Valorisation of Pineapple Cannery Waste as a Cost Effective Carbon Source for Poly 3-hydroxyabutyrate (P3HB) Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. PHAs-Producing Bacterial Strain
2.2. Characterisation and Preparation of Pineapple Waste
2.3. Fermentation of Pineapple Cannery Waste (PCW)
2.4. PHAs Production in Fermentor
2.5. Analytical Methods
2.5.1. Dry Cell Mass (DCM) Measurement
2.5.2. Determination of Sugar Concentration and Sugar Consumption
2.5.3. Water Quality Analysis
2.5.4. PHAs Recovery
2.5.5. PHAs Characterisation and Properties Analysis
2.6. Statistical Analysis
3. Results and Discussion
3.1. Pineapple Waste Characterisation
3.2. PHAs Production in a Shake Flask
3.3. Statistical Test of PHAs Production from Different Waste Sources
3.4. PHAs Production in a Fermentor
3.5. Characterisation of PHAs
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Surendran, A.; Lakshmanan, M.; Chee, J.Y.; Sulaiman, A.M.; Thuo, D.V.; Sudesh, K. Can Polyhydroxyalkanoates be produced efficiently from waste plant and animal oils? Front. Bioeng. Biotechnol. 2020, 169, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Park, S.J.; Kim, T.W.; Kim, M.K.; Lee, S.Y.; Lim, S.-C. Advanced bacterial polyhydroxyalkanoates: Towards a versatile and sustainable platform for unnatural tailor-made polyesters. Biotechnol. Adv. 2012, 30, 1196–1206. [Google Scholar] [CrossRef] [PubMed]
- Du, C.; Sabirova, J.; Soetaert, W.; Lin, S.K.C. Polyhydroxyalkanoates production from low-cost sustainable raw materials. Curr. Chem. Biotechnol. 2012, 6, 14–25. [Google Scholar]
- Barbosa, C.H.; Andrade, M.A.; Séndon, R.; Silva, A.S.; Ramos, F.; Vilarinho, F.; Khwaldia, K.; Barbosa-Pereira, L. Industrial Fruits By-Products and Their Antioxidant Profile: Can They Be Exploited for Industrial Food Applications? Foods 2021, 10, 272. [Google Scholar] [CrossRef]
- Campos, A.D.; Ribeiro, B.T.; Teixeira, A.J.; Pastrana, L.; Maria Manuela Pintado, M.M. Integral Valorization of Pineapple (Ananas comosus L.) By-Products through a Green Chemistry Approach towards Added Value Ingredients. Foods 2020, 9, 60. [Google Scholar] [CrossRef] [Green Version]
- Office of Agricultural Economics (OAE). Agricultural: Export, Pineapple. 2021. Available online: http://www.oae.go.th/oae_report/export_import/export_result.php (accessed on 16 February 2022).
- Department of Industrial Works (DIW). Industrial Sector Codes of Practice for Pollution Prevention (Cleaner Technology): Canned Fruit and Vegetables (Pineapples) Industry; Department of Industrial Works (DIW): Bangkok, Thailand, 2021.
