Properties of Aliphatic Ligand-Based Metal–Organic Frameworks
Abstract
:1. Introduction
2. Properties of Aliphatic-Based MOFs
2.1. Conformational Breathing and Methods for Its Characterization
2.1.1. Breathing of Glutarates
2.1.2. Breathing of Adipates
2.1.3. Breathing of Trans-1,4-Cyclohexanedicarboxylates
2.1.4. Breathing of Other Aliphatic MOFs
2.2. Adsorption Properties
2.3. Optical Properties
2.4. Ferroelectric and Paraelectric Properties
2.5. Thermal Stability
2.6. Outlook
3. Conclusions
Funding
Conflicts of Interest
References
- Wang, C.; An, B.; Lin, W. Metal–Organic Frameworks in Solid–Gas Phase Catalysis. ACS Catal. 2019, 9, 130–146. [Google Scholar] [CrossRef]
- Xie, Y.; Lyu, S.; Zhang, Y.; Cai, C. Adsorption and Degradation of Volatile Organic Compounds by Metal–Organic Frameworks (MOFs): A Review. Materials 2022, 15, 7727. [Google Scholar] [CrossRef] [PubMed]
- Kovalenko, K.A.; Potapov, A.S.; Fedin, V.P. Micro- and mesoporous metal-organic frameworks for hydrocarbon separation. Russ. Chem. Rev. 2022, 91, RCR5026. [Google Scholar] [CrossRef]
- Fumanal, M.; Corminboeuf, C.; Smit, B.; Tavernelli, I. Optical absorption properties of metal–organic frameworks: Solid state versus molecular perspective. Phys. Chem. Chem. Phys. 2020, 22, 19512–19521. [Google Scholar] [CrossRef]
- Yin, H.-Q.; Yin, X.-B. Metal–Organic Frameworks with Multiple Luminescence Emissions: Designs and Applications. Acc. Chem. Res. 2020, 53, 485–495. [Google Scholar] [CrossRef]
- Saraci, F.; Quezada-Novoa, V.; Donnarumma, P.; Howarth, A.J. Rare-earth metal–organic frameworks: From structure to applications. Chem. Soc. Rev. 2020, 49, 7949–7977. [Google Scholar] [CrossRef]
- Thorarinsdottir, A.E.; David Harris, T. Metal–Organic Framework Magnets. Chem. Rev. 2020, 120, 8716–8789. [Google Scholar] [CrossRef]
- Kumar, S.; Jain, S.; Nehra, M.; Dilbaghi, N.; Marrazza, G.; Kim, K.-H. Green synthesis of metal–organic frameworks: A state-of-the-art review of potential environmental and medical applications. Coord. Chem. Rev. 2020, 420, 213407. [Google Scholar] [CrossRef]
- Engel, E.R.; Scott, J.L. Advances in the green chemistry of coordination polymer materials. Green Chem. 2020, 22, 3693–3715. [Google Scholar] [CrossRef]
- Reinsch, H. “Green” Synthesis of Metal-Organic Frameworks. Eur. J. Inorg. Chem. 2016, 2016, 4290–4299. [Google Scholar] [CrossRef]
- Ghasempour, H.; Wang, K.-Y.; Powell, J.A.; ZareKarizi, F.; Lv, X.-L.; Morsali, A.; Zhou, H.-C. Metal–organic frameworks based on multicarboxylate linkers. Coord. Chem. Rev. 2021, 426, 213542. [Google Scholar] [CrossRef]
- Yang, D.; Chen, Y.; Su, Z.; Zhang, X.; Zhang, W.; Srinivas, K. Organic carboxylate-based MOFs and derivatives for electrocatalytic water oxidation. Coord. Chem. Rev. 2021, 428, 213619. [Google Scholar] [CrossRef]
- Desai, A.V.; Sharma, S.; Let, S.; Ghosh, S.K. N-donor linker based metal-organic frameworks (MOFs): Advancement and prospects as functional materials. Coord. Chem. Rev. 2019, 395, 146–192. [Google Scholar] [CrossRef]
- Kaur, J.; Kaur, G. Review on Flexible Metal-Organic Frameworks. ChemistrySelect 2021, 6, 8227–8243. [Google Scholar] [CrossRef]
- Slyusarchuk, V.D.; Kruger, P.E.; Hawes, C.S. Cyclic Aliphatic Hydrocarbons as Linkers in Metal-Organic Frameworks: New Frontiers for Ligand Design. ChemPlusChem 2020, 85, 845–854. [Google Scholar] [CrossRef]
- Lieb, A.; Niekiel, F.; Stock, N. Crystallisation and conformation-controlled breathing of the Al-MOF CAU-13. Acta Crystallogr. 2014, A70, C62. [Google Scholar] [CrossRef] [Green Version]
- Zigon, N.; Duplan, V.; Wada, N.; Fujita, M. Crystalline Sponge Method: X-ray Structure Analysis of Small Molecules by Post-Orientation within Porous Crystals—Principle and Proof-of-Concept Studies. Angew. Chem. Int. Ed. 2021, 60, 25204–25222. [Google Scholar] [CrossRef]
- Lin, Z.J.; Lü, J.; Hong, M.; Cao, R. Metal–organic frameworks based on flexible ligands (FL-MOFs): Structures and applications. Chem. Soc. Rev. 2014, 43, 5867–5895. [Google Scholar] [CrossRef] [Green Version]
- Ou, Y.-C.; Zhong, R.-M.; Wu, J.-Z. Recent advances in structures and applications of coordination polymers based on cyclohexanepolycarboxylate ligands. Dalton Trans. 2022, 51, 2992–3003. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, L.; Sun, D. Stimuli-responsive structural changes in metal–organic frameworks. Chem. Commun. 2020, 56, 9416–9432. [Google Scholar] [CrossRef]
