Thermal, Mechanical and Tribological Properties of Gamma-Irradiated Plant-Derived Polyamide 1010
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Processing and Gamma-Irradiation
2.3. Experimental Method
3. Results and Discussion
3.1. Differential Scanning Calorimetry Analysis
3.2. Dynamic Mechanical Analysis
3.3. Mechanical Properties
3.4. Tribological Properties
3.4.1. Sliding Wear Measurement by Constant Normal Load and Constant Sliding Velocity Test
3.4.2. Limiting pv Values Measured by Step Load Method
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goriparthi, B.K.; Suman, K.N.S.; Rao, N.M. Effect of fiber surface treatments on mechanical and abrasive wear performance of polylactide/jute composites. Compos. Part B Eng. 2012, 43, 1800–1808. [Google Scholar] [CrossRef]
- Shalwan, A.; Yousif, B. In State of Art: Mechanical and tribological behaviour of polymeric composites based on natural fibres. Mater. Des. 2013, 48, 14–24. [Google Scholar] [CrossRef]
- Bajpai, P.K.; Singh, I.; Madaan, J. Tribological behavior of natural fiber reinforced PLA composites. Wear 2013, 297, 829–840. [Google Scholar] [CrossRef]
- Omrani, E.; Menezes, P.L.; Rohatgi, P.K. State of the art on tribological behavior of polymer matrix composites reinforced with natural fibers in the green materials world. Eng. Sci. Technol. Int. J. 2016, 19, 717–736. [Google Scholar] [CrossRef] [Green Version]
- Chand, N.; Fahim, M. Tribology of Natural Fiber Polymer Composites, 2nd ed.; Woodhead Publishing: Cambridge, UK, 2020; pp. 1–226. ISBN 978-012818983-2. [Google Scholar]
- Paul, R.; Gouda, K.; Bhowmik, S. Effect of Different Constraint on Tribological Behaviour of Natural Fibre/Filler Reinforced Polymeric Composites: A Review. Silicon 2020, 13, 2785–2807. [Google Scholar] [CrossRef]
- Naganuma, M. Plants-derived polyamide “VESTAMID Terra” “VESTAMID HT Plus”. JETI 2011, 59, 88–90. [Google Scholar]
- Nishitani, Y.; Yamanaka, T.; Kajiyama, T.; Kitano, T. Thermal properties of hemp fiber reinforced plant-derived polyamide biomass composites and their dynamic viscoelastic properties in molten state. In Viscoelastic and Viscoplastic Materials; El-Amin, M., Ed.; InTech: Rijeka, Croatia, 2016; pp. 53–79. [Google Scholar]
- Nishitani, Y.; Kajiyama, T.; Yamanaka, T. Effect of Silane Coupling Agent on Tribological Properties of Hemp Fiber-Reinforced Plant-Derived Polyamide 1010 Biomass Composites. Materials 2017, 10, 1040. [Google Scholar] [CrossRef]
- Lancaster, J. Estimation of the limiting PV relationships for thermoplastic bearing materials. Tribology 1971, 4, 82–86. [Google Scholar] [CrossRef]
- Yamaguchi, Y.; Kashiwagi, K. The limiting pressure-velocity (PV) of plastics under unlubricated sliding. Polym. Eng. Sci. 1982, 22, 248–253. [Google Scholar] [CrossRef]
- Song, F.; Wang, Q.; Wang, T. The effects of crystallinity on the mechanical properties and the limiting PV (pressure×velocity) value of PTFE. Tribol. Int. 2016, 93, 1–10. [Google Scholar] [CrossRef]
- Wang, J.; Gu, M.; Songhao, B.; Ge, S. Investigation of the influence of MoS2 filler on the tribological properties of carbon fiber reinforced nylon 1010 composites. Wear 2003, 255, 774–779. [Google Scholar] [CrossRef]
- Wang, J.-X.; Gu, M.-Y. Investigation of the influence of CuO filler and carbon fiber on wear and transfer film of nylon composites. J. Appl. Polym. Sci. 2004, 91, 2397–2401. [Google Scholar] [CrossRef]
- Wang, J.; Gu, M. Wear properties and mechanisms of nylon and carbon-fiber-reinforced nylon in dry and wet conditions. J. Appl. Polym. Sci. 2004, 93, 789–795. [Google Scholar] [CrossRef]
