Lignin Nanoparticles with Entrapped Thymus spp. Essential Oils for the Control of Wood-Rot Fungi
Abstract
:1. Introduction
2. Materials and Methods
2.1. Essential Oils Containing Lignin Nanoparticles Preparation
2.2. Fungal Strains
2.3. Anti-Fungal Assay
2.4. FTIR Spectroscopy
2.5. Statistical Analysis
3. Results and Discussion
3.1. Characterization of Lignin Nanoparticles Loaded with Essential Oils (EOL)
3.2. In Vitro Inhibition Experiments
3.3. FTIR Spectroscopy
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Fungus | Substrate | Lipids/Amide I | Lipids/Amide II | Amide I/Total Amides | Amide II/Total Amides | Lipids/Carbos |
---|---|---|---|---|---|---|
Gloeophyllum trabeum | EOL-CC | 0.955 | 2.465 | 0.448 | 0.174 | 0.177 |
EOL-TC | 0.963 | 1.422 | 0.439 | 0.297 | 0.263 | |
EOL-TV | 0.762 | 1.363 | 0.463 | 0.259 | 0.190 | |
EOL-TVD | 0.706 | 1.021 | 0.540 | 0.373 | 0.231 | |
LNPs solo | 1.068 | 1.131 | 0.416 | 0.393 | 0.180 | |
MEA pure | 1.004 | 1.163 | 0.401 | 0.346 | 0.221 | |
Poria monticola | EOL-CC | - | - | - | - | - |
EOL-TC | 0.210 | 0.394 | 0.517 | 0.275 | 0.080 | |
EOL-TV | 0.401 | 0.980 | 0.580 | 0.237 | 0.144 | |
EOL-TVD | 0.340 | 0.745 | 0.476 | 0.217 | 0.128 | |
LNPs solo | 0.306 | 0.822 | 0.584 | 0.217 | 0.111 | |
MEA pure | 0.409 | 0.849 | 0.529 | 0.255 | 0.150 | |
Pleorotus ostreatus | EOL-CC | 0.675 | 1.314 | 0.454 | 0.233 | 0.164 |
EOL-TC | 0.412 | 0.483 | 0.479 | 0.409 | 0.177 | |
EOL-TV | 0.487 | 0.812 | 0.512 | 0.307 | 0.186 | |
EOL-TVD | 0.565 | 1.101 | 0.485 | 0.249 | 0.141 | |
LNPs solo | 0.920 | 1.367 | 0.401 | 0.270 | 0.260 | |
MEA pure | 0.941 | 1.532 | 0.378 | 0.232 | 0.229 | |
Trametes versicolor | EOL-CC | 0.528 | 1.101 | 0.455 | 0.219 | 0.154 |
EOL-TC | 0.663 | 1.888 | 0.399 | 0.140 | 0.195 | |
EOL-TV | 0.571 | 0.663 | 0.463 | 0.399 | 0.201 | |
EOL-TVD | 1.115 | 1.790 | 0.377 | 0.234 | 0.305 | |
LNPs solo | 0.533 | 0.867 | 0.467 | 0.288 | 0.192 | |
MEA pure | 0.640 | 1.182 | 0.428 | 0.232 | 0.180 |
Band Number | Wavenumber (cm−1) | Signal Assignment | Biopolymer Contribution |
---|---|---|---|
- | 3500–3200 | O-H stretching | carbohydrates |
- | 3275 | N-H stretching | chitin/chitosan |
- | 3105 | N-H stretching | chitin/chitosan |
- | 2955 | =C-H stretching | lipids |
- | 2925 | -C-H (CH3) stretching | lipids |
- | 2855 | -C-H (CH2) stretching | lipids |
1 | 1745 | -C=O stretching in esters | lipids |
2 | 1680–1630 | -C=O stretching, Amide I | proteins, chitin |
3 | 1560–1530 | C-N-H deformation, Amide II | proteins, chitin |
4 | 1465 | -C-H (CH2, CH3) bending | lipids |
5 | 1402 | C=O pf COO- groups | lipids |
6 | 1377 | -C-H (CH3) bending | chitin |
7 | 1320 | Amide III | proteins, chitin |
8 | 1265 | P=O stretching | polyphosphates, phospholipids |
9 | 1180 | C-O-C stretching in esters | lipids |
10 | 1150 | C-O and C-O-C stretching | carbohydrates |
11 | 1075 | PO2 symmetric stretching | polyphosphates, phospholipids |
12 | 1043 | C-O stretching | carbohydrates |
13 | 930 | glycosidic linkages | carbohydrates |
14 | 894 | P-O-P stretching | polyphosphates |
