Composite Membrane Based on Melamine Sponge and Boehmite Manufactured by Simple and Economical Dip-Coating Method for Fluoride Ion Removal
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Synthesis of Boehmite (γ–AlOOH)
2.3. Manufacturing Process
2.4. Characterization
- qe: Equilibrium adsorption amount adsorbed per unit g of adsorbent (mg g−1)
- C0: Initial concentration of fluoride ion (mg L−1)
- Ce: Equilibrium concentration of fluoride ion in solution after adsorption (mg L−1)
- V: Volume of solution (L)
- W: Adsorbent Dosage (g)
3. Results and Discussions
3.1. Characterization of Synthesized Boehmite (γ-AlOOH)
3.2. Morphology of MS, MS-Boehmite, and MS-PVDF-Boehmite
3.3. Characterization of MS, MS-Boehmite, and MS-PVDF-Boehmite
3.4. Mechanical Properties of MS, MS-Boehmite, and MS-PVDF-Boehmite
3.5. Isothermal Adsorption Test
3.6. Adsorption Kinetics
3.7. Adsorption Performance According to Flow Rate
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Bhatnagar, A.; Kumar, E.; Sillanpää, M. Fluoride removal from water by adsorption—A review. Chem. Eng. J. 2011, 171, 811–840. [Google Scholar] [CrossRef]
- Raza, M.; Farooqi, A.; Niazi, N.K.; Ahmad, A. Geochemical control on spatial variability of fluoride concentrations in groundwater from rural areas of Gujrat in Punjab, Pakistan. Environ. Earth Sci. 2016, 75, 1364. [Google Scholar] [CrossRef]
- Damtie, M.M.; Woo, Y.C.; Kim, B.; Hailemariam, R.H.; Park, K.-D.; Shon, H.K.; Park, C.; Choi, J.-S. Removal of fluoride in membrane-based water and wastewater treatment technologies: Performance review. J. Environ. Manag. 2019, 251, 109524. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Guidelines for Drinking-Water Quality; World Health Organization: Geneva, Switzerland, 2011; Volume 216, pp. 303–304. [Google Scholar]
- Huang, H.; Liu, J.; Zhang, P.; Zhang, D.; Gao, F. Investigation on the simultaneous removal of fluoride, ammonia nitrogen and phosphate from semiconductor wastewater using chemical precipitation. Chem. Eng. J. 2017, 307, 696–706. [Google Scholar] [CrossRef]
- Chen, D.; Zhao, M.; Tao, X.; Ma, J.; Liu, A.; Wang, M. Exploration and Optimisation of High-Salt Wastewater Defluorination Process. Water 2022, 14, 3974. [Google Scholar] [CrossRef]
- Wei, F.; Cao, C.; Huang, P.; Song, W. A new ion exchange adsorption mechanism between carbonate groups and fluoride ions of basic aluminum carbonate nanospheres. RSC Adv. 2015, 5, 13256–13260. [Google Scholar] [CrossRef]
- Hu, K.; Dickson, J.M. Nanofiltration membrane performance on fluoride removal from water. J. Membr. Sci. 2006, 279, 529–538. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, N.; Su, P.; Li, M.; Feng, C. Fluoride removal from aqueous solution by zirconium-chitosan/graphene oxide membrane. React. Funct. Polym. 2017, 114, 127–135. [Google Scholar] [CrossRef]
- Dhillon, A.; Soni, S.K.; Kumar, D. Enhanced fluoride removal performance by Ce–Zn binary metal oxide: Adsorption characteristics and mechanism. J. Fluor. Chem. 2017, 199, 67–76. [Google Scholar] [CrossRef]
- Wu, Y.; Pang, H.; Liu, Y.; Wang, X.; Yu, S.; Fu, D.; Chen, J.; Wang, X. Environmental remediation of heavy metal ions by novel-nanomaterials: A review. Environ. Pollut. 2019, 246, 608–620. [Google Scholar] [CrossRef]
- Camacho, L.M.; Torres, A.; Saha, D.; Deng, S. Adsorption equilibrium and kinetics of fluoride on sol–gel-derived activated alumina adsorbents. J. Colloid Interface Sci. 2010, 349, 307–313. [Google Scholar] [CrossRef]