- Groom, C.R.; Bruno, I.J.; Lightfoot, M.P.; Ward, S.C. The Cambridge Structural Database. Acta Crystallogr. 2016, B72, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Øien-Ødegaard, S.; Shearer, G.C.; Wragg, D.S.; Lillerud, K.P. Pitfalls in metal–organic framework crystallography: Towards more accurate crystal structures. Chem. Soc. Rev. 2017, 46, 4867–4876. [Google Scholar] [CrossRef] [PubMed]
- Gándara, F.; Bennett, T.D. Crystallography of metal–organic frameworks. IUCrJ 2014, 1, 563–570. [Google Scholar] [CrossRef] [PubMed]
- Rather, B.; Zaworotko, M.J. A 3D metal-organic network, [Cu2(glutarate)2(4,4′-bipyridine)], that exhibits single-crystal to single-crystal dehydration and rehydration. Chem. Commun. 2003, 2003, 830–831. [Google Scholar] [CrossRef]
- Dey, R.; Haldar, R.; Kumar Maji, T.; Ghoshal, D. Three-Dimensional Robust Porous Coordination Polymer with Schiff Base Site on the Pore Wall: Synthesis, Single-Crystal-to-Single-Crystal Reversibility, and Selective CO2 Adsorption. Cryst. Growth Des. 2011, 11, 3905–3911. [Google Scholar] [CrossRef]
- Bhattacharya, B.; Haldar, R.; Dey, R.; Kumar Maji, T.; Ghoshal, D. Porous coordination polymers based on functionalized Schiff base linkers: Enhanced CO2 uptake by pore surface modification. Dalton Trans. 2014, 43, 2272–2282. [Google Scholar] [CrossRef]
- Seco, J.M.; Fairen-Jimenez, D.; Calahorro, A.J.; Méndez-Liñán, L.; Pérez-Mendoza, M.; Casati, N.; Colacio, E.; Rodríguez-Diéguez, A. Modular structure of a robust microporous MOF based on Cu2 paddle-wheels with high CO2 selectivity. Chem. Commun. 2013, 49, 11329–11331. [Google Scholar] [CrossRef]
- Bezuidenhout, C.X.; Smith, V.J.; Esterhuysen, C.; Barbour, L.J. Solvent- and Pressure-Induced Phase Changes in Two 3D Copper Glutarate-Based Metal–Organic Frameworks via Glutarate (+gauche ⇄ −gauche) Conformational Isomerism. J. Am. Chem. Soc. 2017, 139, 5923–5929. [Google Scholar] [CrossRef]
- Carrington, E.J.; Vitórica-Yrezábal, I.J.; Brammer, L. Crystallographic studies of gas sorption in metal-organic frameworks. Acta Crystallogr. 2014, B70, 404–422. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, D.; Wang, H.; Plonka, A.M.; Emge, T.J.; Parise, J.B.; Li, J. Direct Structural Identification of Gas Induced Gate-Opening Coupled with Commensurate Adsorption in a Microporous Metal–Organic Framework. Chem. Eur. J. 2016, 22, 11816–11825. [Google Scholar] [CrossRef]
- Henke, S.; Wieland, D.C.F.; Meilikhov, M.; Paulus, M.; Sternemann, C.; Yusenko, K.; Fischer, R.A. Multiple phase-transitions upon selective CO2 adsorption in an alkyl ether functionalized metal–organic framework—An in situ X-ray diffraction study. CrystEngComm 2011, 13, 6399–6404. [Google Scholar] [CrossRef]
- Bueken, B.; Vermoortele, F.; Vanpoucke, D.E.P.; Reinsch, H.; Tsou, C.-C.; Valvekens, P.; Baerdemaeker, T.; Ameloot, R.; Kirschhock, C.E.A.; Van Speybroeck, V.; et al. A Flexible Photoactive Titanium Metal–Organic Framework Based on a [TiIV3(μ3-O)(O)2(COO)6] Cluster. Angew. Chem. Int. Ed. 2015, 54, 13912–13917. [Google Scholar] [CrossRef]
- Alvarez, E.; Guillou, N.; Martineau, C.; Bueken, B.; Van de Voorde, B.; Le Guillouzer, C.; Fabry, P.; Nouar, F.; Taulelle, F.; De Vos, D.; et al. The Structure of the Aluminum Fumarate Metal–Organic Framework A520. Angew. Chem. Int. Ed. 2015, 54, 3664–3668. [Google Scholar] [CrossRef]
- Samperisi, L.; Zou, X.; Huang, Z. Three-dimensional electron diffraction: A powerful structural characterization technique for crystal engineering. CrystEngComm 2022, 24, 2719–2728. [Google Scholar] [CrossRef]
- Huang, Z.; Svensson Grape, E.; Li, J.; Ken Inge, A.; Zou, X. 3D electron diffraction as an important technique for structure elucidation of metal-organic frameworks and covalent organic frameworks. Coord. Chem. Rev. 2021, 427, 213583. [Google Scholar] [CrossRef]
- Hwang, I.H.; Bae, J.-M.; Hwang, Y.-K.; Kim, H.-Y.; Kim, C.; Huh, S.; Kim, S.-J.; Kim, Y. CO2 selective dynamic two-dimensional ZnII coordination polymer. Dalton Trans. 2013, 42, 15645–15649. [Google Scholar] [CrossRef]
- Haque, F.; Halder, A.; Ghoshal, D. Crystalline to Crystalline Phase Transformations in Six Two-Dimensional Dynamic Metal–Organic Frameworks: Syntheses, Characterizations, and Sorption Studies. Cryst. Growth Des. 2018, 18, 5231–5244. [Google Scholar] [CrossRef]
- Miller, S.R.; Horcajada, P.; Serre, C. Small chemical causes drastic structural effects: The case of calcium glutarate. CrystEngComm 2011, 13, 1894–1898. [Google Scholar] [CrossRef]
