Synthesis of Iron Oxides and Influence on Final Sizes and Distribution in Bacterial Cellulose Applications
Abstract
:1. Introduction
2. General Considerations about Magnetism
Magnetic Domains in Nanoparticles
3. Iron Oxides—Generalities and Types
4. Main Iron Oxide Formation Mechanisms
4.1. Coprecipitation
4.2. Thermal Decomposition
4.3. Microemulsion
4.4. Comparison of Coprecipitation, Thermal Decomposition and Microemulsion Methods
5. Main Effects of Size Distribution in Different Applications
6. Application in Bacterial Cellulose and Effect of Size Distribution
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cullity, B.D.; Graham, C.D. Introduction to Magnetic Materials, 2nd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2009. [Google Scholar]
- Bustamante-Torres, M.; Romero-Fierro, D.; Estrella-Nuñez, J.; Arcentales-Vera, B.; Chichande-Proaño, E.; Bucio, E. Polymeric Composite of Magnetite Iron Oxide Nanoparticles and Their Application in Biomedicine: A Review. Polymers 2022, 14, 752. [Google Scholar] [CrossRef]
- Samrot, A.V.; Sahithy, C.S.; Selvarani, J.; Purayi, S.K.; Ponnaiah, P. A review on synthesis, characterization and potential biological applications of superparamagnetic iron oxide nanoparticles. Curr. Res. Green Sustain. Chem. 2021, 4, 100042. [Google Scholar] [CrossRef]
- Al-Anazi, A. Iron-based magnetic nanomaterials in environmental and energy applications: A short review. Curr. Opin. Chem. Eng. 2022, 36, 100794. [Google Scholar] [CrossRef]
- Niculescu, A.G.; Chircov, C.; Grumezescu, A.M. Magnetite nanoparticles: Synthesis methods—A comparative review. Methods 2021, 199, 16–27. [Google Scholar] [CrossRef] [PubMed]
- Yusoff, A.H.M.; Salimi, M.N.; Jamlos, M.F. A review: Synthetic strategy control of magnetite nanoparticles production. Adv. Nano Res. 2017, 6, 1–19. [Google Scholar] [CrossRef]
- Akhtar, N.; Mohammed, H.A.; Yusuf, M.; Al-Subaiyel, A.; Sulaiman, G.M.; Khan, R.A. SPIONs Conjugate Supported Anticancer Drug Doxorubicin’s Delivery: Current Status, Challenges, and Prospects. Nanomaterials 2022, 12, 3686. [Google Scholar] [CrossRef]
- Vangijzegem, T.; Lecomte, V.; Ternad, I.; Van Leuven, L.; Muller, R.N.; Stanicki, D.; Laurent, S. Superparamagnetic Iron Oxide Nanoparticles (SPION): From Fundamentals to State-of-the-Art Innovative Applications for Cancer Therapy. Pharmaceutics 2023, 15, 236. [Google Scholar] [CrossRef] [PubMed]
- Dudchenko, N.; Pawar, S.; Perelshtein, I.; Fixler, D. Magnetite-Based Biosensors and Molecular Logic Gates: From Magnetite Synthesis to Application. Biosensors 2023, 13, 304. [Google Scholar] [CrossRef]
- Souza, T.C.; Amorim, J.D.P.d.; Silva Junior, C.J.G.d.; de Medeiros, A.D.M.; Santana Costa, A.F.d.; Vinhas, G.M.; Sarubbo, L.A. Magnetic Bacterial Cellulose Biopolymers: Production and Potential Applications in the Electronics Sector. Polymers 2023, 15, 853. [Google Scholar] [CrossRef]
