Non-Wettable Microporous Sheets Using Mixed Polyolefin Waste for Oil–Water Separation
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials and Reagents
2.2. Method
2.2.1. Thin Sheet Sorbent’s Preparation Process
2.2.2. Oil Sorption Testing
2.2.3. Recyclability Test
2.2.4. Silane Grafting
3. Results and Discussion
3.1. Composition Analysis of the HDPE–PP Sorbent through X-ray Diffraction
3.2. Morphological Analysis of PP, HDPE, and HDPE-PP through SEM
3.3. Functional Group Analysis of HDPE–PP before Annealing and after Annealing through FTIR
3.4. XPS Analysis of HDPE–PP before and after Annealing
3.5. Determination of Mechanical Properties of HDPE–PP Sheets
3.6. Contact Angle Measurements
3.7. Process of Oil Sorption
3.8. Recyclability
3.9. Contact Angle, Oil–Water Separation Study of Silane-Grafted Non-Wettable Sorbent
3.10. Oil Sorption in Previous Literature
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jehanno, C.; Alty, J.W.; Roosen, M.; De Meester, S.; Dove, A.P.; Chen, E.Y.-X.; Leibfarth, F.A.; Sardon, H. Critical advances and future opportunities in upcycling commodity polymers. Nature 2022, 603, 803–814. [Google Scholar] [CrossRef]
- Ragaert, K.; Delva, L.; Van Geem, K. Mechanical and chemical recycling of solid plastic waste. Waste Manag. 2017, 69, 24–58. [Google Scholar] [CrossRef] [PubMed]
- Recycle Coach, 7+ Revealing Plastic Waste Statistics, Resources. 2021. Available online: https://recyclecoach.com/resources/7-revealing-plastic-waste-statistics-2021/#:~:text=Globally%20to%20date%2C%20there%20is,increased%20200%2Dfold%20by%202015 (accessed on 10 January 2023).
- Rotjan, R.D.; Sharp, K.H.; Gauthier, A.E.; Yelton, R.; Lopez, E.M.B.; Carilli, J.; Kagan, J.C.; Urban-Rich, J. Patterns, dynamics and consequences of microplastic ingestion by the temperate coral, Astrangia poculata. Proc. R. Soc. B Boil. Sci. 2019, 286, 20190726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parashar, N.; Hait, S. Plastic Waste Management: Current Overview and Future Prospects. Environ. Degrad. Chall. Strateg. Mitig. 2022, 104, 471–494. [Google Scholar] [CrossRef]
- Jiang, J.; Shi, K.; Zhang, X.; Yu, K.; Zhang, H.; He, J.; Ju, Y.; Liu, J. From plastic waste to wealth using chemical recycling: A review. J. Environ. Chem. Eng. 2022, 10, 106867. [Google Scholar] [CrossRef]
- Kataria, N.; Bhushan, D.; Gupta, R.; Rajendran, S.; Teo, M.Y.M.; Khoo, K.S. Current progress in treatment technologies for plastic waste (bisphenol A) in aquatic environment: Occurrence, toxicity and remediation mechanisms. Environ. Pollut. 2022, 315, 120319. [Google Scholar] [CrossRef]
- UN Environment Programme. Our Planet is Choking on Plastic; UN Environment Programme: Nairobi, Kenya, 2022. [Google Scholar]
- Xayachak, T.; Haque, N.; Parthasarathy, R.; King, S.; Emami, N.; Lau, D.; Pramanik, B.K. Pyrolysis for plastic waste management: An engineering perspective. J. Environ. Chem. Eng. 2022, 10, 108865. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, H.; Bian, K.; Wang, H.; Wang, C. A critical review of control and removal strategies for microplastics from aquatic environments. J. Environ. Chem. Eng. 2021, 9, 105463. [Google Scholar] [CrossRef]
- Baroulaki, I.; Karakasi, O.; Pappa, G.; Tarantili, P.; Economides, D.; Magoulas, K. Preparation and study of plastic compounds containing polyolefins and post used newspaper fibers. Compos. Part A Appl. Sci. Manuf. 2006, 37, 1613–1625. [Google Scholar] [CrossRef]
- Saleem, J.; Riaz, M.A.; McKay, G. Oil sorbents from plastic wastes and polymers: A review. J. Hazard. Mater. 2018, 341, 424–437. [Google Scholar] [CrossRef]
