Synergistic Effect of Nanoparticles: Enhanced Mechanical and Corrosion Protection Properties of Epoxy Coatings Incorporated with SiO2 and ZrO2
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Scanning Electron Microscope (SEM)
3.2. Fourier Transform Infrared Spectroscopy (FTIR)
3.3. Thermogravimetric Analysis (TGA)
3.4. Mechanical Properties and Nanoindentation
3.5. X-ray Diffraction Analysis
3.6. Electrochemical Impedance Spectroscopy (EIS)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bu, M.; Zhang, X.; Zhou, T.; Lei, C. Fully bio-based epoxy resins derived from magnolol and varying furan amines: Cure kinetics, superior mechanical and thermal properties. Eur. Polym. J. 2022, 180, 111595. [Google Scholar] [CrossRef]
- Liu, L.; Zhao, M.; Pei, X.; Liu, S.; Luo, S.; Yan, M.; Shao, R.; Sun, Y.; Xu, W.; Xu, Z. Improving corrosion resistance of epoxy coating by optimizing the stress distribution and dispersion of SiO2 filler. Prog. Org. Coat. 2023, 179, 107522. [Google Scholar] [CrossRef]
- Kandeloos, A.J.; Attar, M.M. The diffusion and adhesion relationship between free films and epoxy coated mild steel. Prog. Org. Coat. 2023, 179, 107561. [Google Scholar] [CrossRef]
- Poulston, S.; Bennett, R.A.; Faraldi, P.; Hyde, T.I.; Pidria, M.F.; Houel, V.; Wagland, A. Characterization of protective coatings for planar automotive gas sensors. Sens. Actuators B Chem. 2005, 110, 209–217. [Google Scholar] [CrossRef]
- Makhlouf, A.S.H. Protective coatings for automotive, aerospace and military applications: Current prospects and future trends. In Handbook of Smart Coatings for Materials Protection; Woodhead Publishing: Shaxton, UK, 2014; pp. 121–131. [Google Scholar] [CrossRef]
- Yang, H.; Qin, L.; Wang, F.; Mawignon, F.J.; Dong, M.; Wu, Y.; Zhang, Y.; Ma, Z. A facile method to fabricate the durable and self-protective coating for marine applications. Surf. Coat. Technol. 2023, 452, 129124. [Google Scholar] [CrossRef]
- Ou, J.; Wang, J.; Zhou, J.; Liu, S.; Yu, Y.; Pang, X.; Yang, S. Construction and study on corrosion protective property of polydopamine-based 3-layer organic coatings on aluminum substrate. Prog. Org. Coat. 2010, 68, 244–247. [Google Scholar] [CrossRef]
- Yang, J.; Dai, J.; Liu, X.; Fu, S.; Zong, E.; Song, P. A lignin-based epoxy/TiO2 hybrid nanoparticle for multifunctional bio-based epoxy with improved mechanical, UV absorption and antibacterial properties. Int. J. Biol. Macromol. 2022, 210, 85–93. [Google Scholar] [CrossRef]
- Korkmaz, Y.; Gültekin, K. Improvement of structural, thermal and mechanical properties of epoxy composites and bonded joints exposed to water environment by incorporating boron nanoparticles. Int. J. Adhes. Adhes. 2022, 116, 103141. [Google Scholar] [CrossRef]
- Sadowski, Ł.; Kampa, Ł.; Chowaniec, A.; Królicka, A.; Żak, A.; Abdoulpour, H.; Vantadori, S. Enhanced adhesive performance of epoxy resin coating by a novel bonding agent. Constr. Build. Mater. 2021, 301, 124078. [Google Scholar] [CrossRef]
- Wang, Y.; Yan, L.; Ling, Y.; Ge, Y.; Huang, C.; Zhou, S.; Xia, S.; Liang, M.; Zou, H. Enhanced mechanical and adhesive properties of PDMS coatings via in-situ formation of uniformly dispersed epoxy reinforcing phase. Prog. Org. Coat. 2023, 174, 107319. [Google Scholar] [CrossRef]
- Kumar Singh, S.; Gunwant, D.; Vedrtnam, A.; Kumar, A.; Jain, A. Synthesis, characterization, and modelling the behavior of in-situ ZrO2 nanoparticles dispersed epoxy nanocomposite. Eng. Fract. Mech. 2022, 263, 108300. [Google Scholar] [CrossRef]
- Bharadwaja, K.; Srinivasa Rao, S.; Baburao, T. Epoxy/SIO2 nanocomposite mechanical properties and tribological performance. Mater. Today Proc. 2022, 62, 1712–1716. [Google Scholar] [CrossRef]
