sterile,labels= c(“control”,”sterile”))
#assumption 1. Correlation among variables [67].
> corz <- cor(Z, y=NULL, method = “pearson”)
round(cor2z,2)
#assumption 2. Variables must be continuous.
#assumption 3. Non-parametric data. To group treatments.
Group1 <- subset(Z,Tr==“Control-Infill-30%”)
. . .
Group9 <- subset(Z,Tr==“Sterile-infill-90%”)
#variable Lt Behavior in group 1.
qqnorm(Group1$Lt)
qqline(Group1$Lt)
#assumption 4. Homogeneous variance among groups [68].
install.packages(“car”)
library(car)
#Variance among treatments related to Lt variable [69].
leveneTest(Z$Lt ~ Z$Tr, Z = Z)
install.packages(“FSA”)
library(FSA)
#Kruskal-Wallis’ test and Dunn’s Test for Lt Vector variable respect to treatments column Tr.
Lt <- c(Z$Lt)
kruskal.test(Lt,Z$Tr)
dunnTest(Lt,Z$Tr,method=“bonferroni”)

Listing 2. Multivariable analysis code.

#to make a data copy.
Z <- datapla2
#to disable factors columns (sterile, infill, Treatment) into the dataset.
datapla2$Tr <- NULL
#to normalize data. Data range between 0 and 1 for dimensionless comparison [70].
set.seed(250) #to make the results reproducible
data.norm <- rnorm(nrow(datapla2)) # to shuffle rows using normal distribution.
datapla2 <- datapla2[order(data.norm),] #data reorganization by the vector.
normalize <- function(x){
+ return((x-min(x))/(max(x)-min(x)))} # to define function.
Data.N<-as.data.frame(lapply(datapla2[,c(1,2,3,4,5,6,7,8,9,10,11,12)], normalize)) #to apply the
normalize function in data.
#libraries [71–74]
library(factoextra)
library(cluster)
library(ggplot2)
library (stats)
#clustering data with hierarchical method [64,75,76]
#to define linkage methods m
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m <- c(“average”, “single”, “complete”, “ward”)
names(m) <- c(“average”, “single”, “complete”, “ward”)
#function to compute agglomerative coefficient
ac <- function(x) {agnes(data.N, method = x)$ac}
sapply(m, ac) # calculate agglomerative coefficient near to 1.

#to calculate number of clusters k vs gap statistic, iterations B ≥ 500.
gap_stat <- clusGap(data.N, FUN = hcut, nstart = 25, K.max = 10, B = 500)
fviz_gap_stat(gap_stat) #results depend on the biggest jump in within-cluster distance after uniformity.
#distance matrix calculation.
res.dist = dist(x = data.N, method = “euclidean”)
#hierarchical method.
res.hc <- hclust(d = res.dist, method = “ward.D”)
# Cluster dendrogram.
fviz_dend(x = res.hc, cex = 0.7, lwd = 0.7)
# Principal component analysis PCA plot.
fviz_cluster(object = list(data=data.N, cluster=cutree(res.hc, k=5)))
# to determine cluster by sample.
g <-cutree(res.hc, k=5)
table(g)
g_pla <- cbind(data.N[,-1],g)
print(g_pla)

3. Results
3.1. Data Collection

PLA samples were 3D printed by nesting groups of three specimens at the same time,
centered at the building origin (see Figure 3), using an average printing time of 1 h ±
10 min per specimen. Table 4 shows the collected sample data in detail. All samples were
subjected to tensile testing. The experimental setup for the tensile tests can be found in
Figure 3.
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Furthermore, Figures 4–6 show the corresponding stress/strain curves for each of
the filling density groups (30%, 60%, and 90% infill). For all groups, a notable decrease in
mechanical resistance was observed in the sterilized samples relative to their non-sterilized
counterparts. Moreover, a comparison of the control groups for the 30% and 60% infill
samples suggests similar yield strength values, although the toughness appears to be
greater for the 60% samples, as evidenced by the enhanced plastic zone. Moreover, Figure 7
presents the data distribution for all tested samples, which indicated significant changes
and asymmetric distributions for Young’s Moduli data (980.9 ± 200.9 MPa), although
strength values appeared much less variable across groups: Sy (21.0 ± 7.1 MPa) and Su
(24.0 ± 8.8 MPa).
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Table 4. PLA specimen properties with and without sterilization. From left to right: (Lt) total length,
(Wo) width, (W) minimum width, (e) thickness, (E) Young’s modulus, (Sy) yield stress, (Su) ultimate
strength, (elong)% elongation percentage, and cost.