References
- Romagnoli, M.; Fragiacomo, M.; Brunori, A.; Follesa, M.; Scarascia Mugnozza, G. Solid Wood and Wood Based Composites: The Challenge of Sustainability Looking for a Short and Smart Supply Chain. In Digital Wood Design: Innovative Techniques of Representation in Architectural Design, Bianconi, F., Filippucci, M., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 783–807. [Google Scholar]
- Sciomenta, M.; Spera, L.; Bedon, C.; Rinaldi, V.; Fragiacomo, M.; Romagnoli, M. Mechanical characterization of novel Homogeneous Beech and hybrid Beech-Corsican Pine thin Cross-Laminated timber panels. Constr. Build. Mater. 2021, 271, 121589. [Google Scholar] [CrossRef]
- Sciomenta, M.; Spera, L.; Peditto, A.; Ciuffetelli, E.; Savini, F.; Bedon, C.; Romagnoli, M.; Nocetti, M.; Brunetti, M.; Fragiacomo, M. Mechanical characterization of homogeneous and hybrid beech-Corsican pine glue-laminated timber beams. Eng. Struct. 2022, 264, 114450. [Google Scholar] [CrossRef]
- Zikeli, F.; Romagnoli, M.; Mugnozza, G.S. Chapter 12—Lignin nanoparticles in coatings for wood preservation. In Micro and Nanolignin in Aqueous Dispersions and Polymers; Puglia, D., Santulli, C., Sarasini, F., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 357–384. [Google Scholar]
- Khademibami, L.; Bobadilha, G.S. Recent Developments Studies on Wood Protection Research in Academia: A Review. Front. For. Glob. Change 2022, 5, 28. [Google Scholar] [CrossRef]
- Blanchet, P.; Pepin, S. Trends in Chemical Wood Surface Improvements and Modifications: A Review of the Last Five Years. Coatings 2021, 11, 1514. [Google Scholar] [CrossRef]
- Teng, T.-J.; Mat Arip, M.N.; Sudesh, K.; Nemoikina, A.; Jalaludin, Z.; Ng, E.-P.; Lee, H.-L. Conventional technology and nanotechnology in wood preservation: A Review. Bioresour. Technol. 2018, 13, 9220–9925. [Google Scholar] [CrossRef] [Green Version]
- De Angelis, M.; Humar, M.; Kržišnik, D.; Tamantini, S.; Romagnoli, M. Influence of Thermal Modification and Impregnation with Biocides on Physical Properties of Italian Stone Pine Wood (Pinus pinea L.). Appl. Sci. 2022, 12, 3801. [Google Scholar] [CrossRef]
- De Angelis, M.; Romagnoli, M.; Vek, V.; Poljanšek, I.; Oven, P.; Thaler, N.; Lesar, B.; Kržišnik, D.; Humar, M. Chemical composition and resistance of Italian stone pine (Pinus pinea L.) wood against fungal decay and wetting. Ind. Crops Prod. 2018, 117, 187–196. [Google Scholar] [CrossRef]
- Papadopoulos, A.N.; Taghiyari, H.R. Innovative Wood Surface Treatments Based on Nanotechnology. Coatings 2019, 9, 866. [Google Scholar] [CrossRef] [Green Version]
- Esteves, B.; Pereira, H. Wood modification by heat treatment: A Review. BioResources 2009, 4, 370–404. [Google Scholar] [CrossRef]
- Romagnoli, M.; Vinciguerra, V.; Silvestri, A. Heat Treatment Effect on Lignin and Carbohydrates in Corsican Pine Earlywood and Latewood Studied by PY–GC–MS Technique. J. Wood Chem. Technol. 2018, 38, 57–70. [Google Scholar] [CrossRef]
