Control of Bandgaps and Energy Levels in Water-Soluble Discontinuously Conjugated Polymers through Chemical Modification
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Measurements
2.3. Polymer Synthesis
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cheng, Y.-J.; Yang, S.-H.; Hsu, C.-S. Synthesis of conjugated polymers for organic solar cell applications. Chem. Rev. 2009, 109, 5868–5923. [Google Scholar] [CrossRef]
- Wang, M.; Hu, X.-W.; Liu, P.; Li, W.; Gong, X.; Huang, F.; Cao, Y. Donor-Acceptor Conjugated Polymer Based on Naphtho [1,2-c:5,6-c]bis[1,2,5]thiadiazole for High-Performance Polymer Solar Cells. J. Am. Chem. Soc. 2011, 133, 9638–9641. [Google Scholar] [CrossRef]
- Wu, Y.; An, C.; Shi, L.; Yang, L.; Qin, Y.; Liang, N.; He, C.; Wang, Z.; Hou, J. The crucial role of chlorinated thiophene orientation in conjugated polymers for photovoltaic devices. Angew. Chem. Int. Ed. 2018, 57, 12911–12915. [Google Scholar] [CrossRef] [PubMed]
- Fu, H.; Li, Y.-X.; Yu, J.-W.; Wu, Z.; Fan, Q.-P.; Lin, F.; Woo, H.Y.; Gao, F.; Zhu, Z.-l.; Jen, K.-Y. High Efficiency (15.8%) All-Polymer Solar Cells Enabled by a Regioregular Narrow Bandgap Polymer Acceptor. J. Am. Chem. Soc. 2021, 143, 2665–2670. [Google Scholar] [CrossRef] [PubMed]
- Burroughes, J.H.; Bradley, D.D.C.; Brown, A.R.; Marks, R.N.; Mackay, K.; Friend, R.H.; Burn, P.L.; Holmes, A.B. Light-emitting diodes based on conjugated polymers. Nature 1990, 347, 539–541. [Google Scholar] [CrossRef]
- Gross, M.; Muller, D.C.; Nothofer, H.-G.; Scherf, U.; Neher, D.; Bräuchle, C.; Meerholz, K. Improving the performance of doped π-conjugated polymers for use in organic light-emitting diodes. Nature 2000, 405, 661–665. [Google Scholar] [CrossRef]
- Kawabata, K.; Saito, M.; Osaka, I.; Takimiya, K. Very Small Bandgap π-Conjugated Polymers with Extended Thienoquinoids. J. Am. Chem. Soc. 2016, 138, 7725–7732. [Google Scholar] [CrossRef]
- Herland, A.; Inganas, O. Conjugated polymers as optical probes for protein interactions and protein conformations. Macromol. Rapid Commun. 2007, 28, 1703–1713. [Google Scholar] [CrossRef]
- Liu, W.-j.; Pink, M.; Lee, D. Conjugated polymer sensors built on π-extended borasiloxane cages. J. Am. Chem. Soc. 2009, 131, 8703–8707. [Google Scholar] [CrossRef]
- Taroni, P.J.; Giovanni, S.; Kening, W.; Philip, C.; Manting, Q.; Han, Z.; Pugno, N.M.; Matteo, P.; Natalie, S.S.; Martin, H.; et al. Toward stretchable self-powered sensors based on the thermoelectric response of PEDOT:PSS/polyurethane blends. Adv. Funct. Mater. 2018, 28, 1704285. [Google Scholar] [CrossRef]
- Meyers, F.F.; Heeger, A.J.; Bredas, J.L. Fine tuning of the band gap in conjugated polymers via control of block copolymer sequences. J. Chem. Phys. 1992, 97, 2750–2758. [Google Scholar] [CrossRef]