Sample Identification Dimensional Properties Mechanical Properties
Cost
USDSample Sterilized Infill % Treatment Lt mm Wo mm W mm e mm E MPa Sy MPa Su

MPa
Elong

%

1
No

30

TR-1
115.2 19.1 6.3 4.0 769.4 21.5 26.1 7.4 0.39

2 115.2 19.1 6.3 4.1 794.1 20.6 27.4 5.1 0.39
3 115.4 19.1 6.3 4.1 792.8 20.2 26.0 7.2 0.39

4
Yes TR-2

113.5 18.8 6.3 4.1 850.4 12.9 13.3 2.0 0.39
5 113.9 18.8 6.2 4.1 850.4 13.3 13.9 2.1 0.39
6 113.6 18.9 6.2 4.1 915.2 10.3 10.9 1.9 0.39

7
No

60

TR-3
115.3 19.2 6.3 4.1 792.1 24.4 28.4 11.5 0.43

8 115.3 19.2 6.3 4.1 792.1 24.4 28.4 11.5 0.43
9 115.2 19.1 6.3 4.1 820.0 25.8 30.1 9.0 0.43

10
Yes TR-4

113.5 18.8 6.2 4.2 1028.5 19.8 20.2 2.3 0.43
11 113.5 18.8 6.2 4.1 1036.6 20.8 23.3 2.8 0.43
12 113.4 18.9 6.3 4.2 1044.0 17.1 17.2 2.1 0.43

13
No

90

TR-5
115.3 19.2 6.4 4.2 1015.7 30.5 34.8 10.4 0.49

14 115.4 19.2 6.4 4.3 989.8 29.2 33.6 6.0 0.49
15 115.5 19.3 6.1 4.4 1181.5 38.0 44.4 7.2 0.49

16
Yes TR-6

113.4 18.9 6.4 4.1 1447.7 11.7 14.3 1.1 0.49
17 113.9 18.9 6.4 4.0 1295.9 20.6 22.4 2.1 0.48
18 113.8 18.8 6.4 4.1 1241.1 16.4 16.7 1.7 0.48
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3.2. Nonparametric comparison

Table 5 shows the results from the Kruskal–Wallis test, which allowed us to confirm
statistical differences among samples with two levels of significance: p-value < 0.05 (high-
lighted in yellow) and p-value < 0.01 (highlighted in green). Statistical differences were
found for all variables except for W.

Following the Kruskal–Wallis test, Dunn’s test was applied to determine exactly which
groups were statistically different. First, the dimensional variables Lt, Wo, and e were
evaluated. Table 6 shows the results from pairwise comparisons between each independent
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group. It is important to remember here that groups TR1 (30% infill), TR3 (60% infill), and
TR5 (90% infill) correspond to the non-sterilized PLA samples (controls), while treatments
TR2, TR4, and TR6 represent their corresponding sterilized PLA counterparts. Comparison
1 corresponds to treatments TR1 and TR2, described in Figure 4; comparison 10 corre-
sponds to treatments TR3 and TR4, as seen in Figure 5, and comparison 15 corresponds to
treatments TR5 and TR6, as seen in Figure 6.

Table 5. Kruskal–Wallis’ test results. p-values are highlighted in yellow (p < 0.05) and green (p < 0.01).

