Characterization of a New Silk Sericin-Based Hydrogel for Water Retention in Soil
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fabrication of Hydrogels
2.3. Morphological Characterization of the Hydrogel
2.4. Soil
2.5. Soil Moisture Retention Curves: Static Characterization
2.6. Dynamic Soil Moisture Content Characteristics
3. Results and Discussions
3.1. Morphological Characterization of Hydrogels
3.2. Soil Moisture Retention Curves: Static Characterization
3.3. Dynamic Soil Moisture Content Characteristics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations, Department of Economic and Social Affairs. World Population Prospects 2019—Highlights (ST/ESA/SER.A/423); United Nations: New York, NY, USA, 2019; ISBN 978-92-1-148316-1. [Google Scholar]
- Li, S.; Chen, G. Contemporary Strategies for Enhancing Nitrogen Retention and Mitigating Nitrous Oxide Emission in Agricultural Soils: Present and Future. Environ. Dev. Sustain. 2019, 22, 2703–2741. [Google Scholar] [CrossRef]
- Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO). La Agricultura Mundial En La Perspectiva Del Año 2050. In Proceedings of the Cómo Alimentar al Mundo 2050, Rome, Italy, 12–13 October 2009. [Google Scholar]
- Drescher, A.; Glaser, R.; Richert, C.; Nippes, K.R. Demand for Key Nutrients (NPK) in the Year 2050; Draft Report; University of Freiburg: Freiburg, Germany, 2011. [Google Scholar]
- Daneshgar, S.; Callegari, A.; Capodaglio, A.; Vaccari, D. The Potential Phosphorus Crisis: Resource Conservation and Possible Escape Technologies: A Review. Resources 2018, 7, 37. [Google Scholar] [CrossRef]
- Campos, E.; de Oliveira, J.L.; Fraceto, L.F.; Singh, B. Polysaccharides as Safer Release Systems for Agrochemicals. Agron. Sustain. Dev. 2014, 35, 47–66. [Google Scholar] [CrossRef]
- Lenka, S.; Lenka, N.K.; Singh, A.B.; Singh, B.; Raghuwanshi, J. Global Warming Potential and Greenhouse Gas Emission under Different Soil Nutrient Management Practices in Soybean–Wheat System of Central India. Environ. Sci. Pollut. Res. 2017, 24, 4603–4612. [Google Scholar] [CrossRef] [PubMed]
- Feng, D.; Bai, B.; Wang, H.; Suo, Y. Novel Fabrication of Biodegradable Superabsorbent Microspheres with Diffusion Barrier through Thermo-Chemical Modification and Their Potential Agriculture Applications for Water Holding and Sustained Release of Fertilizer. J. Agric. Food Chem. 2017, 65, 5896–5907. [Google Scholar] [CrossRef]
- Hoffman, A. Hydrogels for Biomedical Applications. Adv. Drug Deliv. Rev. 2012, 64, 18–23. [Google Scholar] [CrossRef]
- Chen, Y. Properties and Development of Hydrogels. In Hydrogels Based on Natural Polymers; Chen, Y., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 3–16. [Google Scholar]
- Ramli, R. Slow Release Fertilizer Hydrogels: A Review. Polym. Chem. 2019, 10, 6073–6090. [Google Scholar] [CrossRef]
- Ekebafe, L.; Ogbeifun, D.E.; Okieimen, F.E. Polymer Applications in Agriculture. Biokemistri 2011, 23, 81–89. [Google Scholar]
