Dispersion of Cellulose Nanofibers in Methacrylate-Based Nanocomposites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of PMMA-co-MAA
2.3. Preparation of PMMA-co-MAA/CNF Nanocomposites
2.3.1. Preparation from THF/Water Suspension
2.3.2. Solvent Exchange
2.3.3. Preparation from THF/MeOH Suspension
2.4. Characterization Methods
3. Results and Discussion
3.1. PMMA-co-MAA Copolymer
3.2. PMMA-co-MAA/CNF Nanocomposite Films
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Klemm, D.; Heublein, B.; Fink, H.-P.; Bohn, A. Cellulose: Fascinating Biopolymer and Sustainable Raw Material. Angew. Chem. Int. Ed. 2005, 44, 3358–3393. [Google Scholar] [CrossRef]
- Jedvert, K.; Heinze, T. Cellulose Modification and Shaping–A Review. J. Polym. Eng. 2017, 37, 845–860. [Google Scholar] [CrossRef]
- Shaghaleh, H.; Xu, X.; Wang, S. Current Progress in Production of Biopolymeric Materials Based on Cellulose, Cellulose Nanofibers, and Cellulose Derivatives. RSC Adv. 2018, 8, 825–842. [Google Scholar] [CrossRef]
- Aziz, T.; Farid, A.; Haq, F.; Kiran, M.; Ullah, A.; Zhang, K.; Li, C.; Ghazanfar, S.; Sun, H.; Ullah, R.; et al. A Review on the Modification of Cellulose and Its Applications. Polymers 2022, 14, 3206. [Google Scholar] [CrossRef]
- Hou, D.-F.; Li, M.-L.; Yan, C.; Zhou, L.; Liu, Z.-Y.; Yang, W.; Yang, M.-B. Mechanochemical Preparation of Thermoplastic Cellulose Oleate by Ball Milling. Green Chem. 2021, 23, 2069–2078. [Google Scholar] [CrossRef]
- Oksman, K.; Aitomäki, Y.; Mathew, A.P.; Siqueira, G.; Zhou, Q.; Butylina, S.; Tanpichai, S.; Zhou, X.; Hooshmand, S. Review of the Recent Developments in Cellulose Nanocomposite Processing. Compos. Part A Appl. Sci. Manuf. 2016, 83, 2–18. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.-J.; Lee, H.-S.; Seo, J.; Kang, Y.-H.; Kim, W.; Kang, T. State-of-the-Art of Cellulose Nanocrystals and Optimal Method for Their Dispersion for Construction-Related Applications. Appl. Sci. 2019, 9, 426. [Google Scholar] [CrossRef] [Green Version]
- Dong, H.; Sliozberg, Y.R.; Snyder, J.F.; Steele, J.; Chantawansri, T.L.; Orlicki, J.A.; Walck, S.D.; Reiner, R.S.; Rudie, A.W. Highly Transparent and Toughened Poly(Methyl Methacrylate) Nanocomposite Films Containing Networks of Cellulose Nanofibrils. ACS Appl. Mater. Interfaces 2015, 7, 25464–25472. [Google Scholar] [CrossRef]
- Kalia, S.; Boufi, S.; Celli, A.; Kango, S. Nanofibrillated Cellulose: Surface Modification and Potential Applications. Colloid Polym. Sci. 2014, 292, 5–31. [Google Scholar] [CrossRef]
- Ramesh, S.; Radhakrishnan, P. Cellulose Nanoparticles from Agro-Industrial Waste for the Development of Active Packaging. Appl. Surf. Sci. 2019, 484, 1274–1281. [Google Scholar] [CrossRef]
- Randhawa, A.; Dutta, S.D.; Ganguly, K.; Patil, T.V.; Patel, D.K.; Lim, K.-T. A Review of Properties of Nanocellulose, Its Synthesis, and Potential in Biomedical Applications. Appl. Sci. 2022, 12, 7090. [Google Scholar] [CrossRef]
- Nasir, M.; Hashim, R.; Sulaiman, O.; Asim, M. Nanocellulose. In Cellulose-Reinforced Nanofibre Composites; Elsevier: Amsterdam, The Netherlands, 2017; pp. 261–276. ISBN 978-0-08-100957-4. [Google Scholar]