Kruskal-Wallis’ Test Lt Wo W e E Sy Su elong

Chi-Squared 14.09 15.18 9.28 13.96 15.72 14.77 16.27 15.43
Degree of freedom 5 5 5 5 5 5 5 5
p-value 0.015 0.0096 0.098 0.016 0.0076 0.011 0.0061 0.0087

Table 6. Dunn’s test for PLA sample dimensional variables. Z, statistical value. P-Ua, unadjusted
p value. P-A, adjusted p value. p-values < 0.05 (yellow), and p-values < 0.01 (green).

Variable Dull
Test

Treatment Comparison

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

TR1 TR2 TR3 TR4 TR5

TR2 TR3 TR4 TR5 TR6 TR3 TR4 TR5 TR6 TR4 TR5 TR6 TR5 TR6 TR6

Lt
Z 1.8 0.2 2.3 −0.7 1.7 −1.5 0.5 −2.4 0.0 2.0 −0.9 1.5 −2.9 −0.5 2.4

P-Ua 0.1 0.8 0.02 0.5 0.1 0.1 0.6 0.01 1.0 0.04 0.4 0.1 0.003 0.6 0.02
P-A 1.0 1.0 0.4 1.0 1.0 1.0 1.0 0.2 1.0 0.6 1.0 1.0 0.05 1.0 0.2

Wo
Z 1.9 −0.5 1.6 −1.3 1.0 −2.3 −0.3 −3.1 −0.8 2.0 −0.8 1.5 −2.8 −0.5 2.3

P-Ua 0.1 0.6 0.1 0.2 0.3 0.02 0.8 0.002 0.4 0.04 0.4 0.1 0.005 0.6 0.02
P-A 0.9 1.0 1.0 1.0 1.0 0.3 1.0 0.03 1.0 0.6 1.0 1.0 0.1 1.0 0.3

e
Z −0.8 −1.6 −2.3 −3.1 −0.4 −0.8 −1.5 −2.3 0.4 −0.7 −1.5 1.2 −0.8 1.9 2.7

P-Ua 0.4 0.1 0.02 0.002 0.7 0.4 0.1 0.02 0.7 0.5 0.1 0.2 0.4 0.1 0.007
P-A 1.0 1.0 0.3 0.03 1.0 1.0 1.0 0.3 1.0 1.0 1.0 1.0 1.0 0.9 0.1

The results in Table 6 show that for comparison 1 (groups TR1 and TR2), no significant
statistical differences were found, but for comparison 10 (groups TR3 and TR4) and com-
parison 15 (groups TR5 and TR6) differences regarding sample length and thickness were
significant, which indicated that the sterilization process had an important effect on the
dimensional stability of PLA samples manufactured at 60% and 90% filling density, respec-
tively. In addition to this, when evaluating the effect of filling density on the dimensional
behavior of the PLA pieces, significant differences were found in terms of thickness for the
30% infill samples (sterilized and non-sterilized) relative to the 90% infill samples (TR5).
On the other hand, when comparing all sterilized groups (TR2, TR4, TR6), no significant
changes were identified in terms of dimensional variables.

Furthermore, Table 7 presents the results from Dunn’s test for the mechanical proper-
ties of the different PLA samples under study.

As suggested by the stress-strain curves previously shown, several significant differ-
ences were found between groups: comparison 1 (groups TR1 and TR2, 30% infill) indicated
significant differences in terms of ultimate strength (Su); for comparison 10 (groups TR3
and TR4, 60% infill) significant changes were identified for Young’s modulus (E) and %
elongation (elong); also, for comparison 15 (groups TR5 and TR6, 90% infill) significant
differences in terms of yield strength (Sy), ultimate strength (Su), and percentage elongation
(elong) were found. Moreover, comparison across filling densities (30%, 60%, and 90%
infill) indicated significant changes in Young’s modulus between the 30% and the 90% infill
groups, regardless of the presence of the sterilization procedure, since for the sterilized
groups (TR2 and TR6) a p-value of 0.04 was found, whereas for the non-sterilized groups
(TR1 and TR5) a p-value of 0.05 was obtained. Cumulatively, the results from Tables 6 and 7
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indicated that, for a specific filling density, the sterilization process had a significant effect
on the dimensional and mechanical behavior of the manufactured PLA pieces.