- Demitri, C.; Scalera, F.; Madaghiele, M.; Sannino, A.; Maffezzoli, A. Potential of Cellulose-Based Superabsorbent Hydrogels as Water Reservoir in Agriculture. Int. J. Polym. Sci. 2013, 2013, 435073. [Google Scholar] [CrossRef]
- Azeredo, H.; Waldron, K. Crosslinking in Polysaccharide and Protein Films and Coatings for Food Contact—A Review. Trends Food Sci. Technol. 2016, 52, 109–122. [Google Scholar] [CrossRef]
- Serrano-Aroca, Á. Enhancement of Hydrogels Properties for Biomedical Applications: Latest Achievements. In Hydrogels; InTech: London, UK, 2018. [Google Scholar]
- Balaguer, M.P.; Gómez-Estaca, J.; Gavara, R.; Hernandez-Munoz, P. Functional Properties of Bioplastics Made from Wheat Gliadins Modified with Cinnamaldehyde. J. Agric. Food Chem. 2011, 59, 6689–6695. [Google Scholar] [CrossRef]
- Hennink, W.E.; van Nostrum, C.F. Novel Crosslinking Methods to Design Hydrogels. Adv. Drug Deliv. Rev. 2012, 64, 223–236. [Google Scholar] [CrossRef]
- Hu, H.; Xu, F. Rational Design and Latest Advances of Polysaccharide-Based Hydrogels for Wound Healing. Biomater. Sci. 2020, 8, 2084–2101. [Google Scholar] [CrossRef] [PubMed]
- Oryan, A.; Kamali, A.; Moshiri, A.; Baharvand, H.; Daemi, H. Chemical Crosslinking of Biopolymeric Scaffolds: Current Knowledge and Future Directions of Crosslinked Engineered Bone Scaffolds. Int. J. Biol. Macromol. 2018, 107, 678–688. [Google Scholar] [CrossRef] [PubMed]
- Guilherme, M.; Aouada, F.A.; Fajardo, A.R.; Martins, A.F.; Paulino, A.T.; Davi, M.F.T.; Rubira, A.F.; Muniz, E.C. Superabsorbent Hydrogels Based on Polysaccharides for Application in Agriculture as Soil Conditioner and Nutrient Carrier: A Review. Eur. Polym. J. 2015, 72, 365–385. [Google Scholar] [CrossRef]
- Luo, M.T.; Li, H.L.; Huang, C.; Zhang, H.R.; Xiong, L.; Chen, X.F.; Chen, X. De Cellulose-Based Absorbent Production from Bacterial Cellulose and Acrylic Acid: Synthesis and Performance. Polymers 2018, 10, 702. [Google Scholar] [CrossRef] [PubMed]
- Skrzypczak, D.; Witek-Krowiak, A.; Dawiec-Liśniewska, A.; Podstawczyk, D.; Mikula, K.; Chojnacka, K. Immobilization of Biosorbent in Hydrogel as a New Environmentally Friendly Fertilizer for Micronutrients Delivery. J. Clean. Prod. 2019, 241, 118387. [Google Scholar] [CrossRef]
- Kong, W.; Li, Q.; Li, X.; Su, Y.; Yue, Q.; Gao, B. A Biodegradable Biomass-Based Polymeric Composite for Slow Release and Water Retention. J. Environ. Manag. 2019, 230, 190–198. [Google Scholar] [CrossRef]
- Calabria, L.; Vieceli, N.; Bianchi, O.; Boff de Oliveira, R.V.; do Nascimento Filho, I.; Schmidt, V. Soy Protein Isolate/Poly(Lactic Acid) Injection-Molded Biodegradable Blends for Slow Release of Fertilizers. Ind. Crops Prod. 2012, 36, 41–46. [Google Scholar] [CrossRef]
- Pushpamalar, J.; Langford, S.J.; Ahmad, M.B.; Lim, Y.Y.; Hashim, K. Eco-Friendly Smart Hydrogels for Soil Conditioning and Sustain Release Fertilizer. Int. J. Environ. Sci. Technol. 2017, 15, 2059–2074. [Google Scholar] [CrossRef]