- Herrera, R.; Sandak, J.; Robles, E.; Krystofiak, T.; Labidi, J. Weathering resistance of thermally modified wood finished with coatings of diverse formulations. Prog. Org. Coat. 2018, 119, 145–154. [Google Scholar] [CrossRef]
- Herrera Díaz, R.; Gordobil, O.; de Hoyos-Martinez, P.L.; Sandak, A.; Labidi, J. Hydrophobization and Photo-Stabilization of Radiata Pinewood: The Effect of the Esterification on Thermal and Mechanical Properties. Forests 2020, 11, 1243. [Google Scholar] [CrossRef]
- Vek, V.; Keržič, E.; Poljanšek, I.; Eklund, P.; Humar, M.; Oven, P. Wood Extractives of Silver Fir and Their Antioxidant and Antifungal Properties. Molecules 2021, 26, 6412. [Google Scholar] [CrossRef] [PubMed]
- Broda, M. Natural Compounds for Wood Protection against Fungi—A Review. Molecules 2020, 25, 3538. [Google Scholar] [CrossRef]
- Tondi, G.; Palanti, S.; Wieland, S.; Thevenon, M.F.; Petutschnigg, A.; Schnabel, T. Durability of tannin-boron-treated timber. BioResources 2012, 7, 5138–5151. [Google Scholar] [CrossRef] [Green Version]
- Lozhechnikova, A.; Bellanger, H.; Michen, B.; Burgert, I.; Österberg, M. Surfactant-free carnauba wax dispersion and its use for layer-by-layer assembled protective surface coatings on wood. Appl. Surf. Sci. 2017, 396, 1273–1281. [Google Scholar] [CrossRef] [Green Version]
- Antonelli, F.; Bartolini, M.; Plissonnier, M.-L.; Esposito, A.; Galotta, G.; Ricci, S.; Davidde Petriaggi, B.; Pedone, C.; Di Giovanni, A.; Piazza, S.; et al. Essential Oils as Alternative Biocides for the Preservation of Waterlogged Archaeological Wood. Microorganisms 2020, 8, 2015. [Google Scholar] [CrossRef] [PubMed]
- Sadiki, M.; El Abed, S.; Balouiri, M.; Barkai, H.; El Bergadi, F.Z.; El Farricha, O.; Ibnsouda Koraichi, S. Combined effect of essential oils against bacteria associated with deterioration of historical wood. J. Mater. Environ. Sci. 2017, 8, 594–602. [Google Scholar]
- Zhang, Z.; Yang, T.; Mi, N.; Wang, Y.; Li, G.; Wang, L.; Xie, Y. Antifungal activity of monoterpenes against wood white-rot fungi. Int. Biodeterior. Biodegrad. 2016, 106, 157–160. [Google Scholar] [CrossRef]
- Vettraino, A.M.; Zikeli, F.; Humar, M.; Biscontri, M.; Bergamasco, S.; Romagnoli, M. Essential oils from Thymus spp. as natural biocide against common brown- and white-rot fungi in degradation of wood products: Antifungal activity evaluation by in vitro and FTIR analysis. Eur. J. Wood Wood Prod. 2023, 81, 747–763. [Google Scholar] [CrossRef]
- Vettraino, A.M.; Zikeli, F.; Scarascia Mugnozza, G.; Vinciguerra, V.; Tabet, D.; Romagnoli, M. Lignin nanoparticles containing essential oils for controlling Phytophthora cactorum diseases. For. Pathol. 2022, 52, e12739. [Google Scholar] [CrossRef]
- Zikeli, F.; Vinciguerra, V.; Sennato, S.; Scarascia Mugnozza, G.; Romagnoli, M. Preparation of Lignin Nanoparticles with Entrapped Essential Oil as a Bio-Based Biocide Delivery System. ACS Omega 2020, 5, 358–368. [Google Scholar] [CrossRef] [Green Version]
- Xie, Y.; Wang, Z.; Huang, Q.; Zhang, D. Antifungal activity of several essential oils and major components against wood-rot fungi. Ind. Crops Prod. 2017, 108, 278–285. [Google Scholar] [CrossRef]