- Chalchisa, T.; Dereje, B. From waste to food: Utilization of pineapple peels for vinegar production. MOJ Food Process. Technol. 2021, 9, 1–5. [Google Scholar] [CrossRef]
- Prado, S.K.; Spinace, M.A.S. Isolation and characterization of cellulose nanocrystals from pineapple crown waste and their potential uses. Macromolecules 2019, 122, 410–416. [Google Scholar] [CrossRef]
- Unnikrishnan, G.; Ramasamy, V. Anaerobic Digestion of Pineapple Waste for Biogas Production and Application of Slurry as Liquid Fertilizer Carrier for Phosphate Solubilizers. Indian J. Agric. Res. 2021, 1–8. [Google Scholar] [CrossRef]
- Salafia, F.; Ferracane, A.; Tropea, A. Pineapple Waste Cell Wall Sugar Fermentation by Saccharomyces cerevisiae for Second Generation Bioethanol Production. Fermentation 2022, 8, 100. [Google Scholar] [CrossRef]
- Ayeni, A.O.; Daramola, M.O.; Taiwo, O.; Omowonuola, I.; Olanrewaju, O.I.; Oyekunle, D.T.; Sekoai, P.T.; Elehinafe, F.B. Production of Citric Acid from the Fermentation of Pineapple Waste by Aspergillus niger. Open Chem. Eng. J. 2019, 13, 88–96. [Google Scholar] [CrossRef]
- Rivera, A.M.P.; Toro, C.R.; Londoño, L.; Bolivar, G.; Ascacio, J.A.; Aguilar, C.N. Bioprocessing of pineapple waste biomass for sustainable production of bioactive compounds with high antioxidant activity. J. Food Meas. Charact. 2022, 17, 586–606. [Google Scholar] [CrossRef]
- Meena, L.; Sengar, A.S.; Neog, R.; Sunil, C.K. Pineapple processing waste (PPW): Bioactive compounds, their extraction, and utilisation: A review. J. Food Sci. Technol. 2021, 59, 4152–4164. [Google Scholar] [CrossRef]
- Penkhrue, W.; Jendrossek, D.; Khanongnuch, C.; Pathom-Aree, W.; Aizawa, T.; Behrens, R.L.; Lumyong, S. Response surface method for polyhydroxybutyrate (PHB) bioplastic accumulation in Bacillus drentensis BP17 using pineapple peel. PLoS ONE 2020, 15, e0230443. [Google Scholar] [CrossRef] [Green Version]
- Sukruansuwan, V.; Napathorn, S.C. Use of agro-industrial residue from the canned pineapple industry for polyhydroxybutyrate production by Cupriavidus necator strain A-04. Biotechnol. Biofuels 2018, 11, 202. [Google Scholar] [CrossRef] [Green Version]
- Vega-Castro, O.; Contreras-Calderon, J.; León, E.; Segura, A.; Arias, M.; Pérez, L.; Sobral, P. Characterization of a polyhydroxyalkanoate obtained from pineapple peel waste using Ralsthonia eutropha. J. Biotechnol. 2016, 231, 232–238. [Google Scholar] [CrossRef]
- Abbas, S.; Shanbhag, T.; Kothare, A. Applications of bromelain from pineapple waste towards acne. Saudi J. Biol. Sci. 2020, 28, 1001–1009. [Google Scholar] [CrossRef]
- Kostiuchenko, O.; Kravchenko, N.; Markus, J.; Burleigh, S.; Fedkiv, O.; Cao, L.; Letasiova, S.; Skibo, G.; Hållenius, F.F.; Prykhodko, O. Effects of Proteases from Pineapple and Papaya on Protein Digestive Capacity and Gut Microbiota in Healthy C57BL/6 Mice and Dose-Manner Response on Mucosal Permeability in Human Reconstructed Intestinal 3D Tissue Model. Metabolites 2022, 12, 1027. [Google Scholar] [CrossRef]
- Caroff, M.; Novikov, A. Lipopolysaccharides: Structure, function and bacterial identification. OCL 2020, 27, 31. [Google Scholar] [CrossRef]
- Suwannasing, W.; Imai, T.; Kaewkannetra, P. Cost-effiective defined medium for the production of polyhydroxyalkanoates using agricultural raw materials. Bioresour. Technol. 2015, 194, 67–74. [Google Scholar] [CrossRef]