- Zhang, Y.-Q. Applications of Natural Silk Protein Sericin in Biomaterials. Biotechnol. Adv. 2002, 20, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Gupta, D.; Agrawal, A.; Chaudhary, H.; Gulrajani, M.; Gupta, C. Cleaner Process for Extraction of Sericin Using Infrared. J. Clean. Prod. 2013, 52, 488–494. [Google Scholar] [CrossRef]
- Jaramillo-Quiceno, N.; Callone, E.; Dirè, S.; Álvarez-López, C.; Motta, A. Boosting Sericin Extraction through Alternative Silk Sources. Polym. J. 2021, 53, 1425–1437. [Google Scholar] [CrossRef]
- Nakamura, S.; Magoshi, J.; Magoshi, Y. Thermal Properties of Silk Proteins in Silkworms. In Silk Polymers; Kaplan, D., Adams, W., Farmer, B., Viney, C., Eds.; American Chemical Society: Washington, DC, USA, 1993; pp. 211–221. [Google Scholar]
- Aramwit, P.; Ratanavaraporn, J.; Ekgasit, S.; Tongsakul, D.; Bang, N. A Green Salt-Leaching Technique to Produce Sericin/PVA/Glycerin Scaffolds with Distinguished Characteristics for Wound-Dressing Applications. J. Biomed. Mater. Res. Part B Appl. Biomater. 2015, 103, 915–924. [Google Scholar] [CrossRef] [PubMed]
- Lim, K.S. Fabrication and Characterisation of Degradable Biosynthetic Hydrogels for Cell Encapsulation: Development of a New Method for Protein Incorporation. Ph.D. Thesis, University of New South Wales, Sydney, Australia, 2014. [Google Scholar]
- Zhang, Y.; Zhao, Y.; He, X.; Fang, A.; Jiang, R.; Wu, T.; Chen, H.; Cao, X.; Liang, P.; Xia, D.; et al. A Sterile Self-Assembled Sericin Hydrogel via a Simple Two-Step Process. Polym. Test. 2019, 80, 106016. [Google Scholar] [CrossRef]
- Tao, G.; Wang, Y.; Cai, R.; Chang, H.; Song, K.; Zuo, H.; Zhao, P.; Xia, Q.; He, H. Design and Performance of Sericin/Poly(Vinyl Alcohol) Hydrogel as a Drug Delivery Carrier for Potential Wound Dressing Application. Mater. Sci. Eng. C 2019, 101, 341–351. [Google Scholar] [CrossRef]
- Zhang, H.; Deng, L.; Yang, M.; Min, S.; Yang, L.; Zhu, L. Enhancing Effect of Glycerol on the Tensile Properties of Bombyx Mori Cocoon Sericin Films. Int. J. Mol. Sci. 2011, 12, 3170–3181. [Google Scholar] [CrossRef]
- Sothornvit, R.; Chollakup, R.; Suwanruji, P. Extracted Sericin from Silk Waste for Film Formation. Songklanakarin J. Sci. Technol. 2010, 32, 17–22. [Google Scholar]
- Wang, K.; Zhan, F. Preparation and Properties of Silk Sericin/Cellulose Cross-Linking Films. MATEC Web Conf. 2017, 130, 02004. [Google Scholar] [CrossRef]
- Purwar, R.; Verma, A.; Batra, R. Antimicrobial Gelatin/Sericin/Clay Films for Packaging of Hygiene Products. J. Polym. Eng. 2019, 39, 744–751. [Google Scholar] [CrossRef]
- Boonpavanitchakul, K.; Pimpha, N.; Kangwansupamonkon, W.; Magaraphan, R. Processing and Antibacterial Application of Biodegradable Sponge Nano-Composite Materials of Silver Nanoparticles and Silk Sericin. Eur. Polym. J. 2020, 130, 109649. [Google Scholar] [CrossRef]
- De Freitas, E.D.; Lima, B.M.; Rosa, P.C.P.; da Silva, M.G.C.; Vieira, M.G.A. Evaluation of Proanthocyanidin-Crosslinked Sericin/Alginate Blend for Ketoprofen Extended Release. Adv. Powder Technol. 2019, 30, 1531–1543. [Google Scholar] [CrossRef]
