Synthesis of Degradable Polyolefins Bearing Disulfide Units via Metathesis Copolymerization
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Information
2.2. Procedure for Homopolymerization of Allyl Disulfide
2.3. A General Procedure for Copolymerization of Allyl Disulfide and Cyclooctene
2.4. A General Procedure for Polymer Degradation
3. Results
3.1. Polymerization Experiments
3.1.1. Homopolymerization of Diallyl Disulfide
3.1.2. Copolymerization of Diallyl Disulfide and Cyclooctene
3.2. Thermal Properties of Copolymers
3.3. Polymer Degradation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Otsuka, H.; Nagano, S.; Kobashi, Y.; Maeda, T.; Takahara, A. A dynamic covalent polymer driven by disulfide metathesis under photoirradiation. Chem. Commun. 2010, 46, 1150–1152. [Google Scholar] [CrossRef]
- Rekondo, A.; Martin, R.; Ruiz de Luzuriaga, A.; Cabañero, G.; Grande, H.J.; Odriozola, I. Catalyst-free room-temperature self-healing elastomers based on aromatic disulfide metathesis. Mater. Horiz. 2014, 1, 237–240. [Google Scholar] [CrossRef]
- Jiang, C.S.; Muller, W.E.; Schroder, H.C.; Guo, Y.W. Disulfide- and multisulfide-containing metabolites from marine organisms. Chem. Rev. 2012, 112, 2179–2207. [Google Scholar] [CrossRef]
- Tietze, A.A.; Tietze, D.; Ohlenschlaeger, O.; Leipold, E.; Ullrich, F.; Kuehl, T.; Mischo, A.; Buntkowsky, G.; Goerlach, M.; Heinemann, S.H.; et al. Structurally diverse mu-conotoxin piiia isomers block sodium channel nav1.4. Angew. Chem. Int. Ed. 2012, 51, 4058–4061. [Google Scholar] [CrossRef]
- Gao, H.F.; Tsarevsky, N.V.; Matyjaszewski, K. Synthesis of degradable miktoarm star copolymers via atom transfer radical polymerization. Macromolecules 2005, 38, 5995–6004. [Google Scholar] [CrossRef]
- Jia, Z.; Wong, L.; Davis, T.P.; Bulmus, V. One-pot conversion of raft-generated multifunctional block copolymers of hpma to doxorubicin conjugated acid- and reductant-sensitive crosslinked micelles. Biomacromolecules 2008, 9, 3106–3113. [Google Scholar] [CrossRef]
- Li, Y.T.; Armes, S.P. Synthesis and chemical degradation of branched vinyl polymers prepared via atrp: Use of a cleavable disulfide-based branching agent. Macromolecules 2005, 38, 8155–8162. [Google Scholar] [CrossRef]
- Lu, J.; Xu, Z.; Fu, H.; Lin, Y.; Wang, H.; Lu, H. Room-temperature grafting from synthesis of protein-polydisulfide conjugates via aggregation-induced polymerization. J. Am. Chem. Soc. 2022, 144, 15709–15717. [Google Scholar] [CrossRef]
- Tsarevsky, N.V.; Matyjaszewski, K. Combining atom transfer radical polymerization and disulfide/thiol redox chemistry: A route to well-defined (bio)degradable polymeric materials. Macromolecules 2005, 38, 3087–3092. [Google Scholar] [CrossRef]
- Cheng, Z.; Zhang, J.; Ballou, D.P.; Williams, C.H., Jr. Reactivity of thioredoxin as a protein thiol-disulfide oxidoreductase. Chem. Rev. 2011, 111, 5768–5783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gongora-Benitez, M.; Tulla-Puche, J.; Albericio, F. Multifaceted roles of disulfide bonds. Peptides as therapeutics. Chem. Rev. 2014, 114, 901–926. [Google Scholar] [CrossRef] [PubMed]
- Maeda, T.; Otsuka, H.; Takahara, A. Dynamic covalent polymers: Reorganizable polymers with dynamic covalent bonds. Prog. Polym. Sci. 2009, 34, 581–604. [Google Scholar] [CrossRef]