- Wang, S.; Ge, S.; Zhang, D. Comparison of tribological behavior of nylon composites filled with zinc oxide particles and whiskers. Wear 2009, 266, 248–254. [Google Scholar] [CrossRef]
- Hasumi, M.; Nishitani, Y.; Kitano, T. Effect of surface treatment on the mechanical properties of hemp fiber reinforced polyamide 1010 composites. In Proceedings of the Polymer Processing Society 28th Annual Meeting (PPS-28), Pattaya, Thailand, 11–15 December 2012. [Google Scholar]
- Mukaida, J.; Nishitani, Y.; Kitano, T. Effect of addition of plants-derived polyamide 11 elastomer on the mechanical and tribo-logical properties of hemp fiber reinforced polyamide 1010 composites. AIP Conf. Proc. 2015, 1664, 060008. [Google Scholar] [CrossRef] [Green Version]
- Mukaida, J.; Nishitani, Y.; Yamanaka, T.; Kajiyama, T.; Kitano, T. Influence of types of alkali treatment on the mechanical properties of hemp fiber reinforced polyamide 1010 composites. AIP Conf. Proc. 2015, 1779, 060005. [Google Scholar] [CrossRef] [Green Version]
- Shen, C.; Dumbleton, J. The friction and wear behavior of irradiated very high molecular weight polyethylene. Wear 1974, 30, 349–364. [Google Scholar] [CrossRef]
- Nishitani, Y.; Mukaida, J.; Yamanaka, T.; Kajiyama, T.; Kitano, T. Influence of initial fiber length on the mechanical and tribological properties of hemp fiber reinforced plants-derived polyamide 1010 biomass composites. AIP Conf. Proc. 2017, 1914, 070003. [Google Scholar] [CrossRef] [Green Version]
- Nishitani, Y.; Ito, Y.; Kajiyama, T. Effect of addition of PP-g-MA on the tribological properties of hemp fiber reinforced plant-derived Polyamide1010 biomass composites. AIP Conf. Proc. 2019, 2065, 040007. [Google Scholar] [CrossRef]
- Nishitani, Y.; Sugawara, N.; Kawasaki, K.; Kajiyama, T. Tribological properties of ureidosilane treated natural fiber reinforced plant-derived polyamide 1010 biomass composites. AIP Conf. Proc. 2019, 2139, 120001. [Google Scholar] [CrossRef]
- Morino, M.; Kajiyama, T.; Nishitani, Y. Influence of Epoxy Resin Treatment on the Mechanical and Tribological Properties of Hemp-Fiber-Reinforced Plant-Derived Polyamide 1010 Biomass Composites. Molecules 2021, 26, 1228. [Google Scholar] [CrossRef] [PubMed]
- Nishitani, Y. Chapter 9, Control by polymer alloys/polymer blends and polymer composites. In Tribological Control of Polymer and Its Application; CMC Publishing Co., Ltd.: Tokyo, Japan, 2015; pp. 84–99. [Google Scholar]
- Matsubara, K.; Watanabe, M. The wear properties of high-density polyethylene irradiated by gamma rays. Wear 1967, 10, 214–222. [Google Scholar] [CrossRef]
- Oonishi, H.; Tsuji, E.; Hanatate, Y.; Mizukoshi, T. Tribological Studies on Retrieved Total Joint Prostheses. J. Jpn. Soc. Tribol. 1991, 36, 928–934. [Google Scholar]
- Oonishi, H.; Ishimaru, H.; Kato, A. Effect of cross-linkage by gamma radiation in heavy doses to low wear polyethylene in total hip prostheses. J. Mater. Sci. Mater. Med. 1996, 7, 753–763. [Google Scholar] [CrossRef]
- Oonishi, H.; Kuno, M.; Tsuji, E.; Fujisawa, A. The optimum dose of gamma radiation–heavy doses to low wear polyethylene in total hip prostheses. J. Mater. Sci. Mater. Med. 1997, 8, 11–18. [Google Scholar] [CrossRef]
- Ikada, Y.; Nakamura, K.; Ogata, S.; Makino, K.; Tajima, K.; Endoh, N.; Hayashi, T.; Fujita, S.; Fujisawa, A.; Masuda, S.; et al. Characterization of ultrahigh molecular weight polyethylene irradiated with γ-rays and electron beams to high doses. J. Polym. Sci. A Polym. Chem. 1999, 37, 159–168. [Google Scholar] [CrossRef]
- Oonishi, H.; Kadoya, Y.; Masuda, S. Gamma-irradiated cross-linked polyethylene in total hip replacements–analysis of retrieved sockets after long-term implantation. J. Biomed. Mater. Res. 2001, 58, 167–171. [Google Scholar] [CrossRef]