Table 7. Dunn’s test for PLA sample mechanical variables. Z, statistical value. P-Ua, unadjusted
p-value. P-A, adjusted p-value. p-values < 0.05 (yellow), and p-values < 0.01 (green).

Variable Dull
Test

Treatment Comparison

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

TR1 TR2 TR3 TR4 TR5

TR2 TR3 TR4 TR5 TR6 TR3 TR4 TR5 TR6 TR4 TR5 TR6 TR5 TR6 TR6

E
Z −1.1 −0.1 −2.2 −2.0 −3.1 1.0 −1.1 −0.9 −2.1 −2.1 −1.9 −3.1 0.2 −0.9 −1.1

P-Ua 0.3 0.9 0.03 0.05 0.002 0.3 0.3 0.4 0.04 0.03 0.1 0.002 0.8 0.4 0.3
P-A 1.0 1.0 0.4 0.7 0.03 1.0 1.0 1.0 0.6 0.5 0.8 0.03 1.0 1.0 1.0

Sy
Z 1.6 −1.0 0.4 −1.7 0.9 −2.6 −1.2 −3.3 −0.7 1.4 −0.7 1.9 −2.1 0.5 2.6

P-Ua 0.1 0.3 0.7 0.1 0.4 0.01 0.2 0.001 0.5 0.2 0.5 0.1 0.04 0.6 0.009
P-A 1.0 1.0 1.0 1.0 1.0 0.1 1.0 0.02 1.0 1.0 1.0 0.8 0.6 1.0 0.1

Su
Z 2.1 −0.7 0.8 −1.4 1.2 −2.8 −1.2 −3.4 −0.8 1.5 −0.7 1.9 −2.2 0.4 2.6

P-Ua 0.04 0.5 0.4 0.2 0.2 0.006 0.2 0.001 0.4 0.1 0.5 0.1 0.03 0.7 0.009
P-A 0.6 1.0 1.0 1.0 1.0 0.1 1.0 0.009 1.0 1.0 1.0 0.8 0.4 1.0 0.1

elong
Z 1.9 −1.0 1.0 −0.2 2.1 −2.9 −0.9 −2.1 0.2 2.0 0.8 3.1 −1.1 1.1 2.3

P-Ua 0.1 0.3 0.3 0.9 0.03 0.004 0.4 0.04 0.8 0.05 0.4 0.002 0.3 0.3 0.02
P-A 0.8 1.0 1.0 1.0 0.5 0.1 1.0 0.6 1.0 0.7 1.0 0.03 1.0 1.0 0.3

3.3. Multivariable Analysis

Data in Table 3 were normalized to facilitate comparison among dimensionless vari-
ables. Because some scales and values are larger than others, normalization reduces this
dominance. Thus, it was possible to reduce the influence of outliers in the data by modify-
ing the data scale and preserving normal distribution. To observe patterns of similarities
across the data, clustering analysis allows data reduction and outlier identification. The
most common methods are k-mean, k-medoids, and hierarchical methods [64]. The last
one was selected because it does not depend on the number of clusters beforehand; it is
most reliable for the identification of outliers and preserves distance information between
small data. A hierarchical cluster first calculates the distance between observations. Then it
fuses the most similar data into a cluster and assigns a group until it finishes comparisons.
Different methods could be selected for determining data closeness. To calculate dissimilar-
ity, the agnes() function in R returns the agglomerative coefficient from 0 to 1, meaning a
robust clustering if this coefficient is near 1. Table 8 shows these results.

Table 8. Agglomerative coefficient.