- Bang, E.-K.; Lista, M.; Sforazzini, G.; Sakai, N.; Matile, S. Poly(disulfide)s. Chem. Sci. 2012, 3, 1752–1763. [Google Scholar] [CrossRef]
- Wilson, A.; Gasparini, G.; Matile, S. Functional systems with orthogonal dynamic covalent bonds. Chem. Soc. Rev. 2014, 43, 1948–1962. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, K.-D.; Matile, S. Complex functional systems with three different types of dynamic covalent bonds. Angew. Chem. Int. Ed. 2015, 54, 8980–8983. [Google Scholar] [CrossRef]
- Tsarevsky, N.V.; Matyjaszewski, K. Reversible redox cleavage/coupling of polystyrene with disulfide or thiol groups prepared by atom transfer radical polymerization. Macromolecules 2002, 35, 9009–9014. [Google Scholar] [CrossRef]
- Rosenthal, E.Q.; Puskas, J.E.; Wesdemiotis, C. Green polymer chemistry: Living dithiol polymerization via cyclic intermediates. Biomacromolecules 2012, 13, 154–164. [Google Scholar] [CrossRef]
- Kandemir, D.; Luleburgaz, S.; Gunay, U.S.; Durmaz, H.; Kumbaraci, V. Ultrafast poly(disulfide) synthesis in the presence of organocatalysts. Macromolecules 2022, 55, 7806–7816. [Google Scholar] [CrossRef]
- Kiel, G.R.; Lundberg, D.J.; Prince, E.; Husted, K.E.L.; Johnson, A.M.; Lensch, V.; Li, S.; Shieh, P.; Johnson, J.A. Cleavable comonomers for chemically recyclable polystyrene: A general approach to vinyl polymer circularity. J. Am. Chem. Soc. 2022, 144, 12979–12988. [Google Scholar] [CrossRef]
- Wu, J.; Zhao, L.; Xu, X.; Bertrand, N.; Choi, W.I.I.; Yameen, B.; Shi, J.; Shah, V.; Mulvale, M.; MacLean, J.L.; et al. Hydrophobic cysteine poly(disulfide)-based redox-hypersensitive nanoparticle platform for cancer theranostics. Angew. Chem. Int. Ed. 2015, 54, 9218–9223. [Google Scholar] [CrossRef]
- Lu, W.; Wang, X.; Cheng, R.; Deng, C.; Meng, F.; Zhong, Z. Biocompatible and bioreducible micelles fabricated from novel α-amino acid-based poly(disulfide urethane)s: Design, synthesis and triggered doxorubicin release. Polym. Chem. 2015, 6, 6001–6010. [Google Scholar] [CrossRef]
- Kim, S.; Wittek, K.I.; Lee, Y. Synthesis of poly(disulfide)s with narrow molecular weight distributions via lactone ring-opening polymerization. Chem. Sci. 2020, 11, 4882–4886. [Google Scholar] [CrossRef] [Green Version]
- He, M.; Yu, L.; Yang, Y.; Zou, B.; Ma, W.; Yu, M.; Lu, J.; Xiong, G.; Yu, Z.; Li, A. Delivery of triptolide with reduction-sensitive polymer nanoparticles for liver cancer therapy on patient-derived xenografts models. Chin. Chem. Lett. 2020, 31, 3178–3182. [Google Scholar] [CrossRef]
- Zhang, Q.; Qu, D.-H.; Feringa, B.L.; Tian, H. Disulfide-mediated reversible polymerization toward intrinsically dynamic smart materials. J. Am. Chem. Soc. 2022, 144, 2022–2033. [Google Scholar] [CrossRef] [PubMed]
- Albanese, K.R.; Okayama, Y.; Morris, P.T.; Gerst, M.; Gupta, R.; Speros, J.C.; Hawker, C.J.; Choi, C.; de Alaniz, J.R.; Bates, C.M. Building tunable degradation into high-performance poly(acrylate) pressure-sensitive adhesives. ACS Macro Lett. 2023, 12, 787–793. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.-C.; Emrick, T. Functional polyolefins containing disulfide and phosphoester groups: Synthesis and orthogonal degradation. Macromolecules 2014, 47, 1344–1350. [Google Scholar] [CrossRef]
- Stuerzel, M.; Mihan, S.; Muelhaupt, R. From multisite polymerization catalysis to sustainable materials and all-polyolefin composites. Chem. Rev. 2016, 116, 1398–1433. [Google Scholar] [CrossRef]