- Mishra, T.; Mandal, P.; Rout, A.K.; Sahoo, D. A state-of-the-art review on potential applications of natural fiber-reinforced polymer composite filled with inorganic nanoparticle. Compos. Part C Open Access 2022, 9, 100298. [Google Scholar] [CrossRef]
- Boumaza, M.; Khan, R.; Zahrani, S. RETRACTED: An experimental investigation of the effects of nanoparticles on the mechanical properties of epoxy coating. Thin Solid Film. 2016, 620, 160–164. [Google Scholar] [CrossRef]
- Allahverdi, A.; Ehsani, M.; Janpour, H.; Ahmadi, S. The effect of nanosilica on mechanical, thermal and morphological properties of epoxy coating. Prog. Org. Coat. 2012, 75, 543–548. [Google Scholar] [CrossRef]
- Ghanbari, A.; Attar, M.M. A study on the anticorrosion performance of epoxy nanocomposite coatings containing epoxy-silane treated nano-silica on mild steel substrate. J. Ind. Eng. Chem. 2015, 23, 145–153. [Google Scholar] [CrossRef]
- Yang, G.; Heo, Y.J.; Park, S.J. Effect of Morphology of Calcium Carbonate on Toughness Behavior and Thermal Stability of Epoxy-Based Composites. Processes 2019, 7, 178. [Google Scholar] [CrossRef]
- Conradi, M.; Kocijan, A.; Kek-Merl, D.; Zorko, M.; Verpoest, I. Mechanical and anticorrosion properties of nanosilica-filled epoxy-resin composite coatings. Appl. Surf. Sci. 2014, 292, 432–437. [Google Scholar] [CrossRef]
- Sfameni, S.; Lawnick, T.; Rando, G.; Visco, A.; Textor, T.; Plutino, M.R. Super-Hydrophobicity of Polyester Fabrics Driven by Functional Sustainable Fluorine-Free Silane-Based Coatings. Gels 2023, 9, 109. [Google Scholar] [CrossRef]
- Aliakbari, M.; Jazani, O.M.; Sohrabian, M.; Jouyandeh, M.; Saeb, M.R. Multi-nationality epoxy adhesives on trial for future nanocomposite developments. Prog. Org. Coat. 2019, 133, 376–386. [Google Scholar] [CrossRef]
- Medina, R.; Haupert, F.; Schlarb, A.K. Improvement of tensile properties and toughness of an epoxy resin by nanozirconium-dioxide reinforcement. J. Mater. Sci. 2008, 43, 3245–3252. [Google Scholar] [CrossRef]
- Alam, M.A.; Samad, U.A.; Anis, A.; Sherif, E.-S.M.; Abdo, H.S.; Al-Zahrani, S.M. The Effect of Zirconia Nanoparticles on Thermal, Mechanical, and Corrosion Behavior of Nanocomposite Epoxy Coatings on Steel Substrates. Materials 2023, 16, 4813. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.A.; Samad, U.A.; Sherif, E.S.M.; Poulose, A.M.; Mohammed, J.A.; Alharthi, N.; Al-Zahrani, S.M. Influence of SiO2 Content and Exposure Periods on the Anticorrosion Behavior of Epoxy Nanocomposite Coatings. Coatings 2020, 10, 118. [Google Scholar] [CrossRef]
- Alam, M.A.; Samad, U.A.; Alam, M.; Anis, A.; Al-Zahrani, S.M. Enhancement in Nanomechanical, Thermal, and Abrasion Properties of SiO2 Nanoparticle-Modified Epoxy Coatings. Coatings 2020, 10, 310. [Google Scholar] [CrossRef]
- D4366-16; A. D4366 Standard Test Methods for Hardness of Organic Coatings by Pendulum Damping Tests. ASTM International: West Conshohocken, PA, USA, 2021. Available online: https://www.astm.org/d4366-16r21.html (accessed on 12 July 2023).
- D7027-20; A. D7027 Standard Test Method for Evaluation of Scratch Resistance of Polymeric Coatings and Plastics Using an Instrumented Scratch Machine. ASTM International: West Conshohocken, PA, USA, 2020. Available online: https://www.astm.org/d7027-20.html (accessed on 12 July 2023).
- D2794; Standard Test Method for Resistance of Organic Coatings to the Effects of Rapid Deformation (Impact). ASTM International: West Conshohocken, PA, USA, 2019. Available online: https://www.astm.org/d2794-93r19.html (accessed on 12 July 2023).