Average Single Complete Ward

0.843705 0.761088 0.891512 0.927438

The selected agglomerative coefficient indicated the ward’s linkage method selection.
This method minimizes variance, starting on individual data points until merging with a
cluster, then successively shaping a hierarchy of clusters. To choose the number of clusters
(k), another metric named gap statistic was used. It determines from 0 to 1 the optimal
k comparing the total inter-clustering variation (sum of squared distances) of a given
clustering solution with a non-apparent cluster structure (random) in the dataset [75].

The optimal gap statistic calculated with clusGap() and fviz_gap_stat() functions in
R from the normalized dataset was k = 8, being a near-to-zero value of k = 3, as can be
seen in Figure 8a. To make a dendrogram, it was necessary to calculate a square matrix
from data dissimilarity by Euclidian distance [76]. With the previous information, it was
possible to run hierarchical clustering for k = 8 with the hclust() function in R, as shown in
Figure 8b. It could be observed that clustering highlighted samples 8 and 17 as outliers.
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However, depending on how the height is selected, different clusters could be obtained
with acceptable dissimilarity. For example, if the chosen height is 2, the k clusters are 6,
with a gap statistic above 0.5 that could fit. This example was indicated by dash line in
Figure 8a,b.
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Additionally, it was observed that hierarchical clustering did not group data in con-
sistency with treatments as initially anticipated. However, some exceptions could be seen
in Figure 8b, such as the clusters that represent treatment 4, consisting of samples 10 and
11, and treatment 1, comprising samples 2 and 3. Furthermore, hierarchical clustering also
revealed a hidden factor among the nine variables that could explain the behavior of the
18 samples. By PCA, the nine variables were reduced to two dimensions that accumulated
83.1% of data variance (Figure 9). Nevertheless, data among clusters were scattered with
no apparent pattern, whereas PCA requires subjective analysis to identify common aspects
that could fit dimension explanation.
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Dimension 1 explained 49.5% of the data variance. In the negative axis of dimension
1, 33% of samples were controlled (6 samples), and the material was 22% for 90% infill
(four samples) with only 11% for 30% infill; in contrast, the positive axis of Dimension 1
had 33% of sterilized samples (six samples), and the material was 22% for 30% infill (four
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samples) with only 11% for 90% infill. Samples for 60% infill were equally distributed
among Dimension 1 for 16% in each interval (three samples for both positive and negative
axis). Because the negative axis in Dimension 1 seems stronger than the positive axis in
terms of mechanical properties, according to the results from the previous subsection, that
is why Dimension 1 could be named “post processing affectation”.

Dimension 2 explained 33.6% of the data variance. In the negative axis of Dimension
2, 22% of samples were controlled and 22% sterilized (four samples each one), and the
material was 22% for 30% infill, 11% for 60% infill, and 11% for 90% infill (four, two, and
two samples, respectively); in contrast, in the positive axis of Dimension 2, 27% of samples
were controlled and 27% sterilized (five samples each one), and the material was 11%
for 30% infill, 22% for 60% infill, and 22% for 90% infill (two, four, and four samples,
respectively). The similarity in the sterilization factor indicated that this factor did not seem
to influence this dimension. Instead, infill percentage could be a better explanation because
in the positive axis in Dimension 2, it concentrates the samples with the most mass as well
as manufacturing time. That is why Dimension 2 could be named “invested resources”.

The multivariable data analysis indicates that it could be possible to explain data in
terms of affectation for sterilization related to processing resources. For example, samples
7, 8, 9 (non-sterilized with 60% infill) and 10, 11, 12 (sterilized with 60% infill) are spread
across Dimension 1 but near to Dimension 2’s origin, which could explicate their preference
as affordable and practical manufacturing parameters.