- Islam, M.T.; Alam, M.M.; Patrucco, A.; Montarsolo, A.; Zoccola, M. Preparation of Nanocellulose: A Review. AATCC J. Res. 2014, 1, 17–23. [Google Scholar] [CrossRef]
- Bondeson, D.; Syre, P.; Niska, K.O. All Cellulose Nanocomposites Produced by Extrusion. J. Biobased Mat. Bioenergy 2007, 1, 367–371. [Google Scholar] [CrossRef]
- Bondeson, D.; Oksman, K. Dispersion and Characteristics of Surfactant Modified Cellulose Whiskers Nanocomposites. Compos. Interfaces 2007, 14, 617–630. [Google Scholar] [CrossRef]
- Oksman, K.; Mathew, A.P.; Bondeson, D.; Kvien, I. Manufacturing Process of Cellulose Whiskers/Polylactic Acid Nanocomposites. Compos. Sci. Technol. 2006, 66, 2776–2784. [Google Scholar] [CrossRef]
- Salmén, L.; Stevanic, J.S. Effect of Drying Conditions on Cellulose Microfibril Aggregation and “Hornification”. Cellulose 2018, 25, 6333–6344. [Google Scholar] [CrossRef]
- Thomas, P.; Duolikun, T.; Rumjit, N.P.; Moosavi, S.; Lai, C.W.; Bin Johan, M.R.; Fen, L.B. Comprehensive Review on Nanocellulose: Recent Developments, Challenges and Future Prospects. J. Mech. Behav. Biomed. Mater. 2020, 110, 103884. [Google Scholar] [CrossRef]
- Peterson, A.; Mehandzhiyski, A.Y.; Svenningsson, L.; Ziolkowska, A.; Kádár, R.; Lund, A.; Sandblad, L.; Evenäs, L.; Lo Re, G.; Zozoulenko, I.; et al. A Combined Theoretical and Experimental Study of the Polymer Matrix-Mediated Stress Transfer in a Cellulose Nanocomposite. Macromolecules 2021, 54, 3507–3516. [Google Scholar] [CrossRef]
- Robles, E.; Urruzola, I.; Labidi, J.; Serrano, L. Surface-Modified Nano-Cellulose as Reinforcement in Poly(Lactic Acid) to Conform New Composites. Ind. Crops Prod. 2015, 71, 44–53. [Google Scholar] [CrossRef]
- Lee, K.-Y.; Blaker, J.J.; Bismarck, A. Surface Functionalisation of Bacterial Cellulose as the Route to Produce Green Polylactide Nanocomposites with Improved Properties. Compos. Sci. Technol. 2009, 69, 2724–2733. [Google Scholar] [CrossRef] [Green Version]
- de la Orden, M.U.; González Sánchez, C.; González Quesada, M.; Martínez Urreaga, J. Novel Polypropylene–Cellulose Composites Using Polyethylenimine as Coupling Agent. Compos. Part A Appl. Sci. Manuf. 2007, 38, 2005–2012. [Google Scholar] [CrossRef]
- Qiu, W.; Zhang, F.; Endo, T.; Hirotsu, T. Effect of Maleated Polypropylene on the Performance of Polypropylene/Cellulose Composite. Polym. Compos. 2005, 26, 448–453. [Google Scholar] [CrossRef]
- Venkatesh, A.; Thunberg, J.; Moberg, T.; Klingberg, M.; Hammar, L.; Peterson, A.; Müller, C.; Boldizar, A. Cellulose Nanofibril-Reinforced Composites Using Aqueous Dispersed Ethylene-Acrylic Acid Copolymer. Cellulose 2018, 25, 4577–4589. [Google Scholar] [CrossRef] [Green Version]
- Bahar, E.; Ucar, N.; Onen, A.; Wang, Y.; Oksüz, M.; Ayaz, O.; Ucar, M.; Demir, A. Thermal and Mechanical Properties of Polypropylene Nanocomposite Materials Reinforced with Cellulose Nano Whiskers. J. Appl. Polym. Sci. 2012, 125, 2882–2889. [Google Scholar] [CrossRef]
- Keener, T.J.; Stuart, R.K.; Brown, T.K. Maleated Coupling Agents for Natural Fibre Composites. Compos. Part A Appl. Sci. Manuf. 2004, 35, 357–362. [Google Scholar] [CrossRef]