- Geyer, R.; Jambeck, J.R.; Law, K.L. Production, use, and fate of all plastics ever made. Sci. Adv. 2017, 3, e1700782. [Google Scholar] [CrossRef] [Green Version]
- Jambeck, J.R.; Geyer, R.; Wilcox, C.; Siegler, T.R.; Perryman, M.; Andrady, A.; Narayan, R.; Law, K.L. Plastic waste inputs from land into the ocean. Science 2015, 347, 768–771. [Google Scholar] [CrossRef]
- Sun, H.; Liang, Y.; Thompson, M.P.; Gianneschi, N.C. Degradable polymers via olefin metathesis polymerization. Prog. Polym. Sci. 2021, 120, 101427. [Google Scholar] [CrossRef]
- Gutekunst, W.R.; Hawker, C.J. A general approach to sequence-controlled polymers using macrocyclic ring opening metathesis polymerization. J. Am. Chem. Soc. 2015, 137, 8038–8041. [Google Scholar] [CrossRef] [Green Version]
- Shieh, P.; Nguyen, H.V.; Johnson, J.A. Tailored silyl ether monomers enable backbone-degradable polynorbornene-based linear, bottlebrush and star copolymers through romp. Nat. Chem. 2019, 11, 1124–1132. [Google Scholar] [CrossRef] [PubMed]
- Feist, J.D.; Xia, Y. Enol ethers are effective monomers for ring-opening metathesis polymerization: Synthesis of degradable and depolymerizable poly(2,3-dihydrofuran). J. Am. Chem. Soc. 2020, 142, 1186–1189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, B.; Wei, M.; Vargo, E.; Qian, Y.; Xu, T.; Toste, F.D. Backbone-photodegradable polymers by incorporating acylsilane monomers via ring-opening metathesis polymerization. J. Am. Chem. Soc. 2021, 143, 17920–17925. [Google Scholar] [CrossRef] [PubMed]
- Feist, J.D.; Lee, D.C.; Xia, Y. A versatile approach for the synthesis of degradable polymers via controlled ring-opening metathesis copolymerization. Nat. Chem. 2022, 14, 53–58. [Google Scholar] [CrossRef]
- Husted, K.E.L.; Brown, C.M.; Shieh, P.; Kevlishvili, I.; Kristufek, S.L.; Zafar, H.; Accardo, J.V.; Cooper, J.C.; Klausen, R.S.; Kulik, H.J.; et al. Remolding and deconstruction of industrial thermosets via carboxylic acid-catalyzed bifunctional silyl ether exchange. J. Am. Chem. Soc. 2023, 145, 1916–1923. [Google Scholar] [CrossRef]
- Mitra, S.; Das, R.; Emran, T.B.; Labib, R.K.; Noor, E.T.; Islam, F.; Sharma, R.; Ahmad, I.; Nainu, F.; Chidambaram, K.A.; et al. Diallyl disulfide: A bioactive garlic compound with anticancer potential. Front. Pharmacol. 2022, 13, 943967. [Google Scholar] [CrossRef]
- Malla, R.; Marni, R.; Chakraborty, A.; Kamal, M.A. Diallyl disulfide and diallyl trisulfide in garlic as novel therapeutic agents to overcome drug resistance in breast cancer. J. Phram. Anal. 2022, 12, 221–231. [Google Scholar] [CrossRef]
- Kesavan, V.; Bonnet-Delpon, D.; Begue, J.P. Oxidation in fluoro alcohols: Mild and efficient preparation of disulfides from thiols. Synthesis 2000, 2000, 223–225. [Google Scholar] [CrossRef]
- Simocko, C.; Yang, Y.; Swager, T.M.; Wagener, K.B. Metathesis step-growth polymerizations in ionic liquid. ACS Macro Lett. 2013, 2, 1061–1064. [Google Scholar] [CrossRef]
- Si, G.; Chen, C. Cyclic–acyclic monomers metathesis polymerization for the synthesis of degradable thermosets, thermoplastics and elastomers. Nat. Synth. 2022, 1, 956–966. [Google Scholar] [CrossRef]