- Kim, T.K.; Lee, K.J.; Choi, M.; Park, N.; Moon, D.; Moon, H.R. Metal–organic frameworks constructed from flexible ditopic ligands: Conformational diversity of an aliphatic ligand. New J. Chem. 2013, 37, 4130–4139. [Google Scholar] [CrossRef] [Green Version]
- Gould, S.L.; Tranchemontagne, D.; Yaghi, O.M.; Garcia-Garibay, M.A. Amphidynamic Character of Crystalline MOF-5: Rotational Dynamics of Terephthalate Phenylenes in a Free-Volume, Sterically Unhindered Environment. J. Am. Chem. Soc. 2008, 130, 3246–3247. [Google Scholar] [CrossRef]
- Kolokolov, D.I.; Stepanov, A.G.; Jobic, H. Guest Controlled Rotational Dynamics of Terephthalate Phenylenes in Metal–Organic Framework MIL-53(Al): Effect of Different Xylene Loadings. J. Phys. Chem. C 2014, 118, 15978–15984. [Google Scholar] [CrossRef]
- Gallyamov, M.R.; Dybtsev, D.N.; Pischur, D.P.; Kozlova, S.G.; Moroz, N.K.; Fedin, V.P. Fast Interchange of Coordinated and Guest Dimethylformamide Molecules in the Zinc(II) Lactate Terephthalate Metal–Organic Framework. J. Phys. Chem. C 2015, 119, 24769–24773. [Google Scholar] [CrossRef]
- Khudozhitkov, A.E.; Kolokolov, D.I.; Stepanov, A.G. Characterization of Fast Restricted Librations of Terephthalate Linkers in MOF UiO-66(Zr) by 2H NMR Spin–Lattice Relaxation Analysis. J. Phys. Chem. C 2018, 122, 12956–12962. [Google Scholar] [CrossRef]
- Khudozhitkov, A.E.; Toktarev, A.V.; Arzumanov, S.S.; Gabrienko, A.A.; Kolokolov, D.I.; Stepanov, A.G. 2H Solid-State NMR Spectroscopy Reveals the Dynamics of a Pyridine Probe Interacting with Coordinatively Unsaturated Metal Sites of MIL-100(Al) Metal–Organic Frameworks. Chem. Eur. J. 2019, 25, 10808–10812. [Google Scholar] [CrossRef]
- Klein, N.; Herzog, C.; Sabo, M.; Senkovska, I.; Getzschmann, J.; Paasch, S.; Lohe, M.R.; Brunner, E.; Kaskel, S. Monitoring adsorption-induced switching by 129Xe NMR spectroscopy in a new metal–organic framework Ni2(2,6-ndc)2(dabco). Phys. Chem. Chem. Phys. 2010, 12, 11778–11784. [Google Scholar] [CrossRef]
- Kolbe, F.; Krause, S.; Bon, V.; Senkovska, I.; Kaskel, S.; Brunner, E. High-Pressure in Situ 129Xe NMR Spectroscopy: Insights into Switching Mechanisms of Flexible Metal–Organic Frameworks Isoreticular to DUT-49. Chem. Mater. 2019, 31, 6193–6201. [Google Scholar] [CrossRef]
- Gabriel, C.; Karakosta, P.; Vangelis, A.A.; Raptopoulou, C.; Terzis, A.; Psycharis, V.; Bertmer, M.; Mateescu, C.; Salifoglou, A. pH-Specific Crystalline Binary and Ternary Metal–Organic Framework Materials of Pb(II) with (Di)Tricarboxylate Ligands and N,N′-Aromatic Chelators. Structure, Architecture-Lattice Dimensionality, and Electronic Spectroscopic Property Correlations. Cryst. Growth Des. 2015, 15, 1666–1682. [Google Scholar] [CrossRef]
- Yeung, H.H.-M.; Kosa, M.; Griffin, J.M.; Grey, C.P.; Major, D.T.; Cheetham, A.K. Topotactic elimination of water across a C–C ligand bond in a dense 3-D metal–organic framework. Chem. Commun. 2014, 50, 13292–13295. [Google Scholar] [CrossRef]
- Loiseau, T.; Serre, C.; Huguenard, C.; Fink, G.; Taulelle, F.; Henry, M.; Bataille, T.; Férey, G. A Rationale for the Large Breathing of the Porous Aluminum Terephthalate (MIL-53) Upon Hydration. Chem. Eur. J. 2004, 10, 1373–1382. [Google Scholar] [CrossRef]
- Maity, A.; Singh, B.; Sharma, K.; Paul, S.; Madhu, P.K.; Polshettiwar, V. Crystal Structure Directed Catalysis by Aluminum Metal-Organic Framework: Mechanistic Insight into the Role of Coordination of Al Sites and Entrance Size of Catalytic Pocket. ACS Mater. Lett. 2020, 2, 699–704. [Google Scholar] [CrossRef]
- Reinsch, H.; Pillai, R.S.; Siegel, R.; Senker, J.; Lieb, A.; Maurin, G.; Stock, N. Structure and properties of Al-MIL-53-ADP, a breathing MOF based on the aliphatic linker molecule adipic acid. Dalton Trans. 2016, 45, 4179–4186. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.-Z.; Speldrich, M.; Kögerler, P.; Chen, X.-M. The role of π–π stacking in stabilizing a,a-trans-cyclohexane-1,4-dicarboxylate in a 2D Co(II) network. CrystEngComm 2010, 12, 1057–1059. [Google Scholar] [CrossRef]
- Lannoeye, J.; Van de Voorde, B.; Bozbiyik, B.; Reinsch, H.; Denayer, J.; De Vos, D. An aliphatic copper metal-organic framework as versatile shape selective adsorbent in liquid phase separations. Microporous Mesoporous Mater. 2016, 226, 292–298. [Google Scholar] [CrossRef] [Green Version]
- Kurmoo, M.; Kumagai, H.; Hughes, S.M.; Kepert, C.J. Reversible Guest Exchange and Ferrimagnetism (TC = 60.5 K) in a Porous Cobalt(II)−Hydroxide Layer Structure Pillared with trans-1,4-Cyclohexanedicarboxylate. Inorg. Chem. 2003, 42, 6709–6722. [Google Scholar] [CrossRef]