- Ayoob, S.; Gupta, A.; Bhakat, P.; Bhat, V.T. Investigations on the kinetics and mechanisms of sorptive removal of fluoride from water using alumina cement granules. Chem. Eng. J. 2008, 140, 6–14. [Google Scholar] [CrossRef]
- Tao, W.; Zhong, H.; Pan, X.; Wang, P.; Wang, H.; Huang, L. Removal of fluoride from wastewater solution using Ce-AlOOH with oxalic acid as modification. J. Hazard. Mater. 2020, 384, 121373. [Google Scholar] [CrossRef]
- Farrah, H.; Slavek, J.; Pickering, W. Fluoride interactions with hydrous aluminum oxides and alumina. Soil Res. 1987, 25, 55–69. [Google Scholar] [CrossRef]
- Turner, B.D.; Binning, P.; Stipp, S. Fluoride removal by calcite: Evidence for fluorite precipitation and surface adsorption. Environ. Sci. Technol. 2005, 39, 9561–9568. [Google Scholar] [CrossRef] [PubMed]
- Jiao, Z.; Chen, Z.; Yang, M.; Zhang, Y.; Li, G. Adsorption of fluoride ion by inorganic cerium based adsorbent. High Tech Bull. Engl. Ed. 2004, 10, 83–86. [Google Scholar]
- Bhargava, D.; Killedar, D. Fluoride adsorption on fishbone charcoal through a moving media adsorber. Water Res. 1992, 26, 781–788. [Google Scholar] [CrossRef]
- Efome, J.E.; Rana, D.; Matsuura, T.; Lan, C.Q. Experiment and modeling for flux and permeate concentration of heavy metal ion in adsorptive membrane filtration using a metal-organic framework incorporated nanofibrous membrane. Chem. Eng. J. 2018, 352, 737–744. [Google Scholar] [CrossRef]
- Koushkbaghi, S.; Zakialamdari, A.; Pishnamazi, M.; Ramandi, H.F.; Aliabadi, M.; Irani, M. Aminated-Fe3O4 nanoparticles filled chitosan/PVA/PES dual layers nanofibrous membrane for the removal of Cr (VI) and Pb (II) ions from aqueous solutions in adsorption and membrane processes. Chem. Eng. J. 2018, 337, 169–182. [Google Scholar] [CrossRef]
- Koushkbaghi, S.; Jafari, P.; Rabiei, J.; Irani, M.; Aliabadi, M. Fabrication of PET/PAN/GO/Fe3O4 nanofibrous membrane for the removal of Pb (II) and Cr (VI) ions. Chem. Eng. J. 2016, 301, 42–50. [Google Scholar] [CrossRef]
- Efome, J.E.; Rana, D.; Matsuura, T.; Lan, C.Q. Enhanced performance of PVDF nanocomposite membrane by nanofiber coating: A membrane for sustainable desalination through MD. Water Res. 2016, 89, 39–49. [Google Scholar] [CrossRef]
- Huang, Q.-L.; Huang, Y.; Xiao, C.-F.; You, Y.-W.; Zhang, C.-X. Electrospun ultrafine fibrous PTFE-supported ZnO porous membrane with self-cleaning function for vacuum membrane distillation. J. Membr. Sci. 2017, 534, 73–82. [Google Scholar] [CrossRef]
- Sun, H.; Ji, Z.; He, Y.; Wang, L.; Zhan, J.; Chen, L.; Zhao, Y. Preparation of PAMAM modified PVDF membrane and its adsorption performance for copper ions. Environ. Res. 2022, 204, 111943. [Google Scholar] [CrossRef]
- Efome, J.E.; Rana, D.; Matsuura, T.; Lan, C.Q. Insight studies on metal-organic framework nanofibrous membrane adsorption and activation for heavy metal ions removal from aqueous solution. ACS Appl. Mater. Interfaces 2018, 10, 18619–18629. [Google Scholar] [CrossRef]
- Mohammadi, M.; Khodamorady, M.; Tahmasbi, B.; Bahrami, K.; Ghorbani-Choghamarani, A. Boehmite nanoparticles as versatile support for organic–inorganic hybrid materials: Synthesis, functionalization, and applications in eco-friendly catalysis. J. Ind. Eng. Chem. 2021, 97, 1–78. [Google Scholar] [CrossRef]
- Lueangchaichaweng, W.; Singh, B.; Mandelli, D.; Carvalho, W.A.; Fiorilli, S.; Pescarmona, P.P. High surface area, nanostructured boehmite and alumina catalysts: Synthesis and application in the sustainable epoxidation of alkenes. Appl. Catal. A Gen. 2019, 571, 180–187. [Google Scholar] [CrossRef]