- Matin, E.; Attar, M.M.; Ramezanzadeh, B. Investigation of corrosion protection properties of an epoxy nanocomposite loaded with polysiloxane surface modified nanosilica particles on the steel substrate. Prog. Org. Coat. 2015, 78, 395–403. [Google Scholar] [CrossRef]
- Khan, R.; Azhar, M.R.; Anis, A.; Alam, M.A.; Boumaza, M.; Al-Zahrani, S.M. Facile synthesis of epoxy nanocomposite coatings using inorganic nanoparticles for enhanced thermo-mechanical properties: A comparative study. J. Coat. Technol. Res. 2016, 13, 159–169. [Google Scholar] [CrossRef]
- Tran, T.N.; Pham, T.V.A.; Le, M.L.P.; Nguyen, T.P.T.; Tran, V.M. Synthesis of amorphous silica and sulfonic acid functionalized silica used as reinforced phase for polymer electrolyte membrane. Adv. Nat. Sci. Nanosci. Nanotechnol. 2013, 4, 045007. [Google Scholar] [CrossRef]
- Akkalamattam Maitheen Kunju, R.; Gopalakrishnan, J. Polyaniline nanorod adsorbed on reduced graphene oxide nanosheet for enhanced dielectric, viscoelastic and thermal properties of epoxy nanocomposites. Polym. Eng. Sci. 2021, 61, 1755–1772. [Google Scholar] [CrossRef]
- Aradhana, R.; Mohanty, S.; Nayak, S.K. Synergistic effect of polypyrrole and reduced graphene oxide on mechanical, electrical and thermal properties of epoxy adhesives. Polymer 2019, 166, 215–228. [Google Scholar] [CrossRef]
- Nguyen, T.A.; Nguyen, H.; Nguyen, T.V.; Thai, H.; Shi, X. Effect of nanoparticles on the thermal and mechanical properties of epoxy coatings. J. Nanosci. Nanotechnol. 2016, 16, 9874–9881. [Google Scholar] [CrossRef]
- ASTM-D638-14; Standard Test Method for Tensile Properties of Plastics. ASTM International: West Conshohocken, PA, USA, 2014; Volume 8, pp. 59–67.
- Long, J.; Li, C.; Li, Y. Enhancement of Mechanical and Bond Properties of Epoxy Adhesives Modified by SiO2 Nanoparticles with Active Groups. Polymers 2022, 14, 2052. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Wang, H.; Wang, X.; Guan, J.; Li, M.; Chen, Y. Rubber-Composite-Nanoparticle-Modified Epoxy Powder Coatings with Low Curing Temperature and High Toughness. Polymers 2022, 15, 195. [Google Scholar] [CrossRef]
- Gershoni, G.; Dodiuk, H.; Tenne, R.; Kenig, S. Cationically Polymerized Epoxy and Radiation-Cured Acrylate Blend Nanocomposites Based on WS2 Nanoparticles Part B: Mechanical and Physical Properties. J. Compos. Sci. 2023, 7, 42. [Google Scholar] [CrossRef]
- D6412; A. D6412/D6412M Standard Specification for Epoxy (Flexible) Adhesive For Bonding Metallic and Nonmetallic Materials. ASTM International: West Conshohocken, PA, USA, 2020. Available online: https://www.astm.org/d6412_d6412m-99r20.html (accessed on 12 July 2023).