- Wang, S.-Y.; Chen, P.-F.; Chang, S.-T. Antifungal activities of essential oils and their constituents from indigenous cinnamon (Cinnamomum osmophloeum) leaves against wood decay fungi. Bioresour. Technol. 2005, 96, 813–818. [Google Scholar] [CrossRef] [PubMed]
- Spagnoletti, A.; Guerrini, A.; Tacchini, M.; Vinciguerra, V.; Leone, C.; Maresca, I.; Simonetti, G.; Sacchetti, G.; Angiolella, L. Chemical Composition and Bio-efficacy of Essential Oils from Italian Aromatic Plants: Mentha suaveolens, Coridothymus capitatus, Origanum hirtum and Rosmarinus officinalis. Nat. Prod. Commun. 2016, 11, 1517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vinciguerra, V.; Rojas, F.; Tedesco, V.; Giusiano, G.; Angiolella, L. Chemical characterization and antifungal activity of Origanum vulgare, Thymus vulgaris essential oils and carvacrol against Malassezia furfur. Nat. Prod. Res. 2019, 33, 3273–3277. [Google Scholar] [CrossRef]
- Voda, K.; Boh, B.; Vrtačnik, M.; Pohleven, F. Effect of the antifungal activity of oxygenated aromatic essential oil compounds on the white-rot Trametes versicolor and the brown-rot Coniophora puteana. Int. Biodeterior. Biodegrad. 2003, 51, 51–59. [Google Scholar] [CrossRef]
- Vrenna, G.; Artini, M.; Ragno, R.; Relucenti, M.; Fiscarelli, E.V.; Tuccio Guarna Assanti, V.; Papa, R.; Selan, L. Anti-Virulence Properties of Coridothymus capitatus Essential Oil against Pseudomonas aeruginosa Clinical Isolates from Cystic Fibrosis Patients. Microorganisms 2021, 9, 2257. [Google Scholar] [CrossRef]
- Wińska, K.; Mączka, W.; Łyczko, J.; Grabarczyk, M.; Czubaszek, A.; Szumny, A. Essential Oils as Antimicrobial Agents—Myth or Real Alternative? Molecules 2019, 24, 2130. [Google Scholar] [CrossRef] [Green Version]
- Mohareb, A.S.O.; Badawy, M.E.I.; Abdelgaleil, S.A.M. Antifungal activity of essential oils isolated from Egyptian plants against wood decay fungi. J. Wood Sci. 2013, 59, 499–505. [Google Scholar] [CrossRef]
- Nostro, A.; Papalia, T. Antimicrobial Activity of Carvacrol: Current Progress and Future Prospectives. Recent. Pat. Anti-Infect. Drug. Discov. 2012, 7, 28–35. [Google Scholar] [CrossRef] [PubMed]
- Satish, S.; Mohana, D.; Ranhavendra, M.; Raveesha, K. Antifungal activity of some plant extracts against important seed borne pathogens of Aspergillus sp. J. Agric. Technol. 2007, 3, 109–119. [Google Scholar]
- Felšöciová, S.; Vukovic, N.; Jeżowski, P.; Kačániová, M. Antifungal activity of selected volatile essential oils against Penicillium sp. Open. Life Sci. 2020, 15, 511–521. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Pandey, A.; Varshney, V.K. Antifungal Activity of the Essential Oil of Tagetes minuta Against Some Fungi of Forestry Importance. J. Biol. Act. Prod. Nat. 2019, 9, 67–72. [Google Scholar] [CrossRef]
- Karpiński, T.M. Essential Oils of Lamiaceae Family Plants as Antifungals. Biomolecules 2020, 10, 103. [Google Scholar] [CrossRef] [Green Version]