- Callister, W.D.; Rethwisch, D.G. Ciência E Engenharia De Materiais: Uma Introdução, 9th ed.; LTV: Rio de Janeiro, Brazil, 2016. [Google Scholar]
- Shackelford, J.F. Introduction to Materials Science for Engineers, 9th ed.; Pearson Prentice Hall: London, UK, 2022. [Google Scholar]
- Spaldin, N.A. Magnetic Materials: Fundamentals and Applications, 2nd ed.; Cambridge University Press: Santa Barbara, CA, USA, 2012. [Google Scholar]
- Guimarães, A.P. Magnetismo e Ressonância Magnética em Sólidos, 1st ed.; Ed USP: São Paula, Brazil, 2009. [Google Scholar]
- Halliday, D.; Resnick, R. Fundamentals of Physics, 11th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2021; Volume 3. [Google Scholar]
- Ganapathe, L.S.; Mohamed, M.A.; Mohamad Yunus, R.; Berhanuddin, D.D. Magnetite (Fe3O4) Nanoparticles in Biomedical Application: From Synthesis to Surface Functionalisation. Magnetochemistry 2020, 6, 68. [Google Scholar] [CrossRef]
- Francisquini, E.; Schoenmaker, J.; Souza, J.A. Nanopartículas magnéticas e suas aplicações. Química Supramol. e Nanotecnologia 2014, 1, 269–288. [Google Scholar]
- Schwertmann, U.; Cornell, R.M. Iron Oxides in the Laboratory: Preparation and Characterization, 2nd ed.; John Wiley & Sons: Weinheim, Germany, 2008. [Google Scholar]
- Bhateria, R.; Singh, R. A review on nanotechnological application of magnetic iron oxides for heavy metal removal. J. Water Process Eng. 2019, 31, 100845. [Google Scholar] [CrossRef]
- Oliveira, L.C.; Fabris, J.D.; Pereira, M.C. Óxidos de ferro e suas aplicações em processos catalíticos: Uma revisão. Química Nova 2013, 36, 123–130. [Google Scholar] [CrossRef] [Green Version]
- Yun, H.; Kim, J.; Paik, T.; Meng, L.; Sung Jo, P.; Kikkawa, J.M.; Kagan, C.R.; Allen, M.G.; Murray, C.B. Alternate current magnetic property characterization of nonstoichiometric zinc ferrite nanocrystals for inductor fabrication via a solution-based process. J. Appl. Phys. 2016, 119, 11. [Google Scholar] [CrossRef] [Green Version]
- Meng, L.; Watson, B.W., II; Qin, Y. Hybrid conjugated polymer/magnetic nanoparticle composite nanofibers through cooperative non-covalent interactions. Nanoscale Adv. 2020, 2, 2462–2470. [Google Scholar] [CrossRef]
- Narayanaswamy, V.; Sambasivam, S.; Saj, A.; Alaabed, S.; Issa, B.; Al-Omari, I.A.; Obaidat, I.M. Role of magnetite nanoparticles size and concentration on hyperthermia under various field frequencies and strengths. Molecules 2021, 26, 796. [Google Scholar] [CrossRef]
- Dheyab, M.A.; Aziz, A.A.; Jameel, M.S.; Noqta, O.A.; Mehrdel, B. Synthesis and coating methods of biocompatible iron oxide/gold nanoparticle and nanocomposite for biomedical applications. Chin. J. Phys. 2020, 64, 305–325. [Google Scholar] [CrossRef]
- Yazdani, F.; Seddigh, M. Magnetite nanoparticles synthesized by co-precipitation method: The effects of various iron anions on specifications. Mater. Chem. Phys. 2016, 184, 318–323. [Google Scholar] [CrossRef]