- Bazargan, A.; Hui, C.W.; McKay, G. Porous Carbons from Plastic Waste. Adv. Polym. Sci. Springer 2013, 266, 1–25. [Google Scholar] [CrossRef]
- Rahimi, A.; García, J.M. Chemical recycling of waste plastics for new materials production. Nat. Rev. Chem. 2017, 1, 46. [Google Scholar] [CrossRef]
- Kahlen, S.; Braun, H.; Liu, Y.; Gahleitner, M.; Hubner, G. Compatibilization of Recycled Polyethylene-Polypropylene Blends. U.S. Patent CA3135074C, 8 March 2020. [Google Scholar]
- Kulshreshtha, B. Polypropylene-Polyethylene Composition with Improved Flowability. U.S. Patent US10059785B2, 28 August 2018. [Google Scholar]
- Kahlen, S. Polypropylene Polyethylene Mixture Upgrading. U.S. Patent EP3936565A1, 27 January 2021. [Google Scholar]
- Kahlen, S.; Jerabek, M. Upgraded Recycled Polypropylene Rich Polyolefin Material. U.S. Patent TWI730435B, 27 January 2021. [Google Scholar]
- Kahlen, S. Upgraded Recycled Polyethylene Polypropylene Blend. U.S. Patent US2022/0127439 A1, 3 February 2022. [Google Scholar]
- Kahlen, S. Upgraded Recycled Relatively Polyethyleen Rich Polyolefin Materials. U.S. Patent US2021/0347970A1, 13 June 2021. [Google Scholar]
- Kulshreshtha, B. Recycled Polyethylene-Polypropylene Blend with Compatibilizer KR20210137576A. U.S. Patent KR20210137576A, 30 August 2020. [Google Scholar]
- Saleem, J.; Moghal, Z.K.B.; McKay, G. Up-cycling plastic waste into swellable super-sorbents. J. Hazard. Mater. 2023, 453, 131356. [Google Scholar] [CrossRef] [PubMed]
- Saleem, J.; Baig, M.Z.K.; Luyt, A.S.; Shakoor, R.A.; Hafeez, A.; Ahsan, I.; Pradhan, S.; Pasha, M.; McKay, G. A facile energy-efficient approach to prepare super oil-sorbent thin films. Energy Rep. 2023, 9, 40–45. [Google Scholar] [CrossRef]
- Haleem, A.; Chen, J.; Guo, X.-X.; Hou, S.-C.; Chen, S.-Q.; Siddiq, M.; He, W.-D. Radiation-induced synthesis of hydrophobic cryogels with rapid and high absorption of organic solvents and oils. Microporous Mesoporous Mater. 2022, 330, 111486. [Google Scholar] [CrossRef]
- Haleem, A.; Pan, J.-M.; Shah, A.; Hussain, H.; He, W.-D. A systematic review on new advancement and assessment of emerging polymeric cryogels for environmental sustainability and energy production. Sep. Purif. Technol. 2023, 316, 123678. [Google Scholar] [CrossRef]
- Yuan, J.; Liu, X.; Akbulut, O.; Hu, J.; Suib, S.L.; Kong, J.; Stellacci, F. Superwetting nanowire membranes for selective absorption. Nat. Nanotechnol. 2008, 3, 332–336. [Google Scholar] [CrossRef]
- Herkenberg, W. Method for the Removal of Oil from Oil Spills. U.S. Patent 5,451,325, 19 September 1995. [Google Scholar]
- Wei, Q.F.; Mather, R.R.; Fotheringham, A.F.; Yang, R.D. Evaluation of nonwoven polypropylene oil sorbents in marine oil-spill recovery. Mar. Pollut. Bull. 2003, 46, 780–783. [Google Scholar] [CrossRef]
- Patel, S.U.; Chase, G.G. Separation of water droplets from water-in-diesel dispersion using superhydrophobic polypropylene fibrous membranes. Sep. Purif. Technol. 2014, 126, 62–68. [Google Scholar] [CrossRef]
- Saleem, J.; McKay, G. Waste HDPE bottles for selective oil sorption. Asia-Pacific J. Chem. Eng. 2016, 11, 642–645. [Google Scholar] [CrossRef]
- O’Dowd, C.D.; Jimenez, J.L.; Bahreini, R.; Flagan, R.C.; Seinfeld, J.H.; Hämeri, K.; Pirjola, L.; Kulmala, M.; Jennings, S.G.; Hoffmann, T. Marine Aerosol Formation From Biogenic Iodine Emissions. Nature 2002, 417, 632–636. [Google Scholar] [CrossRef] [PubMed]