- Peng, Y.; Gallegos, S.A.; Gardner, D.J.; Han, Y.; Cai, Z. Maleic Anhydride Polypropylene Modified Cellulose Nanofibril Polypropylene Nanocomposites with Enhanced Impact Strength. Polym. Compos. 2016, 37, 782–793. [Google Scholar] [CrossRef]
- Dufresne, A. Polymer Nanocomposites from Biological Sources. In Encyclopedia of Nanoscience and Nanotechnology; American Scientific Publishers: Valencia, CA, USA, 2009. [Google Scholar]
- Aitomäki, Y.; Oksman, K. Reinforcing Efficiency of Nanocellulose in Polymers. React. Funct. Polym. 2014, 85, 151–156. [Google Scholar] [CrossRef]
- Tingaut, P.; Zimmermann, T.; Lopez-Suevos, F. Synthesis and Characterization of Bionanocomposites with Tunable Properties from Poly(Lactic Acid) and Acetylated Microfibrillated Cellulose. Biomacromolecules 2010, 11, 454–464. [Google Scholar] [CrossRef]
- Jonoobi, M.; Mathew, A.P.; Abdi, M.M.; Makinejad, M.D.; Oksman, K. A Comparison of Modified and Unmodified Cellulose Nanofiber Reinforced Polylactic Acid (PLA) Prepared by Twin Screw Extrusion. J. Polym. Environ. 2012, 20, 991–997. [Google Scholar] [CrossRef]
- Qu, P.; Zhou, Y.; Zhang, X.; Yao, S.; Zhang, L. Surface Modification of Cellulose Nanofibrils for Poly(Lactic Acid) Composite Application. J. Appl. Polym. Sci. 2012, 125, 3084–3091. [Google Scholar] [CrossRef]
- Anžlovar, A.; Huskić, M.; Žagar, E. Modification of Nanocrystalline Cellulose for Application as a Reinforcing Nanofiller in PMMA Composites. Cellulose 2016, 23, 505–518. [Google Scholar] [CrossRef]
- Lönnberg, H.; Fogelström, L.; Berglund, L.; Malmström, E.; Hult, A. Surface Grafting of Microfibrillated Cellulose with Poly(ε-Caprolactone)–Synthesis and Characterization. Eur. Polym. J. 2008, 44, 2991–2997. [Google Scholar] [CrossRef]
- Tang, H.; Butchosa, N.; Zhou, Q. A Transparent, Hazy, and Strong Macroscopic Ribbon of Oriented Cellulose Nanofibrils Bearing Poly(Ethylene Glycol). Adv. Mater. 2015, 27, 2070–2076. [Google Scholar] [CrossRef]
- Jamaluddin, N.; Hsu, Y.-I.; Asoh, T.-A.; Uyama, H. Optically Transparent and Toughened Poly(Methyl Methacrylate) Composite Films with Acylated Cellulose Nanofibers. ACS Omega 2021, 6, 10752–10758. [Google Scholar] [CrossRef]
- Lin, N.; Dufresne, A. Physical and/or Chemical Compatibilization of Extruded Cellulose Nanocrystal Reinforced Polystyrene Nanocomposites. Macromolecules 2013, 46, 5570–5583. [Google Scholar] [CrossRef]
- Pei, A.; Malho, J.-M.; Ruokolainen, J.; Zhou, Q.; Berglund, L.A. Strong Nanocomposite Reinforcement Effects in Polyurethane Elastomer with Low Volume Fraction of Cellulose Nanocrystals. Macromolecules 2011, 44, 4422–4427. [Google Scholar] [CrossRef]
- Erbas Kiziltas, E.; Kiziltas, A.; Bollin, S.C.; Gardner, D.J. Preparation and Characterization of Transparent PMMA–Cellulose-Based Nanocomposites. Carbohydr. Polym. 2015, 127, 381–389. [Google Scholar] [CrossRef]
- Huang, T.; Kuboyama, K.; Fukuzumi, H.; Ougizawa, T. PMMA/TEMPO-Oxidized Cellulose Nanofiber Nanocomposite with Improved Mechanical Properties, High Transparency and Tunable Birefringence. Cellulose 2018, 25, 2393–2403. [Google Scholar] [CrossRef]