- Chanthiwong, M.; Mongkolthanaruk, W.; Eichhorn, S.J.; Pinitsoontorn, S. Controlling the processing of co-precipitated magnetic bacterial cellulose/iron oxide nanocomposites. Mater. Des. 2020, 196, 109148. [Google Scholar] [CrossRef]
- Shin, S.J.; Kim, D.H.; Bae, G.; Ringe, S.; Choi, H.; Lim, H.K.; Choi, C.H.; Kim, H. On the importance of the electric double layer structure in aqueous electrocatalysis. Nat. Commun. 2022, 13, 174. [Google Scholar] [CrossRef]
- Riaz, S.; Bashir, M.; Naseem, S. Iron oxide nanoparticles prepared by modified co-precipitation method. IEEE Trans. Magn. 2014, 50, 1–4. [Google Scholar] [CrossRef]
- Song, C.; Sun, W.; Xiao, Y.; Shi, X. Ultrasmall iron oxide nanoparticles: Synthesis, surface modification, assembly, and biomedical applications. Drug Discov. Today 2019, 24, 835–844. [Google Scholar] [CrossRef]
- Koo, K.N.; Ismail, A.F.; Othman, M.H.D.; Rahman, M.A.; Sheng, T.Z. Preparation and characterization of superparamagnetic magnetite (Fe3O4) nanoparticles: A short review. Malaysian J. Fundam. Appl. Sci. 2019, 15, 23–31. [Google Scholar] [CrossRef] [Green Version]
- Estévez, M.; Montalbano, G.; Gallo-Cordova, A.; Ovejero, J.G.; Izquierdo-Barba, I.; González, B.; Tomasina, C.; Moroni, L.; Vallet-Regí, M.; Vitale-Brovarone, C. Incorporation of Superparamagnetic Iron Oxide Nanoparticles into Collagen Formulation for 3D Electrospun Scaffolds. Nanomaterials 2022, 12, 181. [Google Scholar] [CrossRef] [PubMed]
- Okoli, C.; Sanchez-Dominguez, M.; Boutonnet, M.; Järås, S.; Civera, C.; Solans, C.; Kuttuva, G.R. Comparison and Functionalization Study of Microemulsion-Prepared Magnetic Iron Oxide Nanoparticles. Langmuir 2012, 28, 8479–8485. [Google Scholar] [CrossRef]
- Darbandi, M.; Stromberg, F.; Landers, J.; Reckers, N.; Sanyal, B.; Keune, W.; Wende, H. Nanoscale size effect on surface spin canting in iron oxide nanoparticles synthesized by the microemulsion method. J. Phys. D Appl. Phys. 2012, 45, 195001. [Google Scholar] [CrossRef]
- Jędrzak, A.; Rębiś, T.; Kuznowicz, M.; Jesionowski, T. Bio-inspired magnetite/lignin/polydopamine-glucose oxidase biosensing nanoplatform. From synthesis, via sensing assays to comparison with others glucose testing techniques. Int. J. Biol. Macromol. 2019, 127, 677–682. [Google Scholar] [CrossRef] [PubMed]
- Hwang, S.W.; Umar, A.; Dar, G.N.; Kim, S.H.; Badran, R.I. Synthesis and Characterization of Iron Oxide Nanoparticles for Phenyl Hydrazine Sensor Applications. Sens. Lett. 2014, 12, 97–101. [Google Scholar] [CrossRef]
- Xu, B.; Zheng, M.; Tang, H.; Chen, Z.; Chi, Y.; Wang, L.; Zhang, L.; Chen, Y.; Pang, H. Iron oxide-based nanomaterials for supercapacitors. Nanotechnology 2019, 30, 204002. [Google Scholar] [CrossRef]