- das Graças Santos, N.T.; Landers, R.; da Silva, M.G.C.; Vieira, M.G.A. Adsorption of Gold Ions onto Sericin and Alginate Particles Chemically Crosslinked by Proanthocyanidins: A Complete Fixed-Bed Column Study. Ind. Eng. Chem. Res. 2020, 59, 318–328. [Google Scholar] [CrossRef]
- das Graças Santos, N.T.; Moraes, L.F.; da Silva, M.G.C.; Vieira, M.G.A. Recovery of Gold through Adsorption onto Sericin and Alginate Particles Chemically Crosslinked by Proanthocyanidins. J. Clean. Prod. 2020, 253, 119925. [Google Scholar] [CrossRef]
- Guo, X.; Zhou, Q.; Wang, P.; Yu, Y.; Yuan, J.; Wang, Q. Enzymatic Crosslinking of Silk Sericin through Combined Use of TGase and the Custom Peptide. J. Text. Inst. 2020, 111, 84–92. [Google Scholar] [CrossRef]
- Ghensi, P.; Bettio, E.; Maniglio, D.; Bonomi, E.; Piccoli, F.; Gross, S.; Caciagli, P.; Segata, N.; Nollo, G.; Tessarolo, F. Dental Implants with Anti-Biofilm Properties: A Pilot Study for Developing a New Sericin-Based Coating. Materials 2019, 12, 2429. [Google Scholar] [CrossRef]
- Gallo, N.; Lunetti, P.; Bettini, S.; Barca, A.; Madaghiele, M.; Valli, L.; Capobianco, L.; Sannino, A.; Salvatore, L. Assessment of Physico-Chemical and Biological Properties of Sericin-Collagen Substrates for PNS Regeneration. Int. J. Polym. Mater. Polym. Biomater. 2021, 70, 403–413. [Google Scholar] [CrossRef]
- Wang, P.; He, H.; Cai, R.; Tao, G.; Yang, M.; Zuo, H.; Umar, A.; Wang, Y. Cross-Linking of Dialdehyde Carboxymethyl Cellulose with Silk Sericin to Reinforce Sericin Film for Potential Biomedical Application. Carbohydr. Polym. 2019, 212, 403–411. [Google Scholar] [CrossRef]
- Da Silva, T.L.; Da Silva, A.C.; Vieira, M.G.A.; Gimenes, M.L.; da Silva, M.G.C. Biosorption Study of Copper and Zinc by Particles Produced from Silk Sericin—Alginate Blend: Evaluation of Blend Proportion and Thermal Cross-Linking Process in Particles Production. J. Clean. Prod. 2016, 137, 1470–1478. [Google Scholar] [CrossRef]
- Kwak, H.W.; Yang, Y.S.; Kim, M.K.; Lee, J.Y.; Yun, H.; Kim, M.H.; Lee, K.H. Chromium(VI) Adsorption Behavior of Silk Sericin Beads. Int. J. Ind. Entomol. 2013, 26, 47–53. [Google Scholar] [CrossRef]
- Sonjan, S.; Ross, G.M.; Mahasaranon, S.; Sinkangam, B.; Intanon, S.; Ross, S. Biodegradable Hydrophilic Film of Crosslinked PVA/Silk Sericin for Seed Coating: The Effect of Crosslinker Loading and Polymer Concentration. J. Polym. Environ. 2021, 29, 323–334. [Google Scholar] [CrossRef]
- Wu, J.-H.H.; Wang, Z.; Xu, S.-Y.Y. Preparation and Characterization of Sericin Powder Extracted from Silk Industry Wastewater. Food Chem. 2007, 103, 1255–1262. [Google Scholar] [CrossRef]
- Werdin, J.; Fletcher, T.D.; Rayner, J.P.; Williams, N.S.G.; Farrell, C. Biochar Made from Low Density Wood Has Greater Plant Available Water than Biochar Made from High Density Wood. Sci. Total Environ. 2020, 705, 135856. [Google Scholar] [CrossRef]
- Saha, A.; Rattan, B.; Sekharan, S.; Manna, U. Quantifying the Interactive Effect of Water Absorbing Polymer (WAP)-Soil Texture on Plant Available Water Content and Irrigation Frequency. Geoderma 2020, 368, 114310. [Google Scholar] [CrossRef]
