Palladated Cyclodextrin Nanosponge-Alginate Dual Bead as an Efficient Catalyst for Hydrogenation of Nitroarenes in Aqueous Solution
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Apparatus
2.3. Preparation of Palladated Alg-CDNS Composite Beads (Pd/Alg-CDNS)
2.4. Hydrogenation of Nitroarenes
3. Results
3.1. Characterization of Pd/Alg-CDNS
3.2. Activity of Pd/Alg-CDNS in Hydrogenation of Nitroarenes
Combination Merit of Alg and CDNS
3.3. Optimization of the Reaction Conditions
3.4. Generality
3.5. Recyclability of Pd/Alg-CDNS
3.6. Comparative Study
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Hou, Q.; Zhen, M.; Liu, L.; Chen, Y.; Huang, F.; Zhang, S.; Li, W.; Ju, M. Tin phosphate as a heterogeneous catalyst for efficient dehydration of glucose into 5-hydroxymethylfurfural in ionic liquid. Appl. Catal. B 2018, 224, 183–193. [Google Scholar] [CrossRef]
- Wang, J.; Ren, J.; Liu, X.; Lu, G.; Wang, Y. High yield production and purification of 5-hydroxymethylfurfural. AIChE J. 2013, 59, 2558–2566. [Google Scholar] [CrossRef]
- Costa, F.F.; Oliveira, D.T.D.; Brito, Y.P.; Filho, G.N.D.R.; Alvarado, C.G.; Balu, A.M.; Luque, R.; Nascimento, L.A.S.D. Lignocellulosics to biofuels: An overview of recent and relevant advances. Curr. Opin. Green Sustain. Chem. 2020, 24, 21–25. [Google Scholar] [CrossRef]
- Anbu, N.; Maheswari, R.; Elamathi, V.; Varalakshmi, P.; Dhakshinamoorthy, A. Chitosan as a biodegradable heterogeneous catalyst for Knoevenagel condensation between benzaldehydes and cyanoacetamide. Catal. Commun. 2020, 138, 105954. [Google Scholar] [CrossRef]
- Ebrahimi, M.H.; Samadian, H.; Davani, S.T.; Kolarijani, N.R.; Mogharabian, N.; Salami, M.S.; Salehi, M. Peripheral nerve regeneration in rats by chitosan/alginate hydrogel composited with Berberine and Naringin nanoparticles: In vitro and in vivo study. J. Mol. Liq. 2020, 318, 114226. [Google Scholar] [CrossRef]
- Gorantla, S.; Dabholkar, N.; Sharma, S.; Rapalli, V.K.; Alexander, A.; Singhvi, G. Chitosan-based microneedles as a potential platform for drug delivery through the skin: Trends and regulatory aspects. Int. J. Biol. Macromol. 2021, 184, 438–453. [Google Scholar] [CrossRef]
- Alleshagh, M.; Sadjadi, S.; Arabi, H.; Bahri-Laleh, N.; Monflier, E. Pd on ligand-decorated chitosan as an efficient catalyst for hydrofinishing polyalphaolefins: Experimental and computational studies. J. Phys. Chem. Solids 2022, 164, 110611. [Google Scholar] [CrossRef]
- Wang, B.; Ran, M.; Fang, G.; Wu, T.; Tian, Q.; Zheng, L.; Romero-Zerón, L.; Ni, Y. Palladium nano-catalyst supported on cationic nanocellulose–alginate hydrogel for effective catalytic reactions. Cellulose 2020, 27, 6995–7008. [Google Scholar] [CrossRef]
- Qu, J.; Li, Z.; Wu, Z.; Bi, F.; Wei, S.; Dong, M.; Hu, Q.; Wang, Y.; Yu, H.; Zhang, Y. Cyclodextrin-functionalized magnetic alginate microspheres for synchronous removal of lead and bisphenol a from contaminated soil. Chem. Eng. J. 2023, 461, 142079. [Google Scholar] [CrossRef]
- Topuz, F.; Kilic, M.E.; Durgun, E.; Szekely, G. Fast-dissolving antibacterial nanofibers of cyclodextrin/antibiotic inclusion complexes for oral drug delivery. J. Colloid Interface Sci. 2021, 585, 184–194. [Google Scholar] [CrossRef]