- Chudoba, T.; Richter, F. Investigation of creep behaviour under load during indentation experiments and its influence on hardness and modulus results. Surf. Coat. Technol. 2001, 148, 191–198. [Google Scholar] [CrossRef]
- Samad, U.A.; Alam, M.A.; Anis, A.; Abdo, H.S.; Shaikh, H.; Al-Zahrani, S.M. Nanomechanical and Electrochemical Properties of ZnO-Nanoparticle-Filled Epoxy Coatings. Coatings 2022, 12, 282. [Google Scholar] [CrossRef]
- Oliver, W.C.; Pharr, G.M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 1992, 7, 1564–1583. [Google Scholar] [CrossRef]
- Arora, G.; Pathak, H. Nanoindentation characterization of polymer nanocomposites for elastic and viscoelastic properties: Experimental and mathematical approach. Compos. Part C Open Access 2021, 4, 100103. [Google Scholar] [CrossRef]
- Bansal, S.A.; Singh, A.P.; Kumar, S. Reinforcing Graphene Oxide Nanoparticles to Enhance Viscoelastic Performance of Epoxy Nanocomposites. J. Nanosci. Nanotechnol. 2019, 19, 4000–4006. [Google Scholar] [CrossRef]
- Birru, A.K.; Shiva, K.; David, S.G.S. Study on Density and Hardness of Reinforced Zinc Oxide Nanoparticles in Epoxy Composites. Mater. Today Proc. 2015, 2, 4402–4406. [Google Scholar] [CrossRef]
- Rong, Z.; Sun, W.; Xiao, H.; Jiang, G. Effects of nano-SiO2 particles on the mechanical and microstructural properties of ultra-high performance cementitious composites. Cem. Concr. Compos. 2015, 56, 25–31. [Google Scholar] [CrossRef]
- Cruz-Manzo, S.; Greenwood, P. Introduction to electrochemical impedance spectroscopy. In Electrochemical Phenomena in the Cathode Impedance Spectrum of PEM Fuel Cells; Elsevier: Amsterdam, The Netherlands, 2022; pp. 3–40. [Google Scholar] [CrossRef]
- Abdo, H.S.; Samad, U.A.; Abdo, M.S.; Alkhammash, H.I.; Aijaz, M.O. Electrochemical Behavior of Inductively Sintered Al/TiO2 Nanocomposites Reinforced by Electrospun Ceramic Nanofibers. Polymers 2021, 13, 4319. [Google Scholar] [CrossRef] [PubMed]
- Abdo, H.S.; Seikh, A.H.; Mandal, B.B.; Mohammed, J.A.; Ragab, S.A.; Abdo, M.S. Microstructural Characterization and Corrosion-Resistance Behavior of Dual-Phase Steels Compared to Conventional Rebar. Crystals 2020, 10, 1068. [Google Scholar] [CrossRef]
- Abdo, H.S.; Seikh, A.H.; Mohammed, J.A.; Uzzaman, T. Ameliorative Corrosion Resistance and Microstructure Characterization of 2205 Duplex Stainless Steel by Regulating the Parameters of Pulsed Nd:YAG Laser Beam Welding. Metals 2021, 11, 1206. [Google Scholar] [CrossRef]
- Nouri-Borujerdi, A.; Kazemi-Ranjbar, S. Thermal synergistic effect in hybrid filler epoxy composites consisting of graphene nanoplatelets and SiC particles. Therm. Sci. Eng. Prog. 2021, 25, 100964. [Google Scholar] [CrossRef]
Sample | * Resin | Xylene (mL) | MIBK (mL) | SiO2 (wt%) | ZrO2 (wt%) | * Hardener | Ref. |
---|---|---|---|---|---|---|---|
SN5 | 83.34 | 10 | 10 | 5 | 0 | 16.66 | [24,25] |
Zr2 | 83.34 | 10 | 10 | 0 | 2 | 16.66 | [23] |
SNZr-1 | 83.34 | 10 | 10 | 5 | 1 | 16.66 | Current study |
SNZr-2 | 83.34 | 10 | 10 | 5 | 2 | 16.66 | |
SNZr-3 | 83.34 | 10 | 10 | 5 | 3 | 16.66 |
Sample | Degradation Temperature 15% Loss (°C) | Degradation Temperature 25% Loss (°C) | Degradation Temperature 50% Loss (°C) | Degradation Temperature 75% Loss (°C) | Ref. |
---|---|---|---|---|---|
SN5 | 344.10 | 377.80 | 420.90 | 447.03 | [25] |
Zr2 | 326.93 | 374.48 | 418.33 | 442.47 | [23] |