4. Discussion and Conclusions

In the context of the Sustainable Development Goals, global surgery constitutes a key
element in achieving global health and social equality. In developing countries, access to
adequate surgical care is predominantly hindered by financial constraints [77]. According
to the Lancet Commissions, the unmet surgical needs for low- and middle-income countries
worldwide were estimated at about 143 million annual procedures in 2015 [78]. To further
complicate this issue, the incidence of conditions such as traumatic spinal injury or spine
degenerative disease appears to be significantly higher in low- and middle-income countries
relative to high-income countries [79,80]. If performed timely, these injury/disease-related
surgical treatments could prevent death or disability. However, the lack of essential surgical
supplies frequently becomes one of the most delaying factors.

Additive manufacturing approaches have emerged as promising tools to address the
abovementioned shortcomings. Among these technologies, fused deposition modeling has
drawn special attention due to its inexpensive nature and the fact that it allows both the
extrusion of a wide range of polymers, such as PLA [16,17], as well as the fabrication of
highly complex structures [18]. The latter becomes key to surgical scenarios that require
patient-specific devices. In this sense, from cranioplasty implants [20] and screw guides
for spine surgery [21] to chest wall reconstruction devices [22], FDM has been successfully
tested in the clinical setting. Likewise, FDM-printed PLA anatomical models have been
evaluated for effective preoperative planning, yielding promising results for cranial and
spinal surgery [23,24].

The primary goal of the present studies was to evaluate the effect of formaldehyde
and steam sterilization on the dimensional and mechanical stability of standard PLA test
pieces produced by FDM toward contributing to the development of low-cost approaches
for the fabrication of functional and customized medical devices. Combining affordable
manufacturing processes with engineering materials, such as PLA, is of particular interest to
the medical community, especially in low- and middle-income contexts, since, for example,
the production of PLA-based 3D printed cranial models could cost anywhere between
5–150 USD [81,82]. Specifically for Colombia, utilizing PLA offers multiple advantages, as
it has been demonstrated that local PLA production from natural resources is economically
feasible due to Colombia’s unique biodiversity as well as its large stock of agro-industrial
waste [83–85]. In this sense, fused deposition modeling stands out as a cost-effective AM
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technology that would enable the use of such locally produced PLA for in-house medical
device fabrication.

Nonetheless, several challenges must be overcome before FDM can be successfully
implemented as a reliable and economical alternative for MD production in contexts where
financial resources are particularly limited. For instance, MD dimensional and mechanical
stability after sterilization is one of the key requirements that remain to be consistently
fulfilled. Preservation of geometric and structural properties after sterilization is crucial
to ensuring both the accuracy of the biological fitting as well as the adequate mechanical
performance of a PLA-based medical device. The early work of Neches et al. [86] attempted
to circumvent this issue by studying whether the temperature and pressure used for
extrusion in FDM were enough to guarantee PLA sterilization. The authors manufactured
52 specimens inside a laminar cabinet with and without UV light. Their results from in vitro
testing indicated a 10% risk of sample contamination, a number that would be unacceptable
in any clinical setting, especially if the fabricated MD is to be used inside the human body.

To gain insight into the set of processing parameters that predominantly affect MD
dimensional and mechanical integrity, we set out to evaluate the effect of formaldehyde and
steam sterilization on standard PLA pieces produced by FDM according to the sterilization
protocol of a public hospital in the city of Bucaramanga, Colombia. Relative to meth-
ods such as ethylene oxide sterilization or plasma sterilization with hydrogen peroxide,
formaldehyde, and steam sterilization are more readily available in public hospitals due to
their economic nature. In 2012, Perez et al. [87] reported their findings from a study aimed
at evaluating the effect of different sterilization techniques (autoclave, ethylene oxide,
hydrogen peroxide, and gamma radiation) on the sterility of polymeric parts produced by
FDM. Acrylonitrile butadiene styrene (ABS), a polymer of comparable commercial cost as
PLA, was one of the studied materials. Although their experiments were not focused on
the analysis of dimensional behavior, they reported that physical damage was observed for
the ABS samples after autoclave and flash autoclave treatment.