- Nazzaro, F.; Fratianni, F.; De Martino, L.; Coppola, R.; De Feo, V. Effect of Essential Oils on Pathogenic Bacteria. Pharmaceuticals 2013, 6, 1451–1474. [Google Scholar] [CrossRef]
- Abers, M.; Schroeder, S.; Goelz, L.; Sulser, A.; St. Rose, T.; Puchalski, K.; Langland, J. Antimicrobial activity of the volatile substances from essential oils. BMC Complement. Med. Ther. 2021, 21, 124. [Google Scholar] [CrossRef]
- Bunse, M.; Daniels, R.; Gründemann, C.; Heilmann, J.; Kammerer, D.R.; Keusgen, M.; Lindequist, U.; Melzig, M.F.; Morlock, G.E.; Schulz, H.; et al. Essential Oils as Multicomponent Mixtures and Their Potential for Human Health and Well-Being. Front. Pharmacol. 2022, 13, 2645. [Google Scholar] [CrossRef]
- Iqhrammullah, M.; Rizki, D.R.; Purnama, A.; Duta, T.F.; Harapan, H.; Idroes, R.; Ginting, B. Antiviral Molecular Targets of Essential Oils against SARS-CoV-2: A Systematic Review. Sci. Pharm. 2023, 91, 15. [Google Scholar] [CrossRef]
- Liao, W.; Badri, W.; Dumas, E.; Ghnimi, S.; Elaissari, A.; Saurel, R.; Gharsallaoui, A. Nanoencapsulation of Essential Oils as Natural Food Antimicrobial Agents: An Overview. Appl. Sci. 2021, 11, 5778. [Google Scholar] [CrossRef]
- Nazzaro, F.; Fratianni, F.; Coppola, R.; Feo, V.D. Essential Oils and Antifungal Activity. Pharmaceuticals 2017, 10, 86. [Google Scholar] [CrossRef] [Green Version]
- Vitoratos, A.; Bilalis, D.; Karkanis, A.; Efthimiadou, A. Antifungal Activity of Plant Essential Oils Against Botrytis cinerea, Penicillium italicum and Penicillium digitatum. Not. Bot. Horti Agrobot. Cluj-Napoca 2013, 41, 86–92. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.; Rajendran, S.; Srivastava, A.; Sharma, S.; Kundu, B. Antifungal activities of selected essential oils against Fusarium oxysporum f. sp. lycopersici 1322, with emphasis on Syzygium aromaticum essential oil. J. Biosci. Bioeng. 2017, 123, 308–313. [Google Scholar] [CrossRef]
- Salem, M.Z.M.; Zidan, Y.E.; Mansour, M.M.A.; El Hadidi, N.M.N.; Abo Elgat, W.A.A. Antifungal activities of two essential oils used in the treatment of three commercial woods deteriorated by five common mold fungi. Int. Biodeterior. Biodegrad. 2016, 106, 88–96. [Google Scholar] [CrossRef]
- Ma, B.; Ban, X.; Huang, B.; He, J.; Tian, J.; Zeng, H.; Chen, Y.; Wang, Y. Interference and Mechanism of Dill Seed Essential Oil and Contribution of Carvone and Limonene in Preventing Sclerotinia Rot of Rapeseed. PLoS ONE 2015, 10, e0131733. [Google Scholar] [CrossRef] [Green Version]
- Abdollahi, A.; Hassani, A.; Ghosta, Y.; Meshkatalsadat, M.H.; Shabani, R. Screening of antifungal properties of essential oils extracted from sweet basil, fennel, summer savory and thyme against postharvest phytopathogenic fungi. J. Food Saf. 2011, 31, 350–356. [Google Scholar] [CrossRef]
- Baker, B.P.; Grant, J.A. Active Ingredients Eligible for Minimum Risk Pesticide Use: Overview of the Profiles; Cornell University: New York, NY, USA, 2018. [Google Scholar]