- Sawano, T.; Murakami, T.; Sawae, Y. Effect of Gamma Irradiation on Wear Characteristics of UHMWPE for Joint Prostheses. Trans. Jpn. Soc. Mech. Eng. C 2005, 71, 1760–1765. [Google Scholar] [CrossRef]
- Simis, K.S.; Bistolfi, A.; Bellare, A.; Pruitt, L.A. The combined effects of crosslinking and high crystallinity on the microstructural and mechanical properties of ultra high molecular weight polyethylene. Biomaterials 2006, 27, 1688–1694. [Google Scholar] [CrossRef]
- Briscoe, B.J.; Ni, Z. The friction and wear of γ-irradiated polytetrafluoroethylene. Wear 1984, 100, 221–242. [Google Scholar] [CrossRef]
- Blanchet, T.A.; Peng, Y.L.; Nablo, S.V. Tribology of selectively irradiated PTFE surfaces. Tribol. Lett. 1998, 4, 87–94. [Google Scholar] [CrossRef]
- Chai, L.; Ning, K.; Qiao, L.; Wang, P.; Weng, L. Comparative study on microstructure, mechanical, and tribological property of gamma-irradiated polytetrafluoroethylene, polyetheretherketone, and polyimide polymers. Surf. Interface Anal. 2021, 54, 13–24. [Google Scholar] [CrossRef]
- Khare, N.; Limaye, P.; Soni, N.; Patel, R. Gamma irradiation effects on thermal, physical and tribological properties of PEEK under water lubricated conditions. Wear 2015, 342–343, 85–91. [Google Scholar] [CrossRef]
- Chai, L.; Zhang, B.; Qiao, L.; Wang, P.; Weng, L. Influence of gamma irradiation-induced surface oxidation on tribological property of polyetheretherketone (PEEK). Polym. Bull. 2021, 79, 6513–6531. [Google Scholar] [CrossRef]
- Lihua, Z.; Yuchen, Q.; Suhua, L.; Donglin, C.; Zicheng, Z.; Zhang, L.; Qi, Y.; Li, S.; Chen, D.; Zhang, Z. Characterization of gamma -irradiated crystalline polymers I. characterization of gamma -radiation induced crosslinked polyamide 1010 by crystallization temperature. Chin. J. Polym. Sci. 1985, 3, 332–340. [Google Scholar]
- Feng, J.; Zhang, L.; Chen, D. Characterisation of gamma-irradiated crystalline polymer—III. Thermal behaviour of gamma-irradiated polyamide 1010. Int. J. Radiat. Appl. Instrum. Part C 1991, 38, 105–112. [Google Scholar] [CrossRef]
- Baozhong, L.; Lihua, Z.; Yayan, L.; Qi, L. Investigation of irradiated PA1010 containing heterogeneous nuclei. Radiat. Phys. Chem. 1996, 48, 289–291. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, H.; Chen, D. WAXD and SAXS study on gamma-radiation damage to polyamide-1010 crystal structure. Radiat. Phys. Chem. 1996, 47, 523–526. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, L.; Yang, B.; Mo, Z. The influence of γ-radiation on polyamide 1010 aggregate structures. Polym. Degrad. Stab. 1995, 50, 71–74. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, H.; Chen, D. Influence of interface on radiation effects of crystalline polymer—Radiation effects on polyamide-1010 containing BMI. Radiat. Phys. Chem. 1999, 56, 323–331. [Google Scholar] [CrossRef]
- Jones, W.R.; Hady, W.F.; Crugnola, A. Effect of γ irradiation on the friction and wear of ultrahigh molecular weight polyethylene. Wear 1981, 70, 77–92. [Google Scholar] [CrossRef]
- Sreekanth, P.R.; Kanagaraj, S. Influence of multi walled carbon nanotubes reinforcement and gamma irradiation on the wear behaviour of UHMWPE. Wear 2015, 334–335, 82–90. [Google Scholar] [CrossRef]
- ISO 11137; Terilization of health care products–Radiation—Part 1: Requirements for development, validation and routine control of a sterilization process for medical devices—Amendment 2: Revision to 4.3.4 and 11.2. International Organization for Standardization (ISO): Geneva, Switzerland, 2018.