- Kumar, A.; Ghosh, U.K. Polyvinylidene fluoride/boehmite nanocomposite membrane for effective removal of arsenate ion from water. J. Water Process Eng. 2022, 47, 102652. [Google Scholar] [CrossRef]
- Leyva-Ramos, R.; Medellín-Castillo, N.A.; Jacobo-Azuara, A.; Mendoza-Barrón, J.; Landín-Rodríguez, L.E.; Martínez-Rosales, J.M.; Aragón-Piña, A. Fluoride removal from water solution by adsorption on activated alumina prepared from pseudo-boehmite. J. Environ. Eng. Manag. 2008, 18, 301–309. [Google Scholar]
- Ding, Y.; Xu, W.; Yu, Y.; Hou, H.; Zhu, Z. One-step preparation of highly hydrophobic and oleophilic melamine sponges via metal-ion-induced wettability transition. ACS Appl. Mater. Interfaces 2018, 10, 6652–6660. [Google Scholar] [CrossRef]
- Feng, Y.; Yao, J. Design of melamine sponge-based three-dimensional porous materials toward applications. Ind. Eng. Chem. Res. 2018, 57, 7322–7330. [Google Scholar] [CrossRef]
- Kim, S.; Lim, C.; Kwak, C.H.; Kim, D.; Ha, S.; Lee, Y.-S. Hydrophobic melamine sponge prepared by direct fluorination for efficient separation of emulsions. J. Ind. Eng. Chem. 2023, 118, 259–267. [Google Scholar] [CrossRef]
- Chen, X.; Weibel, J.A.; Garimella, S.V. Continuous oil–water separation using polydimethylsiloxane-functionalized melamine sponge. Ind. Eng. Chem. Res. 2016, 55, 3596–3602. [Google Scholar] [CrossRef]
- Li, J.; Tenjimbayashi, M.; Zacharia, N.S.; Shiratori, S. One-step dipping fabrication of Fe3O4/PVDF-HFP composite 3D porous sponge for magnetically controllable oil–water separation. ACS Sustain. Chem. Eng. 2018, 6, 10706–10713. [Google Scholar] [CrossRef]
- Lei, Z.; Deng, Y.; Wang, C. Ambient-temperature fabrication of melamine-based sponges coated with hydrophobic lignin shells by surface dip adsorbing for oil/water separation. Rsc Adv. 2016, 6, 106928–106934. [Google Scholar] [CrossRef]
- Zhu, Q.; Chu, Y.; Wang, Z.; Chen, N.; Lin, L.; Liu, F.; Pan, Q. Robust superhydrophobic polyurethane sponge as a highly reusable oil-absorption material. J. Mater. Chem. A 2013, 1, 5386–5393. [Google Scholar] [CrossRef]
- Pandey, M.; Sharma, K.; Islam, S.S. Wide Range RH Detection with Digital Readout: Niche Superiority in Terms of Its Exceptional Performance and Inexpensive Technology. Adv. Mater. Phys. Chem. 2019, 9, 11–24. [Google Scholar] [CrossRef] [Green Version]
- Hoffman, D.M. Infrared properties of three plastic bonded explosive binders. Int. J. Polym. Anal. Charact. 2017, 22, 545–556. [Google Scholar] [CrossRef]
- Liu, W.; Jiang, H.; Ru, Y.; Zhang, X.; Qiao, J. Conductive graphene–melamine sponge prepared via microwave irradiation. ACS Appl. Mater. Interfaces 2018, 10, 24776–24783. [Google Scholar] [CrossRef]
- Wang, Z.; Gu, X.; Zhang, Y.; Zhang, X.; Ngo, H.H.; Liu, Y.; Jiang, W.; Tan, X.; Wang, X.; Zhang, J. Activated nano-Al2O3 loaded on polyurethane foam as a potential carrier for fluorine removal. J. Water Process Eng. 2021, 44, 102444. [Google Scholar] [CrossRef]
- Bonilla-Petriciolet, A.; Mendoza-Castillo, D.I.; Reynel-Ávila, H.E. Adsorption Processes for Water Treatment and Purification; Springer: Berlin/Heidelberg, Germany, 2017; Volume 256. [Google Scholar]
- Xu, J.; Zhang, B.; Lu, Y.; Wang, L.; Tao, W.; Teng, X.; Ning, W.; Zhang, Z. Adsorption desulfurization performance of PdO/SiO2@ graphene oxide hybrid aerogel: Influence of graphene oxide. J. Hazard. Mater. 2022, 421, 126680. [Google Scholar] [CrossRef]