SNZr-1 | 332.10 | 377.02 | 421.54 | 447.84 | Current study |
SNZr-2 | 330.19 | 376.04 | 421.04 | 447.55 | |
SNZr-3 | 335.25 | 375.80 | 421.97 | 449.10 |
Sample | Ultimate Tensile Strength (UTS), MPa | Yield Strength (YS), MPa | Strain at Break, (mm/mm) | Ref. |
---|---|---|---|---|
SN5 | 2.32 | 0.721 | 0.37 | [25] |
SNZr-1 | 3.05 | 0.968 | 0.30 | Current study |
SNZr-2 | 3.33 | 1.256 | 0.23 | |
SNZr-3 | 2.77 | 0.968 | 0.25 |
Sample | DFT µm | Pendulum Hardness | Scratch (Kg) | Impact (N/mm2) | Ref. |
---|---|---|---|---|---|
SN5 | 100 ± 10 | 118 | 9 | 0.8825 | [25] |
Zr2 | 100 ± 10 | 145 | 7.5 | 0.6067 | [23] |
SNZr-1 | 100 ± 10 | 170 | 10 | 0.8274 | Current study |
SNZr-2 | 100 ± 10 | 168 | 10 | 0.8274 | |
SNZr-3 | 100 ± 10 | 169 | 10 | 0.7171 |
Sample | Hardness (GPa) | Elastic Modulus (GPa) | Reference |
---|---|---|---|
SN5 | 0.150 | 3.284 | [25] |
Zr2 | 0.121 | 3.211 | [23] |
SNZr-1 | 0.157 | 3.451 | Current study |
SNZr-2 | 0.159 | 3.553 | |
SNZr-3 | 0.164 | 3.653 |
Coating | Time | EIS Parameters | |||||||
---|---|---|---|---|---|---|---|---|---|
RS (Ω) | CPE (Q1) | RP1 (MΩ) | CPE (Q2) | RP2 (MΩ) | W (nMho) | ||||
nMho | n | nMho | n | ||||||
SNZr-1 | 1 h | 562 | 0.938 | 0.971 | 26.7 | 4.48 | 0.682 | 160 | - |
7 d | 258 | 1.15 | 0.967 | 1.93 | 2.51 | 0.667 | 6.48 | 994 | |
14 d | 231 | 1.13 | 0.968 | 2.27 | 1.78 | 0.694 | 8.60 | 675 | |
21 d | 151 | 1.11 | 0.971 | 1.55 | 1.80 | 0.692 | 8.53 | 710 | |
30 d | 166 | 1.13 | 0.971 | 1.64 | 1.56 | 0.705 | 10.3 | 614 | |
SNZr-2 | 1 h | 321 | 1.01 | 0.973 | 35.0 | 0.636 | 0.647 | 11 × 103 | - |
7 d | 1180 | 1.91 | 0.927 | 2.10 | 26.9 | 0.759 | 10.4 | - | |
14 d | 200 | 0.848 | 0.999 | 68.5 | 86.3 | 0.484 | 28.9 | - | |
21 d | 2470 | 2.91 | 0.894 | 0.0861 | 70.1 | 0.540 | 82.5 | - | |
30 d | 726 | 1.94 | 0.930 | 0.0896 | 63.2 | 0.587 | 58.5 | - | |
SNZr-3 | 1 h | 85.1 | 0.806 | 0.982 | 10.0 | 0.999 | 0.623 | 3.37 × 103 | - |
7 d | 1800 | 1.61 | 0.928 | 3.58 | 829 | 0.772 | 2.22 | - | |
14 d | 1620 | 1.55 | 0.932 | 2.75 | 1220 | 0.774 | 2.12 | - | |
21 d | 1480 | 1.40 | 0.940 | 2.47 | 1210 | 0.783 | 2.57 | - | |
30 d | 372 | 1.41 | 0.900 | 1.60 | 1090 | 0.512 | 1.20 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samad, U.A.; Alam, M.A.; Abdo, H.S.; Anis, A.; Al-Zahrani, S.M. Synergistic Effect of Nanoparticles: Enhanced Mechanical and Corrosion Protection Properties of Epoxy Coatings Incorporated with SiO2 and ZrO2. Polymers 2023, 15, 3100. https://doi.org/10.3390/polym15143100
Samad UA, Alam MA, Abdo HS, Anis A, Al-Zahrani SM. Synergistic Effect of Nanoparticles: Enhanced Mechanical and Corrosion Protection Properties of Epoxy Coatings Incorporated with SiO2 and ZrO2. Polymers. 2023; 15(14):3100. https://doi.org/10.3390/polym15143100
Chicago/Turabian StyleSamad, Ubair Abdus, Mohammad Asif Alam, Hany S. Abdo, Arfat Anis, and Saeed M. Al-Zahrani. 2023. "Synergistic Effect of Nanoparticles: Enhanced Mechanical and Corrosion Protection Properties of Epoxy Coatings Incorporated with SiO2 and ZrO2" Polymers 15, no. 14: 3100. https://doi.org/10.3390/polym15143100
APA StyleSamad, U. A., Alam, M. A., Abdo, H. S., Anis, A., & Al-Zahrani, S. M. (2023). Synergistic Effect of Nanoparticles: Enhanced Mechanical and Corrosion Protection Properties of Epoxy Coatings Incorporated with SiO2 and ZrO2. Polymers, 15(14), 3100. https://doi.org/10.3390/polym15143100