- Wang, W.; Liang, T.; Zhang, B.; Bai, H.; Ma, P.; Dong, W. Green Functionalization of Cellulose Nanocrystals for Application in Reinforced Poly(Methyl Methacrylate) Nanocomposites. Carbohydr. Polym. 2018, 202, 591–599. [Google Scholar] [CrossRef]
- Debuigne, A.; Poli, R.; Jérôme, C.; Jérôme, R.; Detrembleur, C. Overview of Cobalt-Mediated Radical Polymerization: Roots, State of the Art and Future Prospects. Prog. Polym. Sci. 2009, 34, 211–239. [Google Scholar] [CrossRef]
- Roman, C.; García-Morales, M.; Eugenio, M.E.; Ibarra, D.; Martín-Sampedro, R.; Delgado, M.A. A Sustainable Methanol-Based Solvent Exchange Method to Produce Nanocellulose-Based Ecofriendly Lubricants. J. Clean. Prod. 2021, 319, 128673. [Google Scholar] [CrossRef]
- Li, Y.; Wayland, B.B. Macromonomer Living Character in the Cobalt(Ii) Porphyrin Chain Transfer Catalysis for Radical Polymerization of Methacrylic Acid in Water. Chem. Commun. 2003, 13, 1594. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, W.; Zhu, X.; Cheng, Z.; Zhu, J. “Living”/Controlled Free Radical Polymerization of MMA in the Presence of Cobalt(II) 2-Ethylhexanoate: A Switch from RAFT to ATRP Mechanism. J. Polym. Sci. A Polym. Chem. 2007, 45, 5722–5730. [Google Scholar] [CrossRef]
- Guo, R.; Wang, Y.; Qi, Y.; Talma, A.G.; Zhang, J. Initiation Mechanisms of Styrene with Methyl Ethyl Ketone Peroxide-Cobalt System. Macromol. Res. 2018, 26, 680–689. [Google Scholar] [CrossRef]
- Cousinet, S.; Ghadban, A.; Fleury, E.; Lortie, F.; Pascault, J.-P.; Portinha, D. Toward Replacement of Styrene by Bio-Based Methacrylates in Unsaturated Polyester Resins. Eur. Polym. J. 2015, 67, 539–550. [Google Scholar] [CrossRef]
- Martin, J.L. Kinetic Analysis of Two DSC Peaks in the Curing of an Unsaturated Polyester Resin Catalyzed with Methylethylketone Peroxide and Cobalt Octoate. Polym. Eng. Sci. 2007, 47, 62–70. [Google Scholar] [CrossRef]
- Klesper, E.; Johnsen, A.; Gronski, W.; Wehrli, F.W. Evaluation of Triads in Methyl Methacrylate/Methacrilic Acid Copolymers by 1H-NMR in Different Solvents and 13C-NMR. Makromol. Chem. 1975, 176, 1071–1119. [Google Scholar] [CrossRef]
- Krul’, L.P.; Yakimtsova, L.B.; Egorova, E.L.; Matusevich, Y.I.; Selevich, K.A.; Kurtikova, A.L. Preparation and Thermal Degradation of Methyl Methacrylate-Methacrylic Acid Copolymers. Russ. J. Appl. Chem. 2009, 82, 1636–1643. [Google Scholar] [CrossRef]
- Sayyah, S.M. Infrared Spectroscopic Studies on Some Thermally Degraded Poly(Methyl Methacrylate) Doped with N,N,N´,N´- Tetraoxaloyl Para Sulphanilamide. Egypt. J. Chem. 2012, 55, 603–623. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.-F.; Chang, F.-C. Comparison of Hydrogen Bonding Interaction between PMMA/PMAA Blends and PMMA-Co-PMAA Copolymers. Polymer 2003, 44, 2965–2974. [Google Scholar] [CrossRef]
- Max, J.-J.; Chapados, C. Isotope Effects in Liquid Water by Infrared Spectroscopy. IV. No Free OH Groups in Liquid Water. J. Chem. Phys. 2010, 133, 164509. [Google Scholar] [CrossRef]
- Brostow, W.; Chiu, R.; Kalogeras, I.M.; Vassilikou-Dova, A. Prediction of Glass Transition Temperatures: Binary Blends and Copolymers. Mater. Lett. 2008, 62, 3152–3155. [Google Scholar] [CrossRef]