- Saadi, R.; Saadi, Z.; Fazaeli, R.; Fard, N.E. Monolayer and multilayer adsorption isotherm models for sorption from aqueous media. Korean J. Chem. Eng. 2015, 32, 787–799. [Google Scholar] [CrossRef]
- Jiménez-Becerril, J.; Solache-Ríos, M.; García-Sosa, I. Fluoride removal from aqueous solutions by boehmite. Water Air Soil Pollut. 2012, 223, 1073–1078. [Google Scholar] [CrossRef]
- Gholitabar, S.; Tahermansouri, H. Kinetic and multi-parameter isotherm studies of picric acid removal from aqueous solutions by carboxylated multi-walled carbon nanotubes in the presence and absence of ultrasound. Carbon Lett. 2017, 22, 14–24. [Google Scholar]
- Lee, J.S.; Lee, H.B.; Oh, Y.; Choi, A.-J.; Seo, T.H.; Kim, Y.-K.; Lee, M.W. Used coffee/PCL composite filter for Cu (II) removal from wastewater. J. Water Process Eng. 2022, 50, 103253. [Google Scholar] [CrossRef]
Error Function | Equation |
---|---|
Coefficient of determination (R2) | |
Nonlinear chi-square (χ2) | |
Sum of absolute errors (SAE) |
Case | Isotherm Model | The Calculated Parameters | Error Functions | ||||
---|---|---|---|---|---|---|---|
Langmuir | qmax | KL | R2 | χ2 | SAE | ||
MS | 6.36 | 0.064 | 0.943 | 0.760 | 2.688 | ||
MS-Boehmite | 9.47 | 0.036 | 0.920 | 0.253 | 1.345 | ||
MS-PVDF-Boehmite | 1.58 | 3.655 | 0.927 | 0.674 | 1.605 | ||
Freundlich | KF | 1/n | R2 | χ2 | SAE | ||
MS | 0.528 | 0.590 | 0.978 | 0.454 | 2.089 | ||
MS-Boehmite | 0.704 | 0.562 | 0.992 | 0.150 | 1.325 | ||
MS-PVDF-Boehmite | 0.837 | 0.223 | 0.993 | 0.140 | 0.733 |
Case | qe,exp | Pseudo-First-Order Model | |||||||
---|---|---|---|---|---|---|---|---|---|
k1 | qe,cal | R2 | SAE | χ2 | |||||
MS | 2.406 | 0.004 | 2.188 | 0.917 | 1.353 | 1.381 | |||
MS-Boehmite | 2.276 | 0.006 | 1.283 | 0.956 | 3.695 | 2.322 | |||
MS-PVDF-Boehmite | 1.001 | 0.003 | 0.260 | 0.946 | 2.484 | 1.682 | |||
qe,exp | Pseudo-second-orderModel | ||||||||
k2 | qe,cal | R2 | SAE | χ2 | |||||
MS | 2.406 | 0.002 | 2.578 | 0.999 | 0.420 | 0.057 | |||
MS-Boehmite | 2.276 | 0.015 | 2.322 | 0.999 | 0.582 | 0.158 | |||
MS-PVDF-Boehmite | 1.001 | 0.057 | 1.007 | 0.999 | 0.334 | 0.079 | |||
Intraparticle diffusionModel | |||||||||
kid1 | kid2 | R12 | SAE1 | χ12 | R22 | SAE2 | χ22 | ||
MS | 0.154 | 0.034 | 0.848 | 0.810 | 0.741 | 0.935 | 0.258 | 0.002 | |
MS-Boehmite | 0.102 | 0.013 | 0.990 | 0.136 | 0.005 | 0.936 | 0.093 | 0.002 | |
MS-PVDF-Boehmite | 0.021 | 0.003 | 0.960 | 0.063 | 0.001 | 0.891 | 0.028 | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, H.-B.; Choi, A.-J.; Kim, Y.-K.; Lee, M.-W. Composite Membrane Based on Melamine Sponge and Boehmite Manufactured by Simple and Economical Dip-Coating Method for Fluoride Ion Removal. Polymers 2023, 15, 2916. https://doi.org/10.3390/polym15132916
Lee H-B, Choi A-J, Kim Y-K, Lee M-W. Composite Membrane Based on Melamine Sponge and Boehmite Manufactured by Simple and Economical Dip-Coating Method for Fluoride Ion Removal. Polymers. 2023; 15(13):2916. https://doi.org/10.3390/polym15132916
Chicago/Turabian StyleLee, Han-Bi, Ah-Jeong Choi, Young-Kwan Kim, and Min-Wook Lee. 2023. "Composite Membrane Based on Melamine Sponge and Boehmite Manufactured by Simple and Economical Dip-Coating Method for Fluoride Ion Removal" Polymers 15, no. 13: 2916. https://doi.org/10.3390/polym15132916
APA StyleLee, H.-B., Choi, A.-J., Kim, Y.-K., & Lee, M.-W. (2023). Composite Membrane Based on Melamine Sponge and Boehmite Manufactured by Simple and Economical Dip-Coating Method for Fluoride Ion Removal. Polymers, 15(13), 2916. https://doi.org/10.3390/polym15132916