- Mutlu, H.; de Espinosa, L.M.; Meier, M.A.R. Acyclic diene metathesis: A versatile tool for the construction of defined polymer architectures. Chem. Soc. Rev. 2011, 40, 1404–1445. [Google Scholar] [CrossRef]
- Da Silva, L.C.; Rojas, G.; Schulz, M.D.; Wagener, K.B. Acyclic diene metathesis polymerization: History, methods and applications. Prog. Polym. Sci. 2017, 69, 79–107. [Google Scholar] [CrossRef]
- Liu, S.; Yan, J.; Zhang, Q.; Yan, Y. Acyclic diene metathesis (admet) as powerful tool for functional polymers with versatile architectures. J. Inorg. Organomet. Polym. Mater. 2022, 32, 3368–3394. [Google Scholar] [CrossRef]
- Spagnol, G.; Heck, M.P.; Nolan, S.P.; Mioskowski, C. Efficiency of a ruthenium catalyst in metathesis reactions of sulfur-containing compounds. Org. Lett. 2002, 4, 1767–1770. [Google Scholar] [CrossRef]
- Hong, S.H.; Wenzel, A.G.; Salguero, T.T.; Day, M.W.; Grubbs, R.H. Decomposition of ruthenium olefin metathesis catalysts. J. Am. Chem. Soc. 2007, 129, 7961–7968. [Google Scholar] [CrossRef] [Green Version]
- Behrendt, F.N.; Hess, A.; Lehmann, M.; Schmidt, B.; Schlaad, H. Polymerization of cystine-derived monomers. Polym. Chem. 2019, 10, 1636–1641. [Google Scholar] [CrossRef]
- Paradiso, V.; Costabile, C.; Grisi, F. Ruthenium-based olefin metathesis catalysts with monodentate unsymmetrical nhc ligands. Beilstein J. Org. Chem 2018, 14, 3122–3149. [Google Scholar] [CrossRef] [Green Version]
- Urpi, F.; Vilarrasa, J. New synthetic ‘tricks’. advantages of using triethylphosphine in some phosphorus-based reactions. Tetrahedron Lett. 1986, 27, 4623–4624. [Google Scholar] [CrossRef]
- Rüegg, U.T.; Rudinger, J. Reductive cleavage of cystine disulfides with tributylphosphine. Methods Enzymol. 1977, 47, 111–116. [Google Scholar]
Entry | Cat. [Ru] | [COE]:[DADS]:[Ru] | Solvent | Yield (mg) | i.r. b (%) | Mn c (kg·mol−1) | Mw/Mnc |
---|---|---|---|---|---|---|---|
1 | G2 | 1000:50:1 | THF | 318.1 | 4.1 | 7.9 | 1.82 |
2 | HG2 | 1000:50:1 | THF | 365.1 | 4.1 | 6.6 | 1.75 |
3 | G3 | 1000:50:1 | THF | 325.2 | 4.3 | 6.5 | 1.80 |
4 | G2 | 1000:50:1 | DCM | 352.7 | 4.5 | 8.0 | 1.82 |
5 | G2 | 1000:50:1 | DCE | 337.1 | 4.3 | 8.3 | 1.93 |
6 | G2 | 1000:50:1 | 2-Me-THF | 362.7 | 4.5 | 6.5 | 2.00 |
7 | G2 | 1000:10:1 | DCM | 401.2 | 0.7 | 42.8 | 1.79 |
8 | G2 | 1000:25:1 | DCM | 392.9 | 2.0 | 13.9 | 2.22 |
9 | G2 | 1000:75:1 | DCM | 274.1 | 6.3 | 5.9 | 1.74 |
10 | G2 | 1000:100:1 | DCM | 221.2 | 8.5 | 5.8 | 1.72 |
11 d | G2 | 5000:250:1 | DCM | 356.3 | 4.5 | 8.5 | 1.78 |
12 | G2 | 100:5:1 | DCM | 362.6 | 4.5 | 9.1 | 1.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, Y.; Zhou, F.; Hao, W.; Tang, S. Synthesis of Degradable Polyolefins Bearing Disulfide Units via Metathesis Copolymerization. Polymers 2023, 15, 3101. https://doi.org/10.3390/polym15143101
Xia Y, Zhou F, Hao W, Tang S. Synthesis of Degradable Polyolefins Bearing Disulfide Units via Metathesis Copolymerization. Polymers. 2023; 15(14):3101. https://doi.org/10.3390/polym15143101
Chicago/Turabian StyleXia, Yu, Fulin Zhou, Wenyan Hao, and Shan Tang. 2023. "Synthesis of Degradable Polyolefins Bearing Disulfide Units via Metathesis Copolymerization" Polymers 15, no. 14: 3101. https://doi.org/10.3390/polym15143101
APA StyleXia, Y., Zhou, F., Hao, W., & Tang, S. (2023). Synthesis of Degradable Polyolefins Bearing Disulfide Units via Metathesis Copolymerization. Polymers, 15(14), 3101. https://doi.org/10.3390/polym15143101