- Ochoa-Velasco, C.E.; Navarro-Cruz, A.R.; Vera-López, O.; Palou, E.; Avila-Sosa, R. Growth modeling to control (in vitro) Fusarium verticillioides and Rhizopus stolonifer with thymol and carvacrol. Rev. Argent. De Microbiol. 2018, 50, 70–74. [Google Scholar] [CrossRef] [PubMed]
- Baker, B.P.; Grant, J.A. Thyme & Thyme Oil Profile; Cornell University: New York, NY, USA, 2018. [Google Scholar]
- Akrout, A.; Hajer, E.J.; Amouri, S.; Neffati, M. Screening of Antiradical and Antibacterial Activities of Essential Oils of Artemisia campestris L., Artemisia herba alba Asso, & Thymus capitatus Hoff. Et Link. Growing Wild in the Southern of Tunisia. Recent. Res. Sci. Technol. 2009, 2, 29–39. [Google Scholar]
- Bounatirou, S.; Smiti, S.; Miguel, M.G.; Faleiro, L.; Rejeb, M.N.; Neffati, M.; Costa, M.M.; Figueiredo, A.C.; Barroso, J.G.; Pedro, L.G. Chemical composition, antioxidant and antibacterial activities of the essential oils isolated from Tunisian Thymus capitatus Hoff. et Link. Food Chem. 2007, 105, 146–155. [Google Scholar] [CrossRef]
- Cosentino, S.; Tuberoso, C.I.G.; Pisano, B.; Satta, M.; Mascia, V.; Arzedi, E.; Palmas, F. In-vitro antimicrobial activity and chemical composition of Sardinian Thymus essential oils. Lett. Appl. Microbiol. 1999, 29, 130–135. [Google Scholar] [CrossRef] [PubMed]
- Miceli, A.; Negro, C.; Tommasi, L. Essential oil variability in Thymbra capitata (L.) Cav. growing wild in Southern Apulia (Italy). Biochem. Syst. Ecol. 2006, 34, 528–535. [Google Scholar] [CrossRef]
- Pánek, M.; Reinprecht, L.; Hulla, M. Ten Essential Oils for Beech Wood Protection—Efficacy Against Wood-destroying Fungi and Moulds, and Effect on Wood Discoloration. BioResources 2014, 9, 5588–5603. [Google Scholar] [CrossRef] [Green Version]
- Reinprecht, L.; Pop, D.-M.; Vidholdová, Z.; Timar, M.C. Anti-decay potential of five essential oils against the wood-decaying fungi Serpula lacrymans and Trametes versicolor. Acta Fac. Xylologiae Zvolen. 2019, 61, 63–72. [Google Scholar] [CrossRef]
- Alinejad, M.; Henry, C.; Nikafshar, S.; Gondaliya, A.; Bagheri, S.; Chen, N.; Singh, S.K.; Hodge, D.B.; Nejad, M. Lignin-Based Polyurethanes: Opportunities for Bio-Based Foams, Elastomers, Coatings and Adhesives. Polymers 2019, 11, 1202. [Google Scholar] [CrossRef] [Green Version]
- Balakshin, M.Y.; Capanema, E.A.; Sulaeva, I.; Schlee, P.; Huang, Z.; Feng, M.; Borghei, M.; Rojas, O.J.; Potthast, A.; Rosenau, T. New Opportunities in the Valorization of Technical Lignins. ChemSusChem 2021, 14, 1016–1036. [Google Scholar] [CrossRef] [PubMed]
- Bergamasco, S.; Tamantini, S.; Zikeli, F.; Vinciguerra, V.; Scarascia Mugnozza, G.; Romagnoli, M. Synthesis and Characterizations of Eco-Friendly Organosolv Lignin-Based Polyurethane Coating Films for the Coating Industry. Polymers 2022, 14, 416. [Google Scholar] [CrossRef] [PubMed]
- de Hoyos-Martinez, P.L.; Charrier-El Bouhtoury, F.; Labidi, J. Biobased phenolic resins for wood protection against fire. In Proceedings of the COST FP1407 3rd Conference ”Wood Modification Research and Applications”, Kuchl, Austria, 14–15 September 2017. [Google Scholar]