- Manivannan, S.; Ramaraj, R. Synthesis of cyclodextrin-silicate sol–gel composite embedded gold nanoparticles and its electrocatalytic application. Chem. Eng. J. 2012, 210, 195–202. [Google Scholar] [CrossRef]
- Hapiot, F.; Monflier, E. Unconventional Approaches Involving Cyclodextrin-Based, Self-Assembly-Driven Processes for the Conversion of Organic Substrates in Aqueous Biphasic Catalysis. Catalyst 2017, 7, 173. [Google Scholar] [CrossRef] [Green Version]
- Menuel, S.; Léger, B.; Addad, A.; Monflier, E.; Hapiot, F. Cyclodextrins as Effective Additives in AuNPs-Catalyzed Reduction of Nitrobenzene Derivatives in a Ball-Mill. Green Chem. 2016, 18, 5500–5509. [Google Scholar] [CrossRef]
- Noël, S.; Légera, B.; Ponchel, A.; Hapiot, F.; Monflier, E. Effective Catalytic Hydrogenation of Fatty Acids Methyl Esters by Aqueous Rhodium(0) Nanoparticles Stabilized by Cyclodextrin-Based Polymers. Chem. Eng. Trans. 2014, 37, 337–342. [Google Scholar]
- Lighvan, Z.M.; Khonakdar, H.A.; Heydari, A.; Slouf, M.; Akbari, A. A versatile beta-cyclodextrin and N-heterocyclic palladium complex bi-functionalized iron oxide nanoadsorbent for water treatment. Environ. Sci. Pollut. Res. Int. 2021, 28, 55419–55432. [Google Scholar] [CrossRef]
- Heydari, A.; Pardakhti, A.; Sheibani, H. Preparation and Characterization of Zwitterionic Poly (β-cyclodextrin-co-guanidinocitrate) Hydrogels for Ciprofloxacin Controlled Release. Macromol. Mater. Eng. 2017, 302, 1600501. [Google Scholar] [CrossRef]
- Hashemi, M.; Abbasnejad, M.; Moghimi, A.; Esmaeili-Mahani, S.; Zamyad, M.; Heydari, A. Enhancing the Anticonvulsant Effects of Nifedipine in Rats Through Encapsulation with Water-Soluble β-Cyclodextrin Polymer. Pharm. Chem. J. 2022, 55, 1023–1027. [Google Scholar] [CrossRef]
- Gholam-Hosseinpour, M.; Karami, Z.; Hamedi, S.; Lighvan, Z.M.; Heydari, A. Enhancing in vitro cytotoxicity of doxorubicin against MCF-7 breast cancer cells in the presence of water-soluble β-cyclodextrin polymer as a nanocarrier agent. Polym Bull. 2021, 79, 1555–1569. [Google Scholar] [CrossRef]
- Trotta, F.; Cavalli, R.; Martina, K.; Biasizzo, M.; Vitillo, J.; Bordiga, S.; Vavia, P.; Ansari, K. Cyclodextrin nanosponges as effective gas carriers. J. Incl. Phenom. Macrocycl. Chem. 2011, 71, 189–194. [Google Scholar] [CrossRef]
- Tejashri, G.; Amrita, B.; Darshana, J. Cyclodextrin based nanosponges for pharmaceutical use: A review. Acta Pharm. 2013, 63, 335–358. [Google Scholar] [CrossRef] [PubMed]
- Monfared, Y.K.; Mahmoudian, M.; Cecone, C.; Caldera, F.; Zakeri-Milani, P.; Matencio, A.; Trotta, F. Stabilization and Anticancer Enhancing Activity of the Peptide Nisin by Cyclodextrin-Based Nanosponges against Colon and Breast Cancer Cells. Polymers 2022, 14, 594. [Google Scholar] [CrossRef]
- Krabicová, I.; Appleton, S.L.; Tannous, M.; Hoti, G.; Caldera, F.; Pedrazzo, A.R.; Cecone, C.; Cavalli, R.; Trotta, F. History of Cyclodextrin Nanosponges. Polymers 2020, 12, 1122. [Google Scholar] [CrossRef]
- Daga, M.; de Graaf, I.A.M.; Argenziano, M.; Barranco, A.S.M.; Loeck, M.; Al-Adwi, Y.; Cucci, M.A.; Caldera, F.; Trotta, F.; Barrera, G.; et al. Glutathione-responsive cyclodextrin-nanosponges as drug delivery systems for doxorubicin: Evaluation of toxicity and transport mechanisms in the liver. Toxicol. In Vitro 2020, 65, 104800. [Google Scholar] [CrossRef]