- Roncali, J. Synthetic Principles for Bandgap Control in Linear π-Conjugated Systems. Chem. Rev. 1997, 97, 173–205. [Google Scholar]
- Eldo, J.; Ajayaghosh, A. New Low Band Gap Polymers: Control of Optical and Electronic Properties in near Infrared Absorbing π-Conjugated Polysquaraines. Chem. Mater. 2002, 14, 410–418. [Google Scholar] [CrossRef]
- Cheng, P.; Yang, Y. Narrowing the Band Gap: The Key to High-Performance Organic Photovoltaics. Acc. Chem. Res. 2020, 53, 1218–1228. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Shrotriya, V.; Huang, J.; Yao, Y.; Moriarty, T.; Emery, K.; Yang, Y. High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat. Mater. 2005, 4, 864–868. [Google Scholar] [CrossRef]
- Dennler, G.; Scharber, M.C.; Brabec, C.J. Polymer-Fullerene Bulk-Heterojunction Solar Cells. Adv. Mater. 2009, 21, 1323–1338. [Google Scholar] [CrossRef]
- Scharber, M.C.; Mühlbacher, D.; Koppe, M.; Denk, P.; Waldauf, C.; Heeger, A.J.; Brabec, C.J. Design Rules for Donors in Bulk-Heterojunction SolarCells—Towards 10 % Energy-Conversion Efficiency. Adv. Mater. 2006, 18, 789–794. [Google Scholar] [CrossRef]
- Liang, Y.; Xiao, S.; Feng, D.; Yu, L. Control in Energy Levels of Conjugated Polymers for Photovoltaic Application. J. Phys. Chem. C 2008, 112, 7866–7871. [Google Scholar] [CrossRef]
- Woo, C.H.; Beaujuge, P.M.; Holcombe, T.W.; Lee, O.P.; Frechet, J.M.J. Incorporation of Furan into Low Band-Gap Polymers for Efficient Solar Cells. J. Am. Chem. Soc. 2010, 132, 15547–15549. [Google Scholar] [CrossRef]
- Almeataq, M.S.; Yi, H.; Al-Faifi, S.; Alghamdi, A.A.B.; Iraqi, A.; Scarratt, N.W.; Wang, T.; Lidzey, D.G. Anthracene-based donor-acceptor low band gap polymers for application in solar cells. Chem. Commun. 2013, 49, 2252–2254. [Google Scholar] [CrossRef]
- Feng, K.; Xu, X.-P.; Li, Z.-j.; Li, Y.; Li, K.; Yu, T.; Peng, Q. Low band gap benzothiophene-thienothiophene copolymers with conjugated alkylthiothieyl and alkoxycarbonyl cyanovinyl side chains for photovoltaic applications. Chem. Commun. 2015, 51, 6290–6292. [Google Scholar] [CrossRef] [PubMed]
- Aota, H.; Ishikawa, T.; Amiuchi, Y.; Yano, H.; Kunimoto, T.; Matsumoto, A. Band Gap and Absorption Profile Change by Changing Molecular Weight and Conformation of Water-soluble Narrow-band-gap Polymers. Chem. Lett. 2010, 39, 1288–1290. [Google Scholar] [CrossRef]
- Aota, H.; Ishikawa, T.; Maki, Y.; Takaya, D.; Ejiri, H.; Amiuchi, Y.; Yano, H.; Kunimoto, T.; Matsumoto, A. Continuous Band Gap Control from 0.3 to 1.1 eV of π-Conjugated Polymers in Aqueous Solution. Chem. Lett. 2011, 40, 724–725. [Google Scholar] [CrossRef]