Our results evidenced that sterilization of 3D-printed standard PLA pieces signifi-
cantly affected several dimensional and mechanical parameters, such as sample length,
thickness, Young’s modulus, yield strength, ultimate strength, and elongation percentage.
Moreover, when analyzing the impact of filling density, it was found that the dimensional
and mechanical behavior of the 30% infill group was significantly different from that of the
90% infill group. Although our experiments were designed using the minimum number of
specimens that allowed statistical power [61], it was possible to draw relevant conclusions
that will guide future studies, which will include greater sample size and, thus, higher
statistical power.

The thermoplastic nature of low-cost polymers such as PLA or ABS poses one of
the major challenges to the achievement of MDs that can withstand high-temperature
sterilization conditions. Nonetheless, the results from recent studies on PLA have shown
promise in alternative approaches to overcome this issue. For instance, the experiments
conducted by Shaik et al. [88] attempted to elucidate the effect of pressure and temperature
on the mechanical performance and consolidation of layers of 3D-printed PLA pieces. By
looking at different post-production treatments (pressure + temperature, only pressure,
and only temperature) in which the temperature was kept at the glass transition (Tg) value
of PLA or below, the authors were able to attain significant increases in Young’s moduli
of up to 40–50%. Because at Tg the polymer chains increase their mobility, this probably
helped relieved structural tension and allowed for structure reorganization that resulted
in enhanced mechanical resistance. In addition, the application of high pressure aided in
removing voids and maintaining isotropic properties in the PLA sample.

Moreover, the recent work by Chen et al. [89] provided additional insight as they
evaluated seven different types of commercial PLA brands, which were employed for
the FDM printing of PLA samples with two geometries: cubic and standard army-navy
retractor. These PLA samples were subjected to heat treatments in hot water (water bath
annealing) and in a regular autoclave. Upon analysis of their results, the authors concluded
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that the “Essentium PLA” brand, in conjunction with a “grid” infill geometry, demonstrated
a promising combination of processing parameters for the FDM fabrication of anatomical
models since it provided the most dimensionally stable PLA samples.

Increasing the degree of crystallinity through annealing has been proven to endow
PLA-printed pieces with high-temperature resistance since crystalline structures exhibit
enhanced structural stability above the glass transition temperature. For instance, Romanov
and coworkers [90] reported the development of high-pressure and heat-resistant PLA-
printed microfluidic devices, which were annealed on a hot plate at temperatures between
100–140 ◦C after FDM printing. The authors showed that the annealed systems could
withstand pressures of up to 3 MPa, as well as effectively work at 95 ◦C without significant
deformation of the channel’s cross-section. More recently, Frizziero et al. [91] manufac-
tured cutting guides for bone correction surgery using standard PLA, heat-treatable PLA
(HTPLA), and nylon. The parts were exposed to a 50 min steam sterilization process that
cycled between 70 and 134.9 ◦C, after which an assessment of sample dimensional stability
was performed. Interestingly, deformation levels for PLA and HTPLA samples were below
1.82%, whereas nylon guides exhibited deformation levels above 2.5% [90,91].

Cumulatively, analysis of our results in the context of current literature seems to
indicate that the next avenue of research to pursue could be exploring different PLA
annealing conditions [89] as pre-treatment methods to avoid the detrimental effects of
steam sterilization since annealing can help relieve internal tensions, as well as enhance
interlayer adhesion and thermal stability of FMD-printed PLA parts. Sourcing locally
synthesized PLA for such studies would also allow the simultaneous evaluation of the
potential of recycled or biobased PLA as an engineering material for the fabrication of
3D-printed surgical devices, which would imply an additional opportunity for economic
growth. Moreover, for example, the accurate manufacture of low-cost anatomical models
would significantly help surgeons understand complex anatomical conditions prior to
surgery, facilitating the provision of high-quality health care in contexts where financial
resources are significantly limited.
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