- Agaba, H.; Baguma Orikiriza, L.J.; Osoto Esegu, J.F.; Obua, J.; Kabasa, J.D.; Hüttermann, A. Effects of Hydrogel Amendment to Different Soils on Plant Available Water and Survival of Trees under Drought Conditions. CLEAN Soil Air Water 2010, 38, 328–335. [Google Scholar] [CrossRef]
- Koupai, J.A.; Eslamian, S.S.; Kazemi, J.A. Enhancing the Available Water Content in Unsaturated Soil Zone Using Hydrogel, to Improve Plant Growth Indices. Ecohydrol. Hydrobiol. 2008, 8, 67–75. [Google Scholar] [CrossRef]
- Saha, A.; Sekharan, S.; Manna, U. Superabsorbent Hydrogel (SAH) as a Soil Amendment for Drought Management: A Review. Soil Tillage Res. 2020, 204, 104736. [Google Scholar] [CrossRef]
- Abioye, E.A.; Abidin, M.S.Z.; Mahmud, M.S.A.; Buyamin, S.; AbdRahman, M.K.I.; Otuoze, A.O.; Ramli, M.S.A.; Ijike, O.D. IoT-Based Monitoring and Data-Driven Modelling of Drip Irrigation System for Mustard Leaf Cultivation Experiment. Inf. Process. Agric. 2021, 8, 270–283. [Google Scholar] [CrossRef]
- Jaramillo-Quiceno, N.; Rueda-Mira, S.; Marín, J.F.S.; Álvarez-López, C. Development of a Novel Silk Sericin-Based Hydrogel Film by Mixture Design. J. Polym. Res. 2023, 30, 120. [Google Scholar] [CrossRef]
- Qiao, D.; Liu, H.; Yu, L.; Bao, X.; Simon, G.P.; Petinakis, E.; Chen, L. Preparation and Characterization of Slow-Release Fertilizer Encapsulated by Starch-Based Superabsorbent Polymer. Carbohydr. Polym. 2016, 147, 146–154. [Google Scholar] [CrossRef]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 Years of Image Analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Jaramillo, D.F. Introducción a la Ciencia del Suelo; Universidad Nacional de Colombia: Medellín, Colombia, 2002. [Google Scholar]
- Tanan, W.; Panichpakdee, J.; Suwanakood, P.; Saengsuwan, S. Biodegradable Hydrogels of Cassava Starch-g-Polyacrylic Acid/Natural Rubber/Polyvinyl Alcohol as Environmentally Friendly and Highly Efficient Coating Material for Slow-Release Urea Fertilizers. J. Ind. Eng. Chem. 2021, 101, 237–252. [Google Scholar] [CrossRef]
- Chen, Y.; Li, W.; Zhang, S. A Multifunctional Eco-Friendly Fertilizer Used Keratin-Based Superabsorbent as Coatings for Slow-Release Urea and Remediation of Contaminated Soil. Prog. Org. Coatings 2021, 154, 106158. [Google Scholar] [CrossRef]
- Wang, W.; Yang, S.; Zhang, A.; Yang, Z. Synthesis of a Slow-Release Fertilizer Composite Derived from Waste Straw That Improves Water Retention and Agricultural Yield. Sci. Total Environ. 2021, 768, 144978. [Google Scholar] [CrossRef]
- Braudeau, E.; Hovhannissian, G.; Assi, A.T.; Mohtar, R.H. Soil Water Thermodynamic to Unify Water Retention Curve by Pressure Plates and Tensiometer. Front. Earth Sci. 2014, 2, 30. [Google Scholar] [CrossRef]
- Richards, L.A. Methods of Measuring Soil Moisture Tension. Soil Sci. 1949, 68, 95. [Google Scholar] [CrossRef]
- Weil, R.R.; Brady, N.C. The Nature and Properties of Soils, 15th ed.; Fox, D., Ed.; Pearson Education: Harlow, UK, 2017; ISBN 1-292-16223-6. [Google Scholar]