- Jusic, J.; Tamantini, S.; Romagnoli, M.; Vinciguerra, V.; Di Mattia, E.; Zikeli, F.; Cavalera, M.; Scarascia Mugnozza, G. Improving sustainability in wood coating: Testing lignin and cellulose nanocrystals as additives to commercial acrylic wood coatings for bio-building. Iforest-Biogeosciences For. 2021, 14, 499–507. [Google Scholar] [CrossRef]
- Santiago-Medina, F.J.; Basso, M.C.; Pizzi, A.; Delmotte, L. Polyurethanes from Kraft Lignin without Using Isocyanates. J. Renew. Mater. 2018, 6, 413–425. [Google Scholar] [CrossRef]
- Singh, T.; Singh, A.P. A review on natural products as wood protectant. Wood Sci. Technol. 2012, 46, 851–870. [Google Scholar] [CrossRef]
- Teaca, C.-A.; Roşu, D.; Mustaţă, F.; Rusu, T.; Roşu, L.; Roşca, I.; Varganici, C.D. Natural bio-based products for wood coating and protection against degradation: A Review. BioResources 2019, 14, 4873–4901. [Google Scholar] [CrossRef]
- Tamantini, S.; Bergamasco, S.; Zikeli, F.; Humar, M.; Cavalera, M.; Romagnoli, M. Cellulose Nano Crystals (CNC) as Additive for a Bio-Based Waterborne Acrylic Wood Coating: Decay, Artificial Weathering, Physical and Chemical Tests. Nanomaterials 2023, 13, 442. [Google Scholar] [CrossRef]
- Zikeli, F.; Vinciguerra, V.; D’Annibale, A.; Capitani, D.; Romagnoli, M.; Scarascia Mugnozza, G. Preparation of Lignin Nanoparticles from Wood Waste for Wood Surface Treatment. Nanomaterials 2019, 9, 281. [Google Scholar] [CrossRef] [Green Version]
- Vieira, F.R.; Magina, S.; Evtuguin, D.V.; Barros-Timmons, A. Lignin as a Renewable Building Block for Sustainable Polyurethanes. Materials 2022, 15, 6182. [Google Scholar] [CrossRef]
- Henn, K.A.; Forsman, N.; Zou, T.; Österberg, M. Colloidal Lignin Particles and Epoxies for Bio-Based, Durable, and Multiresistant Nanostructured Coatings. ACS Appl. Mater. Interfaces 2021, 13, 34793–34806. [Google Scholar] [CrossRef]
- Beisl, S.; Friedl, A.; Miltner, A. Lignin from Micro- to Nanosize: Applications. Int. J. Mol. Sci. 2017, 18, 2367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hussin, M.H.; Appaturi, J.N.; Poh, N.E.; Latif, N.H.A.; Brosse, N.; Ziegler-Devin, I.; Vahabi, H.; Syamani, F.A.; Fatriasari, W.; Solihat, N.N.; et al. A recent advancement on preparation, characterization and application of nanolignin. Int. J. Biol. Macromol. 2022, 200, 303–326. [Google Scholar] [CrossRef] [PubMed]
- Österberg, M.; Sipponen, M.H.; Mattos, B.D.; Rojas, O.J. Spherical lignin particles: A review on their sustainability and applications. Green. Chem. 2020, 22, 2712–2733. [Google Scholar] [CrossRef] [Green Version]
- Pereira, A.d.E.S.; Luiz de Oliveira, J.; Maira Savassa, S.; Barbara Rogério, C.; Araujo de Medeiros, G.; Fraceto, L.F. Lignin nanoparticles: New insights for a sustainable agriculture. J. Clean. Prod. 2022, 345, 131145. [Google Scholar] [CrossRef]
- Pylypchuk, I.; Sipponen, M.H. Organic solvent-free production of colloidally stable spherical lignin nanoparticles at high mass concentrations. Green. Chem. 2022, 24, 8705–8715. [Google Scholar] [CrossRef]