- Bueken, B.; Vermoortele, F.; Cliffe, M.J.; Wharmby, M.T.; Foucher, D.; Wieme, J.; Vanduyfhuys, L.; Martineau, C.; Stock, N.; Taulelle, F.; et al. A Breathing Zirconium Metal–Organic Framework with Reversible Loss of Crystallinity by Correlated Nanodomain Formation. Chem. Eur. J. 2016, 22, 3264–3267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niekiel, F.; Lannoeye, J.; Reinsch, H.; Munn, A.S.; Heerwig, A.; Zizak, I.; Kaskel, S.; Walton, R.I.; De Vos, D.; Llewellyn, P.; et al. Conformation-Controlled Sorption Properties and Breathing of the Aliphatic Al-MOF [Al(OH)(CDC)]. Inorg. Chem. 2014, 53, 4610–4620. [Google Scholar] [CrossRef]
- Reinsch, H.; Benecke, J.; Etter, M.; Heidenreich, N.; Stock, N. Combined in- and ex situ studies of pyrazine adsorption into the aliphatic MOF Al-CAU-13: Structures, dynamics and correlations. Dalton Trans. 2017, 46, 1397–1405. [Google Scholar] [CrossRef] [Green Version]
- Yamabayashi, T.; Atzori, M.; Tesi, L.; Cosquer, G.; Santanni, F.; Boulon, M.-E.; Morra, E.; Benci, S.; Torre, R.; Chiesa, M.; et al. Scaling Up Electronic Spin Qubits into a Three-Dimensional Metal–Organic Framework. J. Am. Chem. Soc. 2018, 140, 12090–12101. [Google Scholar] [CrossRef]
- Poryvaev, A.S.; Sheveleva, A.M.; Demakov, P.A.; Arzumanov, S.S.; Stepanov, A.G.; Dybtsev, D.N.; Fedin, M.V. Pulse EPR Study of Gas Adsorption in Cu2+-Doped Metal–Organic Framework [Zn2(1,4-bdc)2(dabco)]. Appl. Magn. Reson. 2018, 49, 255–264. [Google Scholar] [CrossRef]
- Mazaj, M.; Čendak, T.; Buscarino, G.; Todaro, M.; Zabukovec Logar, N. Confined crystallization of a HKUST-1 metal–organic framework within mesostructured silica with enhanced structural resistance towards water. J. Mater. Chem. A 2017, 5, 22305–22315. [Google Scholar] [CrossRef] [Green Version]
- Polyukhov, D.M.; Poryvaev, A.S.; Sukhikh, A.S.; Gromilov, S.A.; Fedin, M.V. Fine-Tuning Window Apertures in ZIF-8/67 Frameworks by Metal Ions and Temperature for High-Efficiency Molecular Sieving of Xylenes. ACS Appl. Mater. Interfaces 2021, 13, 40830–40836. [Google Scholar] [CrossRef] [PubMed]
- Poryvaev, A.S.; Yazikova, A.A.; Polyukhov, D.M.; Fedin, M.V. Ultrahigh selectivity of benzene/cyclohexane separation by ZIF-8 framework: Insights from spin-probe EPR spectroscopy. Microporous Mesoporous Mater. 2022, 330, 111564. [Google Scholar] [CrossRef]
- Poryvaev, A.S.; Larionov, K.P.; Albrekht, Y.A.; Efremov, A.A.; Kiryutin, A.S.; Smirnova, K.A.; Evtushok, V.Y.; Fedin, M.V. UiO-66 framework with an encapsulated spin probe: Synthesis and exceptional sensitivity to mechanical pressure. Phys. Chem. Chem. Phys. 2023; Advance Article. [Google Scholar] [CrossRef] [PubMed]
- Su, J.; Yuan, S.; Wang, H.-Y.; Huang, L.; Ge, J.-Y.; Joseph, E.; Qin, J.; Cagin, T.; Zuo, J.-L.; Zhou, H.-C. Redox-switchable breathing behavior in tetrathiafulvalene-based metal–organic frameworks. Nat. Commun. 2017, 8, 2008. [Google Scholar] [CrossRef]
- Poryvaev, A.S.; Polyukhov, D.M.; Gjuzi, E.; Hoffmann, F.; Fröba, M.; Fedin, M.V. Radical-Doped Metal–Organic Framework: Route to Nanoscale Defects and Magnetostructural Functionalities. Inorg. Chem. 2019, 58, 8471–8479. [Google Scholar] [CrossRef]
- Fedin, M.V. EPR spectroscopy of functional nanostructures: New targeted approaches and applications. Russ. Chem. Bull. 2023, 72, 312–334. [Google Scholar] [CrossRef]
- Poryvaev, A.S.; Polyukhov, D.M.; Fedin, M.V. Mitigation of Pressure-Induced Amorphization in Metal–Organic Framework ZIF-8 upon EPR Control. ACS Appl. Mater. Interfaces 2020, 12, 16655–16661. [Google Scholar] [CrossRef]
- Mendt, M.; Jee, B.; Stock, N.; Ahnfeldt, T.; Hartmann, M.; Himsl, D.; Pöppl, A. Structural Phase Transitions and Thermal Hysteresis in the Metal−Organic Framework Compound MIL-53 As Studied by Electron Spin Resonance Spectroscopy. J. Phys. Chem. C 2010, 114, 19443–19451. [Google Scholar] [CrossRef]
- Poryvaev, A.S.; Sheveleva, A.M.; Kolokolov, D.I.; Stepanov, A.G.; Bagryanskaya, E.G.; Fedin, M.V. Mobility and Reactivity of 4-Substituted TEMPO Derivatives in Metal–Organic Framework MIL-53(Al). J. Phys. Chem. C 2016, 120, 10698–10704. [Google Scholar] [CrossRef]
- Mendt, M.; Ehrling, S.; Senkovska, I.; Kaskel, S.; Pöppl, A. Synthesis and Characterization of Cu–Ni Mixed Metal Paddlewheels Occurring in the Metal–Organic Framework DUT-8(Ni0.98Cu0.02) for Monitoring Open-Closed-Pore Phase Transitions by X-Band Continuous Wave Electron Paramagnetic Resonance Spectroscopy. Inorg. Chem. 2019, 58, 4561–4573. [Google Scholar] [CrossRef]