- Tanaka, S.; Kaneti, Y.V.; Septiani, N.L.W.; Dou, S.X.; Bando, Y.; Hossain, M.S.A.; Kim, J.; Yamauchi, Y. A Review on Iron Oxide-Based Nanoarchitectures for Biomedical, Energy Storage, and Environmental Applications. Small Methods 2019, 3, 1800512. [Google Scholar] [CrossRef]
- Chaabane, L.; Chahdoura, H.; Mehdaoui, R.; Snoussi, M.; Beyou, E.; Lahcini, M.; Baouab, M.H.V. Functionalization of developed bacterial cellulose with magnetite nanoparticles for nanobiotechnology and nanomedicine applications. Carbohydr. Polym. 2020, 247, 116707. [Google Scholar] [CrossRef]
- da Rosa Salles, T.; da Silva Bruckamann, F.; Viana, A.R.; Krause, L.M.F.; Mortari, S.R.; Rhoden, C.R.B. Magnetic nanocrystalline cellulose: Azithromycin adsorption and in vitro biological activity against melanoma cells. J. Polym. Environ. 2022, 30, 2695–2713. [Google Scholar] [CrossRef]
- Mira-Cuenca, C.; Meslier, T.; Roig-Sanchez, S.; Laromaine, A.; Roig, A. Patterning Bacterial Cellulose Films with Iron Oxide Nanoparticles and Magnetic Resonance Imaging Monitoring. ACS Appl. Polym. Mater. 2021, 3, 4959–4965. [Google Scholar] [CrossRef]
- Amorim, J.D.P.; Souza, K.C.; Duarte, C.R.; Duarte, I.S.; Ribeiro, F.A.S.; Silva, G.S.; Farias, P.M.A.; Sting, A.; Costa, A.F.S.; Vinhas, G.M.; et al. Plant and bacterial nanocellulose: Production, properties and applications in medicine, food, cosmetics, electronics and engineering. A review. Environ. Chem. Lett. 2020, 18, 851–869. [Google Scholar] [CrossRef]
- Marins, J.A.; Soares, B.G.; Barud, H.S.; Ribeiro, S.J.L. Flexible magnetic membranes based on bacterial cellulose and its evaluation as electromagnetic interference shielding material. Mater. Sci. Eng. C 2013, 33, 3994–4001. [Google Scholar] [CrossRef] [PubMed]
- Salidkul, N.; Mongkolthanaruk, W.; Faungnawakij, K.; Pinitsoontorn, S. Hard magnetic membrane based on bacterial cellulose–barium ferrite nanocomposites. Carbohydr. Polym. 2021, 264, 118016. [Google Scholar] [CrossRef] [PubMed]
Article by Yazdani and Seddigh [24] | Article by Chanthiwong et al. [25] | ||
---|---|---|---|
Name of route | Corresponding route | Name of route | Corresponding route |
G1 | FeCl2.4H2O + FeCl3.6H2O | C + C | FeCl2 + 2FeCl3 |
G2 | FeCl2.4H2O + Fe2(SO4)3 | S + C | FeSO4 + 2FeCl3 |
G3 | FeCl2.4H2O + Fe(NO3)3.9H2O | A + C | Fe (C2H3O2)2 + FeCl3 |
G4 | FeSO4.7H2O + FeCl3.6H2O | C + N | FeCl2 + 2Fe(NO3)3 |
G5 | FeSO4.7H2O + Fe2(SO4)3 | S + N | FeSO4 + 2Fe (NO3)3 |
G6 | FeSO4.7H2O + Fe(NO3)3.9H2O | A + N | Fe(C2H3O2)2 + 2 Fe(NO3)3 |
Study | Name of Routes | Corresponding Synthesis Routes | Size of Crystallite (XRD) (nm) | Size of Crystallite (TEM) (nm) | Saturation Magnetisation (emu/g) |
---|---|---|---|---|---|
Yazdani and Seddigh [24] | G1 | FeCl2.4H2O + FeCl3.6H2O | 10.03 | 11.92 | 53.38 |
G2 | FeCl2.4H2O + Fe2(SO4)3 | 6.60 | - | 35.10 | |
G3 | FeCl2.4H2O + Fe(NO3)3.9H2O | 8.86 | - | 51.50 | |
G4 | FeSO4.7H2O + FeCl3.6H2O | 8.70 | - | 51.20 | |
G5 | FeSO4.7H2O + Fe2(SO4)3 | 5.10 | 5.12 | 30.50 | |
G6 | FeSO4.7H2O + Fe(NO3)3.9H2O | 8.23 | - | 43.5 | |