- Shi, C.-J.; Yao, Y.; Yang, Y.; Pei, Q.-B. Regioregular Copolymers of 3-Alkoxythiophene and Their Photovoltaic Application. J. Am. Chem. Soc. 2006, 128, 8980–8986. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.-Z.; Zhu, W.-H.; Zakeeruddin, S.M.; Gratzel, M. Insight into D−A−π−A Structured Sensitizers: A Promising Route to Highly Efficient and Stable Dye-Sensitized Solar Cells. ACS Appl. Mater. Interfaces 2015, 7, 9307–9318. [Google Scholar] [CrossRef]
- Ji, J.-M.; Zhou, H.-R.; Kim, H.K. Rational design criteria for D–π–A structured organic and porphyrin sensitizers for highly efficient dye-sensitized solar cells. J. Mater. Chem. A 2018, 6, 14518–14545. [Google Scholar] [CrossRef]
- Johnson, E.J. Chapter 6 Absorption near the Fundamental Edge. In Semiconductors and Semimetals; Beer, A.C., Ed.; Academic: New York, NY, USA, 1967; Volume 3, pp. 153–258. [Google Scholar]
- Pommerehne, J.; Vestweber, H.; Guss, W.; Mahrt, R.F.; Bassler, H.; Porsch, M.; Daub, J. Efficient two layer leds on a polymer blend basis. J. Adv. Mater. 1995, 7, 551–554. [Google Scholar] [CrossRef]
Compound | ηsp/C | Mw /g mol−1 | Egopt /eV | Eox (onset) / V | EHOMO /eV | ELUMO /eV |
---|---|---|---|---|---|---|
/dL g−1 | ||||||
Pyr(10)-BS(10) | 0.061 | 15,000 | 0.50 | 0.35 | −5.09 | −4.59 |
Pyr(10)-[BS(8)-THBA(2)] | 0.062 | 15,000 | 0.50 | −0.08 | −4.66 | −4.16 |
Pyr(10)-[BS(8)-TABA(2)] | 0.062 | 15,000 | 0.50 | −0.34 | −4.40 | −3.90 |
Pyr(8)-THB(2)-BS(10) | 0.062 | 15,000 | 1.01 | 0.13 | −4.87 | −3.86 |
Pyr(8)-TAB(2)-BS(10) | 0.063 | 15,000 | 1.01 | −0.03 | −4.71 | −3.70 |
Pyr(5)-THB(5)-BS(10) | 0.046 | 11,000 | 1.28 | 0.07 | −4.81 | −3.53 |
Pyr(5)-TAB(5)-BS(10) | 0.048 | 11,000 | 1.28 | −0.09 | −4.65 | −3.37 |
Pyr(2)-THB(8)-BS(10) | 0.046 | 11,000 | 1.95 | 0.23 | −4.97 | −3.02 |
Pyr(2)-TAB(8)-BS(10) | 0.049 | 11,000 | 1.95 | 0.14 | −4.88 | −2.93 |
Pyr(5)-DHT(5)-BS(10) | 0.047 | 11,000 | 1.28 | 0.18 | −4.92 | −3.64 |
Pyr(5)-DAT(5)-BS(10) | 0.049 | 11,000 | 1.28 | 0.08 | −4.82 | −3.54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, H.-X.; Higashida, R.; Aota, H. Control of Bandgaps and Energy Levels in Water-Soluble Discontinuously Conjugated Polymers through Chemical Modification. Polymers 2023, 15, 2738. https://doi.org/10.3390/polym15122738
Guo H-X, Higashida R, Aota H. Control of Bandgaps and Energy Levels in Water-Soluble Discontinuously Conjugated Polymers through Chemical Modification. Polymers. 2023; 15(12):2738. https://doi.org/10.3390/polym15122738
Chicago/Turabian StyleGuo, Hao-Xuan, Riho Higashida, and Hiroyuki Aota. 2023. "Control of Bandgaps and Energy Levels in Water-Soluble Discontinuously Conjugated Polymers through Chemical Modification" Polymers 15, no. 12: 2738. https://doi.org/10.3390/polym15122738
APA StyleGuo, H.-X., Higashida, R., & Aota, H. (2023). Control of Bandgaps and Energy Levels in Water-Soluble Discontinuously Conjugated Polymers through Chemical Modification. Polymers, 15(12), 2738. https://doi.org/10.3390/polym15122738