- Saleem, J.; Moghal, Z.K.B.; Luyt, A.S.; Shakoor, R.A.; McKay, G. Free-Standing Porous and Nonporous Polyethylene Thin Films Using Spin Coating: An Alternate to the Extrusion–Stretching Process. ACS Appl. Polym. Mater. 2023, 5, 2177–2184. [Google Scholar] [CrossRef]
- Saleem, J.; Baig, M.Z.K.; Luyt, A.S.; Shakoor, R.A.; Mansour, S.; McKay, G. Reusable Macroporous Oil Sorbent Films from Plastic Wastes. Polymers 2022, 14, 4867. [Google Scholar] [CrossRef] [PubMed]
- Ou, J.; Zhao, G.; Wang, F.; Li, W.; Lei, S.; Fang, X.; Siddiqui, A.R.; Xia, Y.; Amirfazli, A. Durable Superhydrophobic Wood via One-Step Immersion in Composite Silane Solution. ACS Omega 2021, 6, 7266–7274. [Google Scholar] [CrossRef]
- Vasanthan, N.; Salem, D.R. FTIR spectroscopic characterization of structural changes in polyamide-6 fibers during annealing and drawing. J. Polym. Sci. Part B: Polym. Phys. 2001, 39, 536–547. [Google Scholar] [CrossRef]
- Song, J.; Liang, J.; Liu, X.; Krause, W.E.; Hinestroza, J.P.; Rojas, O.J. Development and characterization of thin polymer films relevant to fiber processing. Thin Solid Films 2009, 517, 4348–4354. [Google Scholar] [CrossRef]
- Pawar, A.A.; Kim, A.; Kim, H. Synthesis and performance evaluation of plastic waste aerogel as sustainable and reusable oil absorbent. Environ. Pollut. 2021, 288, 117717. [Google Scholar] [CrossRef]
- Atta, A.M.; Brostow, W.; Datashvili, T.; El-Ghazawy, R.A.; Lobland, H.E.H.; Hasan, A.M.; Perez, J.M. Porous polyurethane foams based on recycled poly(ethylene terephthalate) for oil sorption. Polym. Int. 2013, 62, 116–126. [Google Scholar] [CrossRef]
- Qian, Q.; Liu, G.; Lang, D.; Guo, C.; Wang, L.; Wu, R. Recovery of unsaturated polyester resin into oligomer for preparation of oil-water separation aerogel. Mater. Today Sustain. 2022, 20, 100254. [Google Scholar] [CrossRef]
- Lang, X.H.; Zhu, T.Y.; Zou, L.; Prakashan, K.; Zhang, Z.X. Fabrication and characterization of polypropylene aerogel material and aerogel coated hybrid materials fsor oil-water separation applications. Prog. Org. Coatings 2019, 137, 105370. [Google Scholar] [CrossRef]
Polymer | % Crystallinity before Annealing | % Crystallinity after Annealing | % Change in Crystallinity |
---|---|---|---|
HDPE–PP | 35.5 | 60.4 | 24.9 |
Sr. No. | Porosity (%) | Annealing Temperature (°C) | Annealing Time (min) | Thickness (μm) | Tensile Strength (MPa) |
---|---|---|---|---|---|
1 | 78 | 25 | 0 | 20 | ND * |
2 | 73 | 160 | 5 | 18 | ND |
3 | 67 | 160 | 10 | 16 | 1 |
4 | 61 | 160 | 15 | 14 | 4 |
5 | 33 | 160 | 20 | 7 | 8 |
6 | 7 | 160 | 25 | 5 | 11 |
7 | <1 | 165 | 5 | 5 | 12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saleem, J.; Moghal, Z.K.B.; Shakoor, R.A.; Luyt, A.S.; McKay, G. Non-Wettable Microporous Sheets Using Mixed Polyolefin Waste for Oil–Water Separation. Polymers 2023, 15, 3072. https://doi.org/10.3390/polym15143072
Saleem J, Moghal ZKB, Shakoor RA, Luyt AS, McKay G. Non-Wettable Microporous Sheets Using Mixed Polyolefin Waste for Oil–Water Separation. Polymers. 2023; 15(14):3072. https://doi.org/10.3390/polym15143072
Chicago/Turabian StyleSaleem, Junaid, Zubair Khalid Baig Moghal, Rana A. Shakoor, Adriaan S. Luyt, and Gordon McKay. 2023. "Non-Wettable Microporous Sheets Using Mixed Polyolefin Waste for Oil–Water Separation" Polymers 15, no. 14: 3072. https://doi.org/10.3390/polym15143072
APA StyleSaleem, J., Moghal, Z. K. B., Shakoor, R. A., Luyt, A. S., & McKay, G. (2023). Non-Wettable Microporous Sheets Using Mixed Polyolefin Waste for Oil–Water Separation. Polymers, 15(14), 3072. https://doi.org/10.3390/polym15143072