Chanthiwong et al. [25] | (C + C) | FeCl2 + 2FeCl3 | 12.2 ± 1.8 | 11.3 ± 2.0 | 61.5 ± 3.1 |
(S + C) | FeSO4 + 2FeCl3 | 12.4 ± 1.9 | 11.1 ± 3.0 | 54.5 ± 2.7 | |
(A + C) | Fe (C2H3O2)2 + FeCl3 | 13.8 ± 2.1 | 11.3 ± 2.7 | 60.6 ± 3.0 | |
(C + N) | FeCl2 + 2Fe(NO3)3 | 12.4 ± 1.9 | 10.2 ± 2.0 | 56.3 ± 2.8 | |
(S + N) | FeSO4 + 2Fe(NO3)3 | 11.2 ± 1.7 | 10.9 ± 2.0 | 56.6 ± 2.8 | |
(A + N) | Fe(C2H3O2)2 + 2 Fe(NO3)3 | 10.4 ± 1.6 | 9.4 ± 2.2 | 57.5 ± 2.9 |
Variables of Influence | Solvent + Surfactant | Temp. (°C) | Time (h) | Particle Size (nm) | Saturation Magnetisation (emu/g) | Size Distribution |
---|---|---|---|---|---|---|
Reaction temperature | BET + OM | 220 | 2 | 3 | 46 | Small |
PET + OM | 265 | 5 | 51 | Small | ||
BET + OM | 300 | 9 | 60 | Relatively large | ||
ODE + OM | 330 | 24 | 74 | Large | ||
Reaction time and surfactant | BET + OM | 300 | 0.5 | 7 | 57 | Relatively small |
4 | 12 | 65 | Very large | |||
BET + OM + OA | 0.5 | 6 | - | Very small | ||
4 | 14 | 67 | Very small | |||
Absence of solvent | OM | 300 | 0.5 | 8 | - | Small |
4 | 10 | 58 | Relatively small | |||
OM + OA | 0.5 | 5 | - | Muito Small | ||
2 | 6 | 58 | Small | |||
24 | 11 | 71 | Small | |||
330 | 0.5 | 7 | - | Relatively small | ||
4 | 10 | 76 | Relatively small |
Method | Difficulty | Conditions of Environment | Reaction Temperature (°C) | Reaction Time | Size Distribuion | Control of Shape | Yield |
---|---|---|---|---|---|---|---|
Coprecipitation | Simple | With or without oxygen-fee atmosphere | 20–90 | Minutes or hours | Relatively restricted | Medium | Very high |
Theramal decomposition | Complex | Inert environment | 100–320 | Hours or days | Very restricted | Very high | Very high |
Microemulsion | Complex | Normal conditions | 20–50 | Hours | Relatively restricted | High | Low |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Souza, T.C.; Costa, A.F.d.S.; Vinhas, G.M.; Sarubbo, L.A. Synthesis of Iron Oxides and Influence on Final Sizes and Distribution in Bacterial Cellulose Applications. Polymers 2023, 15, 3284. https://doi.org/10.3390/polym15153284
de Souza TC, Costa AFdS, Vinhas GM, Sarubbo LA. Synthesis of Iron Oxides and Influence on Final Sizes and Distribution in Bacterial Cellulose Applications. Polymers. 2023; 15(15):3284. https://doi.org/10.3390/polym15153284
Chicago/Turabian Stylede Souza, Thaís Cavalcante, Andréa Fernanda de Santana Costa, Gloria Maria Vinhas, and Leonie Asfora Sarubbo. 2023. "Synthesis of Iron Oxides and Influence on Final Sizes and Distribution in Bacterial Cellulose Applications" Polymers 15, no. 15: 3284. https://doi.org/10.3390/polym15153284
APA Stylede Souza, T. C., Costa, A. F. d. S., Vinhas, G. M., & Sarubbo, L. A. (2023). Synthesis of Iron Oxides and Influence on Final Sizes and Distribution in Bacterial Cellulose Applications. Polymers, 15(15), 3284. https://doi.org/10.3390/polym15153284