- Allahyari, S.; Valizadeh, H.; Roshangar, L.; Mahmoudian, M.; Trotta, F.; Caldera, F.; Jelvehgari, M.; Zakeri-Milani, P. Preparation and characterization of cyclodextrin nanosponges for bortezomib delivery. Expert Opin. Drug Deliv. 2020, 17, 1807–1816. [Google Scholar] [CrossRef]
- Matencio, A.; Guerrero-Rubio, M.A.; Caldera, F.; Cecone, C.; Trotta, F.; García-Carmona, F.; López-Nicolás, J.M. Lifespan extension in Caenorhabditis elegans by oxyresveratrol supplementation in hyper-branched cyclodextrin-based nanosponges. Int. J. Pharm. 2020, 589, 119862. [Google Scholar] [CrossRef]
- Matencio, A.; Dhakar, N.K.; Bessone, F.; Musso, G.; Cavalli, R.; Dianzani, C.; García-Carmona, F.; López-Nicolás, J.M.; Trotta, F. Study of oxyresveratrol complexes with insoluble cyclodextrin based nanosponges: Developing a novel way to obtain their complexation constants and application in an anticancer study. Carbohydr. Polym. 2020, 231, 115763. [Google Scholar] [CrossRef]
- Appleton, S.L.; Tannous, M.; Argenziano, M.; Muntoni, E.; Rosa, A.C.; Rossi, D.; Caldera, F.; Scomparin, A.; Trotta, F.; Cavalli, R. Nanosponges as protein delivery systems: Insulin, a case study. Int. J. Pharm. 2020, 590, 119888. [Google Scholar] [CrossRef] [PubMed]
- Topuz, F.; Holtzl, T.; Szekely, G. Scavenging organic micropollutants from water with nanofibrous hypercrosslinked cyclodextrin membranes derived from green resources. Chem. Eng. J. 2021, 419, 129443. [Google Scholar] [CrossRef]
- Choudhary, A.; Dong, D.; Tsianou, M.; Alexandridis, P.; Bedrov, D. Adsorption Mechanism of Perfluorooctanoate on Cyclodextrin-Based Polymers: Probing the Synergy of Electrostatic and Hydrophobic Interactions with Molecular Dynamics Simulations. ACS Mater. Lett. 2022, 4, 853–859. [Google Scholar] [CrossRef]
- Sadjadi, S.; Kahangi, F.G.; Dorraj, M.; Heravi, M.M. Ag Nanoparticles Stabilized on Cyclodextrin Polymer Decorated with Multi-Nitrogen Atom Containing Polymer: An Efficient Catalyst for the Synthesis of Xanthenes. Molecules 2020, 25, 241. [Google Scholar] [CrossRef] [Green Version]
- Xia, M.; Kang, S.-M.; Lee, G.-W.; Huh, Y.S.; Park, B.J. The recyclability of alginate hydrogel particles used as a palladium catalyst support. J. Ind. Eng. Chem. 2019, 73, 306–315. [Google Scholar] [CrossRef]
- Chuang, J.-J.; Huang, Y.-Y.; Lo, S.-H.; Hsu, T.-F.; Huang, W.-Y.; Huang, S.-L.; Lin, Y.-S. Effects of pH on the Shape of Alginate Particles and Its Release Behavior. Int. J. Polym. Sci. 2017, 2017, 3902704. [Google Scholar] [CrossRef] [Green Version]
- Bahsis, L.; Ablouh, E.-H.; Anane, H.; Taourirte, M.; Julve, M.; Stiriba, S.-E. Cu(ii)-alginate-based superporous hydrogel catalyst for click chemistry azide–alkyne cycloaddition type reactions in water. RSC Adv. 2020, 10, 32821–32832. [Google Scholar] [CrossRef] [PubMed]
- Biswas, S.; Pal, A. Iron oxide-loaded alginate-bentonite hydrogel beads as a green and sustainable catalyst for 4-nitrophenol reduction. Mater. Today Commun. 2021, 28, 102588. [Google Scholar] [CrossRef]