- Nishitani, Y.; Togashi, S.; Sekiguchi, I.; Ishii, C.; Kitano, T. Tribological properties of carbon nanofiber filled polyamide 66 composites. Mat. Technol. 2010, 28, 292–302. [Google Scholar]
- Yan, M.; Yang, H. Improvement of polyamide 1010 with silica nanospheres via in situ melt polycondensation. Polym. Compos. 2012, 33, 1770–1776. [Google Scholar] [CrossRef]
- Quiles-Carrillo, L.; Montanes, N.; Boronat, T.; Balart, R.; Torres-Giner, S. Evaluation of the engineering performance of different bio-based aliphatic homopolyamide tubes prepared by profile extrusion. Polym. Test. 2017, 61, 421–429. [Google Scholar] [CrossRef]
- Muthuraj, R.; Hajee, M.; Horrocks, A.; Kandola, B. Biopolymer blends from hardwood lignin and bio-polyamides: Compatibility and miscibility. Int. J. Biol. Macromol. 2019, 132, 439–450. [Google Scholar] [CrossRef]
- Dong, W.; Zhang, W.; Chen, G.; Liu, J. Radiation effects on the immiscible polymer blend of nylon1010 and high-impact polystyrene (HIPS) I: Gel/dose curves, mathematical expectation theorem and thermal behaviour. Radiat. Phys. Chem. 2000, 57, 27–35. [Google Scholar] [CrossRef]
- Zeng, H.; Gao, C.; Wang, Y.; Watts, P.C.; Kong, H.; Cui, X.; Yan, D. In situ polymerization approach to multiwalled carbon nanotubes-reinforced nylon 1010 composites: Mechanical properties and crystallization behavior. Polymer 2005, 47, 113–122. [Google Scholar] [CrossRef]
- Wang, B.; Sun, G.; He, X.; Liu, J. The effect of multiwall carbon nanotube on the crystallization, morphology, and rheological properties of nylon1010 nanocomposites. Polym. Eng. Sci. 2007, 47, 1610–1620. [Google Scholar] [CrossRef]
- Levinta, N.; Corobea, M.C.; Vuluga, Z.; Nicolae, C.-A.; Gabor, A.R.; Raditoiu, V.; Osiac, M.; Teodorescu, G.-M.; Teodorescu, M. Bio-Based Polyamide 1010 with a Halogen-Free Flame Retardant Based on Melamine–Gallic Acid Complex. Polymers 2020, 12, 1482. [Google Scholar] [CrossRef]
- Li, L.; Li, C.Y.; Ni, C.; Rong, L.; Hsiao, B. Structure and crystallization behavior of Nylon 66/multi-walled carbon nanotube nanocomposites at low carbon nanotube contents. Polymer 2007, 48, 3452–3460. [Google Scholar] [CrossRef]
- Lagarde, M.; de Paz, A.; Del Grosso, M.F.; Fasce, D.; Dommarco, R.; Laino, S.; Fasce, L.A. On the comparison of changes induced in crystallinity and surface nanomechanical properties of ultra high molecular weight polyethylene by γ and swift heavy ion irradiations. Surf. Coat. Technol. 2014, 258, 293–299. [Google Scholar] [CrossRef]
- Khonakdar, H.; Jafari, S.; Wagenknecht, U.; Jehnichen, D. Effect of electron-irradiation on cross-link density and crystalline structure of low- and high-density polyethylene. Radiat. Phys. Chem. 2006, 75, 78–86. [Google Scholar] [CrossRef]
- Kang, P.H.; Nho, Y.C. The effect of γ-irradiation on ultra-high molecular weight polyethylene recrystallized under different cooling conditions. Radiat. Phys. Chem. 2001, 60, 79–87. [Google Scholar] [CrossRef]
- Li, B.; Zhang, L. γ-Radiation damage to nylon 1010 containing neodymium oxide. Polym. Degrad. Stab. 1997, 55, 17–20. [Google Scholar] [CrossRef]
- Reinitz, S.D.; Carlson, E.M.; Levine, R.A.; Franklin, K.J.; Van Citters, D.W. Dynamical mechanical analysis as an assay of cross-link density of orthopaedic ultra high molecular weight polyethylene. Polym. Test. 2015, 45, 174–178. [Google Scholar] [CrossRef]
- Lee, C.S.; Jho, J.Y.; Choi, K.; Hwang, T.-W. Dynamic mechanical behavior of ultra-high molecular weight polyethylene irradiated with gamma rays. Macromol. Res. 2004, 12, 141–143. [Google Scholar] [CrossRef]