- American Public Health Association (APHA); American Water Works Association (AWWA); Water Environment Federation (WEF). Standard Methods for the Examination of Water and Wastewater, 23rd ed.; American Public Health Association: Washington, DC, USA, 2017. [Google Scholar]
- Mamani, D.C.; Nole, K.S.O.; Montoya, E.E.C.; Huiza, D.A.M.; Alta, R.Y.P.; Vitorino, H.A. Minimizing Organic Waste Generated by Pineapple Crown: A Simple Process to Obtain Cellulose for the Preparation of Recyclable Containers. Recycling 2020, 5, 24. [Google Scholar] [CrossRef]
- Wiyantoko, B.; Rusitasari, R.; Putri, R.N. Study of Hydrolysis Process from Pineapple Leaf Fibers using Sulfuric Acid, Nitric Acid, and Bentonite Catalysts. Bull. Chem. React. Eng. Catal. 2021, 16, 571–580. [Google Scholar] [CrossRef]
- Chala, A.T.; Matula, S.; Báťková, K.; Doležal, F. Evaluation of methods for water and non-volatile LNAPL content measurement in porous media. Soil Water Res. 2019, 14, 47–56. [Google Scholar] [CrossRef] [Green Version]
- Palmeiro-Sánchez, T.; O’flaherty, V.; Lens, P.N. Polyhydroxyalkanoate bio-production and its rise as biomaterial of the future. J. Biotechnol. 2022, 348, 10–25. [Google Scholar] [CrossRef]
- McDermott, P.; Rehm, B.H.A.; Grage, K. Engineering Bacillus megaterium for production of functional intracellular materials. Microb. Cell Factories 2017, 16, 211. [Google Scholar]
- Kumar, P.; Patel, S.K.; Lee, J.-K.; Kalia, V.C. Extending the limits of Bacillus for novel biotechnological applications. Biotechnol. Adv. 2013, 31, 1543–1561. [Google Scholar] [CrossRef]
- Mizuno, K.; Ohta, A.; Hyakutake, M.; Ichinomiya, Y.; Tsuge, T. Isolation of polyhydroxyalkanoate-producing bacteria from a polluted soil and characterization of the isolated strain Bacillus cereus YB-4. Polym. Degrad. Stab. 2010, 95, 1335–1339. [Google Scholar] [CrossRef]
- Obruca, S.; Marova, I.; Melusova, S.; Mravcova, L. Production of polyhydroxyalkanoates from cheese whey employing Bacillus megaterium CCM 2037. Ann. Microbiol. 2011, 61, 947–953. [Google Scholar] [CrossRef]
- Wang, B.; Sharma-Shivappa, R.R.; Olson, J.W.; Khan, S.A. Production of polyhydroxybutyrate (PHB) by Alcaligenes latus using sugar beet juice. Ind. Crops Prod. 2013, 43, 802–811. [Google Scholar] [CrossRef]
- Vu, D.H.; Wainaina, S.; Taherzadeh, M.J.; Åkesson, D.; Ferreira, J.A. Production of polyhydroxyalkanoates (PHAs) by Bacillus megaterium using food waste acidogenic fermentation-derived volatile fatty acids. Bioengineered 2021, 12, 2480–2498. [Google Scholar] [CrossRef]
- Tanamool, V.; Imai, T.; Danvirutai, P.; Kaewkannetra, P. Biopolymer generation from sweet sorghum juice: Screening, isolation, identification, and fermentative polyhydroxyalkanoate production by Bacillus aryabhattai. Turk. J. Biol. 2013, 37, 259–264. [Google Scholar] [CrossRef]
- Gojgic-Cvijovic, G.; Jakovljevic, D.; Loncarevic, B.; Todorovic, N.; Pergal, M.; Ciric, J.; Loos, K.; Beskoski, V.; Vrvic, M. Production of levan by Bacillus licheniformis NS032 in sugar beet molasses-based medium. Int. J. Biol. Macromol. 2018, 121, 142–151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tri, P.N.; Domenek, S.; Guinault, A.; Cyrille Sollogoub, C. Crystallization behavior of poly(lactide)/poly(β-hydroxybutyate)/talc composites. J. Appl. Polym. Sci. 2013, 129, 3355–3365. [Google Scholar] [CrossRef] [Green Version]