- Jonović, M.; Žuža, M.; Đorđević, V.; Šekuljica, N.; Milivojević, M.; Jugović, B.; Bugarski, B.; Knežević-Jugović, Z. Immobilized Alcalase on Micron- and Submicron-Sized Alginate Beads as a Potential Biocatalyst for Hydrolysis of Food Proteins. Catalysts 2021, 11, 305. [Google Scholar] [CrossRef]
- Sadjadi, S.; Koohestani, F. Palladated composite of MOF and cyclodextrin nanosponge: A novel catalyst for hydrogenation reaction. J. Mol. Struct. 2021, 1245, 131068. [Google Scholar] [CrossRef]
- Castiglione, F.; Crupi, V.; Majolino, D.; Mele, A.; Panzeri, W.; Rossi, B.; Trotta, F.; Venuti, V. Vibrational dynamics and hydrogen bond properties of β-CD nanosponges: An FTIR-ATR, Raman and solid-state NMR spectroscopic study. J. Incl. Phenom. Macrocycl. 2013, 75, 247–254. [Google Scholar] [CrossRef]
- Liu, H.; Pan, B.; Wang, Q.; Niu, Y.; Tai, Y.; Du, X.; Zhang, K. Crucial roles of graphene oxide in preparing alginate/nanofibrillated cellulose double network composites hydrogels. Chemosphere 2021, 263, 128240. [Google Scholar] [CrossRef]
- Liu, C.; Liu, H.; Xiong, T.; Xu, A.; Pan, B.; Tang, K. Graphene Oxide Reinforced Alginate/PVA Double Network Hydrogels for Efficient Dye Removal. Polymers 2018, 10, 835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Navaladian, S.; Viswanathan, B.; Varadarajan, T.K.; Viswanath, R.P. A Rapid Synthesis of Oriented Palladium Nanoparticles by UV Irradiation. Nanoscale Res. Lett. 2008, 4, 181. [Google Scholar] [CrossRef] [Green Version]
- Mallik, S.; Dash, S.S.; Parida, K.M.; Mohapatra, B.K. Synthesis, characterization, and catalytic activity of phosphomolybdic acid supported on hydrous zirconia. J. Colloid Interface Sci. 2006, 300, 237–243. [Google Scholar] [CrossRef]
- Agrahari, S.; Lande, S.; Balachandran, V.; Kalpana, G.; Jasra, R. Palladium Supported on Mesoporous Alumina Catalyst for Selective Hydrogenation. J. Nanosci. Curr. Res. 2017, 2, 2572-0813. [Google Scholar] [CrossRef] [Green Version]
- Esmaeilzadeh, M.; Sadjadi, S.; Salehi, Z. Pd immobilized on hybrid of magnetic graphene quantum dots and cyclodextrin decorated chitosan: An efficient hydrogenation catalyst. Int. J. Biol. Macromol. 2020, 150, 441–448. [Google Scholar] [CrossRef]
- Feng, Y.-S.; Ma, J.-J.; Kang, Y.-M.; Xu, H.-J. PdCu nanoparticles supported on graphene: An efficient and recyclable catalyst for reduction of nitroarenes. Tetrahedron 2014, 70, 6100–6105. [Google Scholar] [CrossRef]
- Sadjadi, S.; Akbari, M.; Leger, B.; Monflier, E.; Heravi, M. Eggplant-derived biochar- halloysite nanocomposite as supports of Pd nanoparticles for the catalytic hydrogenation of nitroarenes in presence of cyclodextrin. ACS Sus. Chem. Eng. 2019, 7, 6720–6731. [Google Scholar] [CrossRef]
- Samsonu, D.; Brahmayya, M.; Govindh, B.; Murthy, Y. Green synthesis & catalytic study of sucrose stabilized Pd nanoparticles in reduction of nitro compounds to useful amines. S. Afr. J. Chem. Eng. 2018, 25, 110–115. [Google Scholar]
- Guo, M.; Li, H.; Ren, Y.; Ren, X.; Yang, Q.; Li, C. Improving catalytic hydrogenation performance of Pd nanoparticles by electronic modulation using phosphine ligands. ACS Catal. 2018, 8, 6476–6485. [Google Scholar] [CrossRef]
- Sadjadi, S.; Atai, M. Palladated halloysite hybridized with photo-polymerized hydrogel in the presence of cyclodextrin: An efficient catalytic system benefiting from nanoreactor concept. Appl. Organomet. Chem. 2019, 33, e4776. [Google Scholar] [CrossRef]