- Mendt, M.; Vervoorts, P.; Schneemann, A.; Fischer, R.A.; Pöppl, A. Probing Local Structural Changes at Cu2+ in a Flexible Mixed-Metal Metal-Organic Framework by in Situ Electron Paramagnetic Resonance during CO2 Ad- and Desorption. J. Phys. Chem. C 2019, 123, 2940–2952. [Google Scholar] [CrossRef]
- Demakov, P.A.; Poryvaev, A.S.; Kovalenko, K.A.; Samsonenko, D.G.; Fedin, M.V.; Fedin, V.P.; Dybtsev, D.N. Structural Dynamics and Adsorption Properties of the Breathing Microporous Aliphatic Metal–Organic Framework. Inorg. Chem. 2020, 59, 15724–15732. [Google Scholar] [CrossRef]
- Wang, S.; Xhaferaj, N.; Wahiduzzaman, M.; Oyekan, K.; Li, X.; Wei, K.; Zheng, B.; Tissot, A.; Marrot, J.; Shepard, W.; et al. Engineering Structural Dynamics of Zirconium Metal–Organic Frameworks Based on Natural C4 Linkers. J. Am. Chem. Soc. 2019, 141, 17207–17216. [Google Scholar] [CrossRef]
- Ortiz, A.U.; Boutin, A.; Gagnon., K.J.; Clearfield, A.; Coudert, F.-X. Remarkable Pressure Responses of Metal–Organic Frameworks: Proton Transfer and Linker Coiling in Zinc Alkyl Gates. J. Am. Chem. Soc. 2014, 136, 11540–11545. [Google Scholar] [CrossRef]
- Volodin, A.D.; Korlyukov, A.A.; Zorina-Tikhonova, E.N.; Chistyakov, A.S.; Sidorov, A.A.; Eremenko, I.L.; Vologzhanina, A.V. Diastereoselective solid-state crossed photocycloaddition of olefins in a 3D Zn(II) coordination polymer. Chem. Commun. 2018, 54, 13861–13864. [Google Scholar] [CrossRef]
- Hazra, A.; Jain, A.; Deenadayalan, M.S.; Adie Adalikwu, S.; Kumar Maji, T. Acetylene/Ethylene Separation and Solid-State Structural Transformation via [2+2] Cycloaddition Reactions in 3D Microporous ZnII Metal–Organic Frameworks. Inorg. Chem. 2020, 59, 9055–9064. [Google Scholar] [CrossRef]
- Vologzhanina, A.V.; Zorina-Tikhonova, E.N.; Chistyakov, A.S.; Sidorov, A.A.; Korlyukov, A.A.; Eremenko, I.L. Intermolecular Interactions in Crystals of the Photosensitive Coordination Compounds of Zinc(II). Russ. J. Coord. Chem. 2018, 44, 733–737. [Google Scholar] [CrossRef]
- Li, N.-Y.; Liu, D.; Lang, J.-P. Regioselective Photochemical Cycloaddition Reactions of Diolefinic Ligands in Coordination Polymers. Chem. Asian J. 2019, 14, 3635–3641. [Google Scholar] [CrossRef]
- Claassens, I.E.; Barbour, L.J.; Haynes, D.A. A Multistimulus Responsive Porous Coordination Polymer: Temperature-Mediated Control of Solid-State [2+2] Cycloaddition. J. Am. Chem. Soc. 2019, 141, 11425–11429. [Google Scholar] [CrossRef]
- Demakov, P.A.; Dybtsev, D.N.; Fedin, V.P. Diastereoselective guest-shape dependent [2+2]-photodimerization of 2-cyclopenten-1-one trapped within a metal-organic framework. Chem Commun. 2023, accepted. [Google Scholar]
- Yaghi, O.M.; Li, G.; Li, H. Selective binding and removal of guests in a microporous metal–organic framework. Nature 1995, 378, 703–706. [Google Scholar] [CrossRef]
- Kondo, M.; Yoshitomi, T.; Matsuzaka, H.; Kitagawa, S.; Seki, K. Three-Dimensional Framework with Channeling Cavities for Small Molecules: {[M2(4,4′-bpy)3(NO3)4]·xH2O}n (M = Co, Ni, Zn). Angew. Chem. Int. Ed. 1997, 36, 1725–1727. [Google Scholar] [CrossRef]
- Li, H.; Eddaoudi, M.; O’Keeffe, M.; Yaghi, O.M. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 1999, 402, 276–279. [Google Scholar] [CrossRef] [Green Version]
- Alhamami, M.; Doan, H.; Cheng, C.-H. A Review on Breathing Behaviors of Metal-Organic-Frameworks (MOFs) for Gas Adsorption. Materials 2014, 7, 3198–3250. [Google Scholar] [CrossRef] [PubMed]
- Kumar Maity, D.; Dey, A.; Ghosh, S.; Halder, A.; Pratim Ray, P.; Ghoshal, D. Set of Multifunctional Azo Functionalized Semiconducting Cd(II)-MOFs Showing Photoswitching Property and Selective CO2 Adsorption. Inorg. Chem. 2018, 57, 251–263. [Google Scholar] [CrossRef]
- Bezuidenhout, C.X.; Smith, V.J.; Bhatt, P.M.; Esterhuysen, C.; Barbour, L.J. Extreme Carbon Dioxide Sorption Hysteresis in Open-Channel Rigid Metal–Organic Frameworks. Angew. Chem. Int. Ed. 2015, 54, 2079–2083. [Google Scholar] [CrossRef]
- Wang, X.; Niu, Z.; Al-Enizi, A.M.; Nafady, A.; Wu, Y.; Aguila, B.; Verma, G.; Wojtas, L.; Chen, Y.-S.; Li, Z.; et al. Pore environment engineering in metal–organic frameworks for efficient ethane/ethylene separation. J. Mater. Chem. A 2019, 7, 13585–13590. [Google Scholar] [CrossRef]