- Penzel, E.; Rieger, J.; Schneider, H.A. The Glass Transition Temperature of Random Copolymers: 1. Experimental Data and the Gordon-Taylor Equation. Polymer 1997, 38, 325–337. [Google Scholar] [CrossRef]
- Wu, P.-P.; Zhao, D.-M.; Li, L.-X.; Wang, H.-S.; Liu, G.-D. Preparation of Blends of Poly(Methyl Methacrylate) Copolymers with High Glass Transition Temperatures and Low Hydrophilicity. Polym. Eng. Sci. 2013, 53, 2370–2377. [Google Scholar] [CrossRef]
- Kuo, S.-W.; Kao, H.-C.; Chang, F.-C. Thermal Behavior and Specific Interaction in High Glass Transition Temperature PMMA Copolymer. Polymer 2003, 44, 6873–6882. [Google Scholar] [CrossRef]
- Babij, N.R.; McCusker, E.O.; Whiteker, G.T.; Canturk, B.; Choy, N.; Creemer, L.C.; Amicis, C.V.D.; Hewlett, N.M.; Johnson, P.L.; Knobelsdorf, J.A.; et al. NMR Chemical Shifts of Trace Impurities: Industrially Preferred Solvents Used in Process and Green Chemistry. Org. Process Res. Dev. 2016, 20, 661–667. [Google Scholar] [CrossRef]
- Jamieson, A.; McNeill, I.C. The Thermal Degradation of Copolymers of Methyl Methacrylate with Methacrylic Acid. Eur. Polym. J. 1974, 10, 217–225. [Google Scholar] [CrossRef]
- Lazzari, M.; Kitayama, T.; He, S.; Hatada, K.; Chiantore, O. The Effect of Stereoregularity on the Thermal Behavior of Poly(Methacrylic Acid)s: I. Thermal Analysis Studies. Polym. Bull. 1997, 39, 85–91. [Google Scholar] [CrossRef]
- Míguez, J.M.; Piñeiro, M.M.; Algaba, J.; Mendiboure, B.; Torré, J.P.; Blas, F.J. Understanding the Phase Behavior of Tetrahydrofuran + Carbon Dioxide, + Methane, and + Water Binary Mixtures from the SAFT-VR Approach. J. Phys. Chem. B 2015, 119, 14288–14302. [Google Scholar] [CrossRef] [Green Version]
- Matsuda, H.; Kamihama, N.; Kurihara, K.; Tochigi, K.; Yokoyama, K. Measurement of Isobaric Vapor-Liquid Equilibria for Binary Systems Containing Tetrahydrofuran Using an Automatic Apparatus. J. Chem. Eng. Jpn. 2011, 44, 131–139. [Google Scholar] [CrossRef]
- Krug, J.; Palm, C. Separation of a Mixture of Methanol and Tetrahydrofuran into Its Constituents. U.S. Patent 5559254A, 24 September 1996. [Google Scholar]
- Wulandari, W.T.; Rochliadi, A.; Arcana, I.M. Nanocellulose Prepared by Acid Hydrolysis of Isolated Cellulose from Sugarcane Bagasse. IOP Conf. Ser. Mater. Sci. Eng. 2016, 107, 012045. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cavallo, V.; Pruvost, S.; Gerard, J.-F.; Fina, A. Dispersion of Cellulose Nanofibers in Methacrylate-Based Nanocomposites. Polymers 2023, 15, 3226. https://doi.org/10.3390/polym15153226
Cavallo V, Pruvost S, Gerard J-F, Fina A. Dispersion of Cellulose Nanofibers in Methacrylate-Based Nanocomposites. Polymers. 2023; 15(15):3226. https://doi.org/10.3390/polym15153226
Chicago/Turabian StyleCavallo, Valentina, Sébastien Pruvost, Jean-François Gerard, and Alberto Fina. 2023. "Dispersion of Cellulose Nanofibers in Methacrylate-Based Nanocomposites" Polymers 15, no. 15: 3226. https://doi.org/10.3390/polym15153226
APA StyleCavallo, V., Pruvost, S., Gerard, J.-F., & Fina, A. (2023). Dispersion of Cellulose Nanofibers in Methacrylate-Based Nanocomposites. Polymers, 15(15), 3226. https://doi.org/10.3390/polym15153226