- Sadjadi, S.; Koohestani, F.; Bahri-Laleh, N. Pd immobilization on the multi-amine functionalized halloysite as an efficient catalyst for hydrogenation reaction: An experimental and computational study. Appl. Clay Sci. 2020, 192, 105645. [Google Scholar] [CrossRef]
- Dehghani, S.; Sadjadi, S.; Bahri-Laleh, N.; Nekoomanesh-Haghighi, M.; Poater, A. Study of the effect of the ligand structure on the catalytic activity of Pd@ ligand decorated halloysite: Combination of experimental and computational studies. Appl. Organomet. Chem. 2019, 33, e4891. [Google Scholar] [CrossRef]
- Sadjadi, S.; Heravi, M.M.; Kahangi, F.G. Pd stabilized on nanocomposite of halloysite and β-cyclodextrin derived carbon: An efficient catalyst for hydrogenation of nitroarene. Polyhedron 2020, 175, 114210. [Google Scholar] [CrossRef]
Entry | Catalyst | Yield (%) a | Yield (%) b |
---|---|---|---|
1 | Pd/Alg-CDNS | 86 | 75 |
2 | Pd/Alg | 74 | 42 |
3 | Pd/CDNS | 78 | 56 |
Entry | Substrate | Product | Yield (%) |
---|---|---|---|
1 | 97 | ||
2 | 97 | ||
3 | 95 | ||
4 | 90 | ||
5 | 89 | ||
6 | 96 | ||
7 | 94 | ||
8 | 91 | ||
9 | 88 | ||
10 | 91 |
Entry | Catalyst | Temp. (°C) | Reducing Agent | Time (min) | Solvent | Yield (%) | Ref. |
---|---|---|---|---|---|---|---|
1 | Pd/Alg-CDNS | 45 | H2/1 bar | 90 | H2O | 97 | This work |
2 | PdNP (0.5%)/Al2O3 | r.t. | H2/1 atm | 180 | THF | 100 | [42] |
3 | Pd@CS-CD-MGQDs a (0.5 mol%) | 50 | H2/1 atm | 60 | H2O | 97 | [43] |
4 | PdCu/graphene (2 mol% Pd) | 50 | NaBH4 | 90 | H2O/EtOH | 95 | [44] |
5 | Pd/graphene | 50 | NaBH4 | 90 | H2O/EtOH | 91 | [44] |
6 | Pd@Hal-biochar b (0.03 mol%) | r.t. | H2/1 bar | 60 | H2O | 75 | [45] |
7 | APSNP c (1 mol%) | r.t. | H2/20 atm | 120 | EtOH | 100 | [46] |
8 | Pd/PPh3@FDU-12 (8.33 × 10−4 mmol Pd) | 40 | H2/10 bar | 60 | EtOH | >99 | [47] |
9 | Pd@Hal-Hydrogel + cyclodextrin (2 wt%) | 50 | H2/1 bar | 120 | H2O | 95 | [48] |
10 | Pd@Hal-TCT-Met | 65 | H2/1 bar | 75 | H2O | 100 | [49] |
11 | Pd@Hal/di-urea d | 50 | H2/1 bar | 60 | H2O | 100 | [50] |
12 | Pd@Hal-CCD e | r.t. | H2/1 bar | 90 | H2O | 100 | [51] |
13 | PdCu/C (2 mol% Pd) | 50 | NaBH4 | 90 | H2O/EtOH | 85 | [44] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sadjadi, S.; Heydari, A. Palladated Cyclodextrin Nanosponge-Alginate Dual Bead as an Efficient Catalyst for Hydrogenation of Nitroarenes in Aqueous Solution. Polymers 2023, 15, 3240. https://doi.org/10.3390/polym15153240
Sadjadi S, Heydari A. Palladated Cyclodextrin Nanosponge-Alginate Dual Bead as an Efficient Catalyst for Hydrogenation of Nitroarenes in Aqueous Solution. Polymers. 2023; 15(15):3240. https://doi.org/10.3390/polym15153240
Chicago/Turabian StyleSadjadi, Samahe, and Abolfazl Heydari. 2023. "Palladated Cyclodextrin Nanosponge-Alginate Dual Bead as an Efficient Catalyst for Hydrogenation of Nitroarenes in Aqueous Solution" Polymers 15, no. 15: 3240. https://doi.org/10.3390/polym15153240
APA StyleSadjadi, S., & Heydari, A. (2023). Palladated Cyclodextrin Nanosponge-Alginate Dual Bead as an Efficient Catalyst for Hydrogenation of Nitroarenes in Aqueous Solution. Polymers, 15(15), 3240. https://doi.org/10.3390/polym15153240