- Davenas, J.; Stevenson, I.; Celette, N.; Vigier, G.; David, L. Influence of the molecular modifications on the properties of EPDM elastomers under irradiation. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2003, 208, 461–465. [Google Scholar] [CrossRef]
- Xie, M.; Li, H. Viscosity reduction and disentanglement in ultrahigh molecular weight polyethylene melt: Effect of blending with polypropylene and poly(ethylene glycol). Eur. Polym. J. 2007, 43, 3480–3487. [Google Scholar] [CrossRef]
- Zhishen, M.; Qingbo, M.; Jinhua, F.; Hongfang, Z.; Donglin, C. Crystal structure and thermodynamic parameters of Nylon-1010. Polym. Int. 1993, 32, 53–60. [Google Scholar] [CrossRef]
Code | Composition (wt.%) | Gamma-Irradiation Dose | |
---|---|---|---|
PA1010 | TAIC | (kGy) | |
PA1010 | 100 | - | - |
PA1010_20 | 100 | - | 20 |
PA1010_50 | 100 | - | 50 |
PA1010/TAIC | 99 | 1 | - |
PA1010/TAIC_20 | 99 | 1 | 20 |
PA1010/TAIC_50 | 99 | 1 | 50 |
1st Cooling | 2nd Heating | |||||
---|---|---|---|---|---|---|
Tc | ΔHc | Tm1 | Tm2 | ΔHf | χc | |
°C | J/g | °C | °C | J/g | % | |
PA1010 | 173.35 | 69.3 | 191.71 | 202.94 | 102.4 | 42.0 |
PA1010_20 | 173.27 | 69.2 | 191.48 | 202.70 | 98.8 | 40.5 |
PA1010_50 | 172.49 | 66.7 | 192.05 | 203.26 | 90.1 | 36.9 |
PA1010/TAIC | 175.78 | 61.3 | 192.02 | 203.29 | 97.6 | 40.4 |
PA1010/TAIC_20 | 171.36 | 72.0 | 193.52 | 198.60 | 95.1 | 39.4 |
PA1010/TAIC_50 | 170.84 | 65.5 | 194.94 | 200.56 | 91.3 | 37.8 |
Tg °C | E′ at 210 °C MPa | Mc at 210 °C ×103 g/mol | νc at 210 °C mol/m3 | |
---|---|---|---|---|
PA1010 | 50.8 | - | - | - |
PA1010_20 | 52.8 | - | - | - |
PA1010_50 | 54.8 | - | - | - |
PA1010/TAIC | 57.8 | - | - | - |
PA1010/TAIC_20 | 60.8 | 0.74 | 16.3 | 61 |
PA1010/TAIC_50 | 61.8 | 0.81 | 15.0 | 67 |
Tensile Strength σt MPa | Tensile Modulus Et GPa | Elongation at Break εt % | Bending Strength σb MPa | Bending Modulus Eb GPa | Durometer Hardness HDD | |
---|---|---|---|---|---|---|
PA1010 | 40 ± 1.2 | 1.4 ± 0.06 | 121 ± 5 | 53 ± 0.8 | 1.2 ± 0.04 | 75 ± 1.4 |
PA1010_20 | 48 ± 4.2 | 1.6 ± 0.19 | 110 ± 24 | 67 ± 0.5 | 1.2 ± 0.11 | 77 ± 2.4 |
PA1010_50 | 45 ± 2.9 | 0.9 ± 0.24 | 130 ± 14 | 62 ± 0.5 | 1.3 ± 0.00 | 78 ± 1.2 |
PA1010/TAIC | 43 ± 2.9 | 1.4 ± 0.12 | 111 ± 15 | 54 ± 0.3 | 1.2 ± 0.07 | 76 ± 1.1 |
PA1010/TAIC_20 | 50 ± 0.9 | 1.8 ± 0.06 | 70 ± 15 | 71 ± 0.2 | 1.5 ± 0.00 | 79 ± 1.5 |
PA1010/TAIC_50 | 44 ± 1.5 | 1.0 ± 0.20 | 90 ± 18 | 68 ± 0.2 | 1.5 ± 0.11 | 79 ± 0.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morino, M.; Nishitani, Y.; Kitagawa, T.; Kikutani, S. Thermal, Mechanical and Tribological Properties of Gamma-Irradiated Plant-Derived Polyamide 1010. Polymers 2023, 15, 3111. https://doi.org/10.3390/polym15143111
Morino M, Nishitani Y, Kitagawa T, Kikutani S. Thermal, Mechanical and Tribological Properties of Gamma-Irradiated Plant-Derived Polyamide 1010. Polymers. 2023; 15(14):3111. https://doi.org/10.3390/polym15143111
Chicago/Turabian StyleMorino, Maiko, Yosuke Nishitani, Tatsuya Kitagawa, and Shinya Kikutani. 2023. "Thermal, Mechanical and Tribological Properties of Gamma-Irradiated Plant-Derived Polyamide 1010" Polymers 15, no. 14: 3111. https://doi.org/10.3390/polym15143111
APA StyleMorino, M., Nishitani, Y., Kitagawa, T., & Kikutani, S. (2023). Thermal, Mechanical and Tribological Properties of Gamma-Irradiated Plant-Derived Polyamide 1010. Polymers, 15(14), 3111. https://doi.org/10.3390/polym15143111