- Feng, W.; Wu, H.; Jin, J.; Liu, D.; Meng, H.; Yun, J.; Mi, J. Transformation of Al-CDC from 3D crystals to 2D nanosheets in macroporous polyacrylates with enhanced CH4/N2 separation efficiency and stability. Chem. Eng. J. 2022, 429, 132285. [Google Scholar] [CrossRef]
- Lysova, A.A.; Samsonenko, D.G.; Dorovatovskii, P.V.; Lazarenko, V.A.; Khrustalev, V.N.; Kovalenko, K.A.; Dybtsev, D.N.; Fedin, V.P. Tuning the Molecular and Cationic Affinity in a Series of Multifunctional Metal–Organic Frameworks Based on Dodecanuclear Zn(II) Carboxylate Wheels. J. Am. Chem. Soc. 2019, 141, 17260–17269. [Google Scholar] [CrossRef]
- Cai, Y.; Zhang, Y.; Huang, Y.; Marder, S.R.; Walton, K.S. Impact of Alkyl-Functionalized BTC on Properties of Copper-Based Metal–Organic Frameworks. Cryst. Growth Des. 2012, 12, 3709–3713. [Google Scholar] [CrossRef]
- Reinsch, H.; Homburg, T.; Heidenreich, N.; Fröhlich, D.; Hennninger, S.; Wark, M.; Stock, N. Green Synthesis of a New Al-MOF Based on the Aliphatic Linker Mesaconic Acid: Structure, Properties and In Situ Crystallisation Studies of Al-MIL-68-Mes. Chem. Eur. J. 2018, 24, 2173–2181. [Google Scholar] [CrossRef]
- Chen, B.; Ji, Y.; Xue, M.; Fronczek, F.R.; Hurtado, E.J.; Mondal, J.U.; Liang, C.; Dai, S. Metal–Organic Framework with Rationally Tuned Micropores for Selective Adsorption of Water over Methanol. Inorg. Chem. 2008, 47, 5543–5545. [Google Scholar] [CrossRef]
- Li, K.; Lee, I.Y.; Olson, D.H.; Emge, T.J.; Bi, W.; Eibling, M.J.; Li, J. Unique gas and hydrocarbon adsorption in a highly porous metal-organic framework made of extended aliphatic ligands. Chem. Commun. 2008, 2008, 6123–6125. [Google Scholar] [CrossRef]
- Macreadie, L.K.; Mensforth, E.J.; Babarao, R.; Konstas, K.; Telfer, S.G.; Doherty, C.M.; Tsanaktsidis, J.; Batten, S.R.; Hill, M.R. CUB-5: A Contoured Aliphatic Pore Environment in a Cubic Framework with Potential for Benzene Separation Applications. J. Am. Chem. Soc. 2019, 141, 3828–3832. [Google Scholar] [CrossRef]
- Macreadie, L.K.; Babarao, R.; Setter, C.J.; Lee, S.J.; Qazvini, O.T.; Seeber, A.J.; Tsanaktsidis, J.; Telfer, S.G.; Batten, S.R.; Hill, M.R. Enhancing Multicomponent Metal–Organic Frameworks for Low Pressure Liquid Organic Hydrogen Carrier Separations. Angew. Chem. Int. Ed. 2020, 59, 6090–6098. [Google Scholar] [CrossRef]
- Zhou, J.; Ke, T.; Song, Y.; Cai, H.; Wang, Z.; Chen, L.; Xu, Q.; Zhang, Z.; Bao, Z.; Ren, Q.; et al. Highly Efficient Separation of C8 Aromatic Isomers by Rationally Designed Nonaromatic Metal–Organic Frameworks. J. Am. Chem. Soc. 2022, 144, 21417–21424. [Google Scholar] [CrossRef]
- Idrees, K.B.; Chen, Z.; Zhang, X.; Rasel Mian, M.; Drout, R.J.; Islamoglu, T.; Farha, O.K. Tailoring Pore Aperture and Structural Defects in Zirconium-Based Metal–Organic Frameworks for Krypton/Xenon Separation. Chem. Mater. 2020, 32, 3776–3782. [Google Scholar] [CrossRef]
- Zhou, J.; Ke, T.; Steinke, F.; Stock, N.; Zhang, Z.; Bao, Z.; He, X.; Ren, Q.; Yang, Q. Tunable Confined Aliphatic Pore Environment in Robust Metal–Organic Frameworks for Efficient Separation of Gases with a Similar Structure. J. Am. Chem. Soc. 2022, 144, 14322–14329. [Google Scholar] [CrossRef]
- Yang, H.; Chen, Y.; Dang, C.; Hong, A.N.; Feng, P.; Bu, X. Optimization of Pore-Space-Partitioned Metal–Organic Frameworks Using the Bioisosteric Concept. J. Am. Chem. Soc. 2022, 144, 20221–20226. [Google Scholar] [CrossRef]
- Idrees, K.B.; Li, Z.; Xie, H.; Kirlikovali, K.O.; Kazem-Rostami, M.; Wang, X.; Wang, X.; Tai, T.-Y.; Islamoglu, T.; Fraser Stoddart, J.; et al. Separation of Aromatic Hydrocarbons in Porous Materials. J. Am. Chem. Soc. 2022, 144, 12212–12218. [Google Scholar] [CrossRef]
- Lal, B.; Idrees, K.B.; Xie, H.; Smoljan, C.S.; Shafaie, S.; Islamoglu, T.; Farha, O.K. Pore Aperture Control Toward Size-Exclusion-Based Hydrocarbon Separations. Angew. Chem. Int. Ed. 2023, 62, e202219053. [Google Scholar] [CrossRef] [PubMed]
- Llabres-Campaner, P.J.; Pitarch-Jarque, J.; Ballesteros-Garrido, R.; Abarca, B.; Ballesteros, R.; García-España, E. Bicyclo[2.2.2]octane-1,4-dicarboxylic acid: Towards transparent metal–organic frameworks. Dalton Trans. 2017, 46, 7397–7402. [Google Scholar] [CrossRef] [PubMed]
- Demakov, P.A.; Sapchenko, S.A.; Samsonenko, D.G.; Dybtsev, D.N.; Fedin, V.P. Coordination polymers based on zinc(II) and manganese(II) with 1,4-cyclohexanedicarboxylic acid. Russ. Chem. Bull. 2018, 67, 490–496. [Google Scholar] [CrossRef]