Sources of Waste | pH | BOD * (mgL−1) | TKN ** (mgL−1) | TP *** (mgL−1) | SS **** (mgL−1) | Total Soluble Solid (°Brix ) | Sugar Content (gL−1) | Total Sugar (gL−1) | ||
---|---|---|---|---|---|---|---|---|---|---|
Fructose | Glucose | Sucrose | ||||||||
PAJ | 3.6 | 26,000 | 1120 | 45 | 16,762 | 14.8 | 20.30 | 18.88 | 78.45 | 117.62 |
PCJ | 3.7 | 28,000 | 840 | 51 | 14,053 | 12.0 | 23.34 | 26.08 | 50.85 | 100.28 |
PWW | 4.6 | 1700 | 420 | 6.8 | 627 | 0.8 | 1.64 | 1.38 | 7.24 | 10.26 |
Nutrient Addition | Sources of Waste | DCM (g/L) | PHAs Concentration (g/L) | Yp/s (g/g) | % PHAs Content (w/w) | Productivity (g/Lh) |
---|---|---|---|---|---|---|
Nutrient addition | PAJ | 4.59 ± 2.66 | 0.74 ± 1.09 | 0.030 ± 0.03 | 17.81 ± 30.35 | 0.015 + 0.01 |
PCJ | 3.87 ± 1.21 | 0.94 ± 1.44 | 0.077 ± 0.12 | 23.69 ± 35.57 | 0.019 + 0.02 | |
PWW | 1.57 ± 0.94 | 0.86 ± 0.18 | 0.216 ± 0.11 | 56.45 ± 28.63 | 0.022 + 0.04 | |
No nutrient addition | PAJ | 4.06 ± 1.81 | 0.69 ± 1.51 | 0.054 ± 0.34 | 19.45 ± 48.14 | 0.014 + 0.03 |
PCJ | 3.63 ± 1.44 | 0.90 ± 1.49 | 0.127 ± 0.28 | 24.48 ± 38.97 | 0.020 + 0.03 | |
PWW | 0.78 ± 0.19 | 0.27 ± 0.14 | 0.047 ± 0.04 | 34.00 ± 10.71 | 0.006 + 0.01 |
Carbon Sources | PHAs Concentration (g/L) | PHAs Content (%w/w) | Microorganisms | References |
---|---|---|---|---|
Cheese whey | 1.50 | 51.00 | Bacillus megaterium CCM 2037 | Obruca, et al., 2011 [30] |
Sugar beet juice | 4.0 ± 0.95 | 38.66 ± 7.28 | Alcaligenes latus | Wang, et al., 2013 [31] |
Sugarcane juice | 1.84 | 30.60 | Alcaligenes eutrophus | Suwannasing, et al., 2015 [21] |
Sugarcane molasse | 0.67–30.52 | 42.10–61.60 | Bacillus megaterium DSM 90 | Vu, et al., 2021 [32] |
Sweet sorghum juice | 1.74 | 57.62 | Bacillus aryabhattai | Tanamool, et al., 2013 [33] |
Sugarcane molasses | 2.25 | 43.00 | Bacillus licheniformis DSM 394 | Gojgic-Cvijovic, et al., 2019 [34] |
Pineapple waste | 1.50 | 65.95 | Bacillus sp. SV13 | This work |
Nutrient Addition | Sources of Waste | Melting Temperature, Tm (°C) | Enthalpy of Fusion, ∆H (J/g) | Crystallinity a (%) |
---|---|---|---|---|
Nutrient addition | PAJ | 170.0 | 67.08 | 45.94 |
PCJ | 171.4 | 61.67 | 42.24 | |
PWW | 171.8 | 80.31 | 55.01 | |
No nutrient addition | PAJ | 168.15 | 77.15 | 52.84 |
PCJ | 168.51 | 79.00 | 54.11 | |
PWW | 173.0 | 81.10 | 55.55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suwannasing, W.; Tanamool, V.; Singhaboot, P.; Kaewkannetra, P. Valorisation of Pineapple Cannery Waste as a Cost Effective Carbon Source for Poly 3-hydroxyabutyrate (P3HB) Production. Polymers 2023, 15, 3297. https://doi.org/10.3390/polym15153297
Suwannasing W, Tanamool V, Singhaboot P, Kaewkannetra P. Valorisation of Pineapple Cannery Waste as a Cost Effective Carbon Source for Poly 3-hydroxyabutyrate (P3HB) Production. Polymers. 2023; 15(15):3297. https://doi.org/10.3390/polym15153297
Chicago/Turabian StyleSuwannasing, Waranya, Varavut Tanamool, Pakjirat Singhaboot, and Pakawadee Kaewkannetra. 2023. "Valorisation of Pineapple Cannery Waste as a Cost Effective Carbon Source for Poly 3-hydroxyabutyrate (P3HB) Production" Polymers 15, no. 15: 3297. https://doi.org/10.3390/polym15153297
APA StyleSuwannasing, W., Tanamool, V., Singhaboot, P., & Kaewkannetra, P. (2023). Valorisation of Pineapple Cannery Waste as a Cost Effective Carbon Source for Poly 3-hydroxyabutyrate (P3HB) Production. Polymers, 15(15), 3297. https://doi.org/10.3390/polym15153297