- Xiao, C.; Gao, Y. Preparation and Properties of Physically Crosslinked Sodium Carboxymethylcellulose/Poly(Vinyl Alcohol) Complex Hydrogels. J. Appl. Polym. Sci. 2008, 107, 1568–1572. [Google Scholar] [CrossRef]
- Aramwit, P.; Sereemaspun, A.; Yamdech, R. Sericin Ameliorates the Properties of Poly(Vinyl Alcohol) Hydrogel Prepared by Simple Repeated Freeze-Thaw Process without the Use of Chemical Crosslinking. Int. J. Res. Sci. 2018, 4, 6. [Google Scholar] [CrossRef]
- Lin, X.; Jin, J.; Guo, X.; Jia, X. All-Carboxymethyl Cellulose Sponges for Removal of Heavy Metal Ions. Cellulose 2021, 28, 3113–3122. [Google Scholar] [CrossRef]
- Mazloom, N.; Khorassani, R.; Zohuri, G.H.; Emami, H.; Whalen, J. Development and Characterization of Lignin-Based Hydrogel for Use in Agricultural Soils: Preliminary Evidence. CLEAN Soil Air Water 2019, 47, 1900101. [Google Scholar] [CrossRef]
- El-Rehim, H.A.A.; Hegazy, E.-S.A.; El-Mohdy, H.L.A. Radiation Synthesis of Hydrogels to Enhance Sandy Soils Water Retention and Increase Plant Performance. J. Appl. Polym. Sci. 2004, 93, 1360–1371. [Google Scholar] [CrossRef]
- Narjary, B.; Aggarwal, P.; Singh, A.; Chakraborty, D.; Singh, R. Water Availability in Different Soils in Relation to Hydrogel Application. Geoderma 2012, 187–188, 94–101. [Google Scholar] [CrossRef]
- Zotarelli, L.; Dukes, M.D.; Morgan, K.T. Interpretación Del Contenido de La Humedad Del Suelo Para Determinar Capacidad de Campo y Evitar Riego Excesivo En Suelos Arenosos Utilizando Sensores de Humedad. Edis 2013, 2013. [Google Scholar] [CrossRef]
System | Model | |
---|---|---|
SLS | ||
SLS + H |
System | Interval | Static Gain Kp | Time Constant τp |
---|---|---|---|
SLS | 0 ≤ t ≤ 36 h | 2.3692 | 36,551 |
2 ≤ t ≤ 36 h | 1.9989 | 70,060 | |
18 ≤ t ≤ 36 h | 0.4910 | 8110 | |
SLS + H | 0 ≤ t ≤ 36 h | 7.2242 | 65,466 |
2 ≤ t ≤ 36 h | 6.4081 | 124,010 | |
18 ≤ t ≤ 36 h | 0.11657 | 43,098 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jaramillo-Quiceno, N.; Álvarez-López, C.; Hincapié-Llanos, G.A.; Hincapié, C.A.; Osorio, M. Characterization of a New Silk Sericin-Based Hydrogel for Water Retention in Soil. Polymers 2023, 15, 2763. https://doi.org/10.3390/polym15132763
Jaramillo-Quiceno N, Álvarez-López C, Hincapié-Llanos GA, Hincapié CA, Osorio M. Characterization of a New Silk Sericin-Based Hydrogel for Water Retention in Soil. Polymers. 2023; 15(13):2763. https://doi.org/10.3390/polym15132763
Chicago/Turabian StyleJaramillo-Quiceno, Natalia, Catalina Álvarez-López, Gustavo Adolfo Hincapié-Llanos, Carlos A. Hincapié, and Marisol Osorio. 2023. "Characterization of a New Silk Sericin-Based Hydrogel for Water Retention in Soil" Polymers 15, no. 13: 2763. https://doi.org/10.3390/polym15132763
APA StyleJaramillo-Quiceno, N., Álvarez-López, C., Hincapié-Llanos, G. A., Hincapié, C. A., & Osorio, M. (2023). Characterization of a New Silk Sericin-Based Hydrogel for Water Retention in Soil. Polymers, 15(13), 2763. https://doi.org/10.3390/polym15132763