- Demakov, P.A.; Samsonenko, D.G.; Dybtsev, D.N.; Fedin, V.P. Zinc(II) metal-organic frameworks with 1,4-diazabicyclo[2.2.2]octane N,N′-dioxide: Control of the parameters of the cationic porous framework and optical properties. Russ. Chem. Bull. 2022, 71, 83–90. [Google Scholar] [CrossRef]
- Demakov, P.A.; Ovchinnikova, A.A.; Fedin, V.P. Synthesis, Structure, and Optical Properties of the Lanthanum(III) Cationic Coordination Polymer with 1,4-Diazabicyclo[2.2.2]Octane N,N′-Dioxide. J. Struct. Chem. 2023, 64, 199–207. [Google Scholar] [CrossRef]
- Yu, M.; Xie, L.; Liu, S.; Wang, C.; Cheng, H.; Ren, Y.; Su, Z. Photoluminescent metal-organic framework with hex topology constructed from infinite rod-shaped secondary building units and single e,e-trans-1,4-cyclohexanedicarboxylic dianion. Inorg. Chim. Acta 2007, 360, 3108–3112. [Google Scholar] [CrossRef]
- Yan, N.; Zhao, Y.-F.; Niu, L.-Q.; Zhou, C.-S.; Liu, Y.-L.; He, T.; Li, X.-Y.; Yue, K.-F. Synthesis and structures of a series of d10 coordination compounds based on flexible bis(imidazole) ligand and dicarboxylates. Inorg. Nano-Met. Chem. 2017, 47, 925–933. [Google Scholar] [CrossRef]
- Zhu, X.-D.; Li, Y.; Zhou, W.-X.; Liu, R.-M.; Ding, Y.-J.; Lü, J.; Proserpio, D.M. Metal–organic frameworks assembled from flexible alicyclic carboxylate and bipyridyl ligands for sensing of nitroaromatic explosives. CrystEngComm 2016, 18, 4530–4537. [Google Scholar] [CrossRef]
- Jiao, C.-H.; Geng, J.-C.; He, C.-H.; Cui, G.-H. Assembly multi-dimensional CdII coordination architectures based on flexible bis(benzimidazole) ligands: Diversity of their coordination geometries and fluorescent properties. J. Mol. Struct. 2012, 1020, 134–141. [Google Scholar] [CrossRef]
- Hao, J.-M.; Zhao, Y.-N.; Yang, R.; Cui, G.-H. Self-assembly of three d10 metal coordination polymers based on a flexible bis(2-methylbenzimidazole) and dicarboxylate co-ligands. J. Mol. Struct. 2014, 1070, 58–64. [Google Scholar] [CrossRef]
- Guo, H.; Yan, Y.; Wang, N.; Guo, X.; Zheng, G.; Qi, Y. A series of entangled coordination polymers assembled by a V-shaped bisimidazole ligand and various dicarboxylic acids: Synthesis, characterization and luminescence properties. CrystEngComm 2015, 17, 6512–6526. [Google Scholar] [CrossRef]
- Demakov, P.A.; Vasileva, A.A.; Lazarenko, V.A.; Ryadun, A.A.; Fedin, V.P. Crystal Structures, Thermal and Luminescent Properties of Gadolinium(III) Trans-1,4-cyclohexanedicarboxylate Metal-Organic Frameworks. Crystals 2021, 11, 1375. [Google Scholar] [CrossRef]
- Demakov, P.A.; Ryadun, A.A.; Fedin, V.P. Zn(II) coordination polymer with π-stacked 4,4′-bipyridine dimers: Synthesis, structure and luminescent properties. Polyhedron 2022, 219, 115793. [Google Scholar] [CrossRef]
- Peng, C.; Zhuang, Z.; Yang, H.; Zhang, G.; Fei, H. Ultrastable, cationic three-dimensional lead bromide frameworks that intrinsically emit broadband white-light. Chem. Sci. 2018, 9, 1627–1633. [Google Scholar] [CrossRef] [Green Version]
- Zhuang, Z.; Peng, C.; Zhang, G.; Yang, H.; Yin, J.; Fei, H. Intrinsic Broadband White-Light Emission from Ultrastable, Cationic Lead Halide Layered Materials. Angew. Chem. Int. Ed. 2017, 56, 14411–14416. [Google Scholar] [CrossRef]
- Yin, J.; Yang, H.; Fei, H. Robust, Cationic Lead Halide Layered Materials with Efficient Broadband White-Light Emission. Chem. Mater. 2019, 31, 3909–3916. [Google Scholar] [CrossRef]
- Kozlova, S.G.; Mirzaeva, I.V.; Ryzhikov, M.R. DABCO molecule in the M2(C8H4O4)2·C6H12N2 (M = Co, Ni, Cu, Zn) metal-organic frameworks. Coord. Chem. Rev. 2018, 376, 62–74. [Google Scholar] [CrossRef]
- Chen, L.; Ji, Q.; Wang, X.; Pan, Q.; Cao, X.; Xu, G. Two novel metal–organic coordination polymers based on ligand 1,4-diazabicyclo[2.2.2]octane N,N′-dioxide with phase transition, and ferroelectric and dielectric properties. CrystEngComm 2017, 19, 5907–5914. [Google Scholar] [CrossRef]
- Chen, L.Z.; Sun, J. Reversible ferroelectric phase transition of 1,4-diazabicyclo[2.2.2]octane N,N′-dioxide di(perchlorate). Inorg. Chem. Comm. 2017, 76, 67–70. [Google Scholar] [CrossRef]
- Ye, H.-Y.; Zhang, Y.; Noro, S.-I.; Kubo, K.; Yoshitake, M.; Liu, Z.-Q.; Cai, H.-L.; Fu, D.-W.; Yoshikawa, H.; Awaga, K.; et al. Molecule-displacive ferroelectricity in organic supramolecular solids. Sci. Rep. 2013, 3, 2249. [Google Scholar] [CrossRef] [Green Version]
- Su, Y.-S.; Lamb, E.S.; Liepuoniute, I.; Chronister, A.; Stanton, A.L.; Guzman, P.; Pérez-Estrada, S.; Chang, T.Y.; Houk, K.N.; Garcia-Garibay, M.A.; et al. Dipolar order in an amphidynamic crystalline metal–organic framework through reorienting linkers. Nat. Chem. 2021, 13, 278–283. [Google Scholar] [CrossRef] [PubMed]
- Healy, C.; Patil, K.M.; Wilson, B.H.; Hermanspahn, L.; Harvey-Reid, N.C.; Howard, B.I.; Kleinjan, C.; Kolien, J.; Payet, F.; Telfer, S.G.; et al. The thermal stability of metal-organic frameworks. Coord. Chem. Rev. 2020, 419, 213388. [Google Scholar] [CrossRef]
- Lim, S.; Suh, K.; Kim, Y.; Yoon, M.; Park, H.; Dybtsev, D.N.; Kim, K. Porous carbon materials with a controllable surface area synthesized from metal–organic frameworks. Chem. Commun. 2012, 48, 7447–7449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, T.K.; Lee, K.J.; Cheon, J.Y.; Lee, J.H.; Joo, S.H.; Moon, H.R. Nanoporous Metal Oxides with Tunable and Nanocrystalline Frameworks via Conversion of Metal–Organic Frameworks. J. Am. Chem. Soc. 2013, 135, 8940–8946. [Google Scholar] [CrossRef] [PubMed]
- Bueken, B.; Van Velthoven, N.; Krajnc, A.; Smolders, S.; Taulelle, F.; Mellot-Draznieks, C.; Mali, G.; Bennett, T.D.; De Vos, D. Tackling the Defect Conundrum in UiO-66: A Mixed-Linker Approach to Engineering Missing Linker Defects. Chem. Mater. 2017, 29, 10478–10486. [Google Scholar] [CrossRef]
- Spitsyna, A.S.; Poryvaev, A.S.; Sannikova, N.E.; Yazikova, A.A.; Kirilyuk, I.A.; Dobrynin, S.A.; Chinak, O.A.; Fedin, M.V.; Krumkacheva, O.A. Stability of ZIF-8 Nanoparticles in Most Common Cell Culture Media. Molecules 2022, 27, 3240. [Google Scholar] [CrossRef]
- Butonova, S.A.; Ikonnikova, E.V.; Sharsheeva, A.; Chernyshov, I.Y.; Kuchur, O.A.; Mukhin, I.S.; Hey-Hawkins, E.; Vinogradov, A.V.; Morozov, M.I. Degradation kinetic study of ZIF-8 microcrystals with and without the presence of lactic acid. RSC Adv. 2021, 11, 39169–39176. [Google Scholar] [CrossRef]
- Locke, G.M.; Bernhard, S.S.R.; Senge, M.O. Nonconjugated Hydrocarbons as Rigid-Linear Motifs: Isosteres for Material Sciences and Bioorganic and Medicinal Chemistry. Chem. Eur. J. 2019, 25, 4590–4647. [Google Scholar] [CrossRef] [Green Version]
- Mykhailiuk, P.K. Saturated bioisosteres of benzene: Where to go next? Org. Biomol. Chem. 2019, 17, 2839–2849. [Google Scholar] [CrossRef]
- Denisenko, A.; Garbuz, P.; Shishkina, S.V.; Voloshchuk, N.M.; Mykhailiuk, P.K. Saturated Bioisosteres of ortho-Substituted Benzenes. Angew. Chem. Int. Ed. 2020, 59, 20515–20521. [Google Scholar] [CrossRef]
- Bauer, M.R.; Fruscia, P.; Lucas, S.C.C.; Michaelides, I.N.; Nelson, J.E.; Ian Storera, R.; Whitehurst, B.C. Put a ring on it: Application of small aliphatic rings in medicinal chemistry. RSC Med. Chem. 2021, 12, 448–471. [Google Scholar] [CrossRef]
- Denisenko, A.; Garbuz, P.; Voloshchuk, N.M.; Holota, Y.; Al-Maali, G.; Borysko, P.; Mykhailiuk, P.K. 2-Oxabicyclo[2.1.1]hexanes as saturated bioisosteres of the ortho-substituted phenyl ring. Nat. Chem. 2023. [Google Scholar] [CrossRef]
Acid Name | Structural Formula | Coordination Polymers with Unsubstituted Ligand * | Coordination Polymers with Any Substituted H Atom in the Ligand * |
---|---|---|---|
Malonic | HOOC–CH2–COOH | 333 | 685 |
Succinic | HOOC–(CH2)2–COOH | 667 | 2638 |
Glutaric | HOOC–(CH2)3–COOH | 409 | 1873 |
Adipic | HOOC–(CH2)4–COOH | 411 | 1520 |
Pimelic | HOOC–(CH2)5–COOH | 99 | 619 |
Suberic | HOOC–(CH2)6–COOH | 72 | 354 |
Azelaic | HOOC–(CH2)7–COOH | 52 | 277 |
Sebacic | HOOC–(CH2)8–COOH | 43 | 57 |
Terephthalic ** | HOOC–(C6H4)–COOH | 3201 | 9881 |
Acid Name * | Skeletal Formula | Coordination Polymers with Unsubstituted Ligand ** |
---|---|---|
Cyclobutane-1,1-dicarboxylic | 66 | |
Cyclohexane-1,2-dicarboxylic | 104 | |
Cyclohexane-1,4-dicarboxylic | 354 | |
Cyclohexane-1,3,5-tricarboxylic | 56 | |
Cyclohexane-1,2,4,5-tetracarboxylic | 54 | |
Cyclohexane-1,2,3,4,5,6-hexacarboxylic | 59 | |
Adamantane-1,3-dicarboxylic | 114 | |
Camphoric | 257 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Demakov, P.A. Properties of Aliphatic Ligand-Based Metal–Organic Frameworks. Polymers 2023, 15, 2891. https://doi.org/10.3390/polym15132891
Demakov PA. Properties of Aliphatic Ligand-Based Metal–Organic Frameworks. Polymers. 2023; 15(13):2891. https://doi.org/10.3390/polym15132891
Chicago/Turabian StyleDemakov, Pavel A. 2023. "Properties of Aliphatic Ligand-Based Metal–Organic Frameworks" Polymers 15, no. 13: 2891. https://doi.org/10.3390/polym15132891
APA StyleDemakov, P. A. (2023). Properties of Aliphatic Ligand-Based Metal–Organic Frameworks. Polymers, 15(13), 2891. https://doi.org/10.3390/polym15132891