- Sipponen, M.H.; Lange, H.; Ago, M.; Crestini, C. Understanding Lignin Aggregation Processes. A Case Study: Budesonide Entrapment and Stimuli Controlled Release from Lignin Nanoparticles. ACS Sustain. Chem. Eng. 2018, 6, 9342–9351. [Google Scholar] [CrossRef]
- Sipponen, M.H.; Lange, H.; Crestini, C.; Henn, A.; Österberg, M. Lignin for Nano- and Microscaled Carrier Systems: Applications, Trends, and Challenges. ChemSusChem 2019, 12, 2039–2054. [Google Scholar] [CrossRef]
- Stanisz, M.; Klapiszewski, Ł.; Collins, M.N.; Jesionowski, T. Recent progress in biomedical and biotechnological applications of lignin-based spherical nano- and microstructures: A comprehensive review. Mater. Today Chem. 2022, 26, 101198. [Google Scholar] [CrossRef]
- Liu, K.; Zhuang, Y.; Chen, J.; Yang, G.; Dai, L. Research Progress on the Preparation and High-Value Utilization of Lignin Nanoparticles. Int. J. Mol. Sci. 2022, 23, 7254. [Google Scholar] [CrossRef]
- Verdini, F.; Gaudino, E.C.; Canova, E.; Tabasso, S.; Behbahani, P.J.; Cravotto, G. Lignin as a Natural Carrier for the Efficient Delivery of Bioactive Compounds: From Waste to Health. Molecules 2022, 27, 3598. [Google Scholar] [CrossRef]
- Mattos, B.D.; Tardy, B.L.; Magalhães, W.L.E.; Rojas, O.J. Controlled release for crop and wood protection: Recent progress toward sustainable and safe nanostructured biocidal systems. J. Control. Release 2017, 262, 139–150. [Google Scholar] [CrossRef]
- Andeme Ela, R.C.; Tajiri, M.; Newberry, N.K.; Heiden, P.A.; Ong, R.G. Double-Shell Lignin Nanocapsules Are a Stable Vehicle for Fungicide Encapsulation and Release. ACS Sustain. Chem. Eng. 2020, 8, 17299–17306. [Google Scholar] [CrossRef]
- Falsini, S.; Clemente, I.; Papini, A.; Tani, C.; Schiff, S.; Salvatici, M.C.; Petruccelli, R.; Benelli, C.; Giordano, C.; Gonnelli, C.; et al. When Sustainable Nanochemistry Meets Agriculture: Lignin Nanocapsules for Bioactive Compound Delivery to Plantlets. ACS Sustain. Chem. Eng. 2019, 7, 19935–19942. [Google Scholar] [CrossRef] [Green Version]
- Yin, J.-M.; Wang, H.-L.; Yang, Z.-K.; Wang, J.; Wang, Z.; Duan, L.-S.; Li, Z.-H.; Tan, W.-M. Engineering Lignin Nanomicroparticles for the Antiphotolysis and Controlled Release of the Plant Growth Regulator Abscisic Acid. J. Agric. Food Chem. 2020, 68, 7360–7368. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Shi, Y.; Gao, B.; Zhao, Y.; Jiang, Y.; Zha, Z.; Xue, W.; Gong, L. Lignin Nanoparticles: Green Synthesis in a γ-Valerolactone/Water Binary Solvent and Application to Enhance Antimicrobial Activity of Essential Oils. ACS Sustain. Chem. Eng. 2020, 8, 714–722. [Google Scholar] [CrossRef]
- Aguiar, M.C.S.; Denadae, B.E.; Silva, M.F.G.F.; Fernandes, J.B.; Bittencourt, P.R.S.; Scremin, F.R.; Forim, M.R. Quality Control for Lignin and Gelatin Microcapsules Loaded with Orange Essential Oil. J. Braz. Chem. Soc. 2022, 33, 85–95. [Google Scholar] [CrossRef]
- Raspor, P.; Smole Možina, S.; Podjavoršek, J.; Pohleven, F.; Gogala, N.; Nekrep, F.V.; Rogelj, I.; Hacin, J. ZIM: Culture Collection of Industrial Microorganisms; University of Ljubljana: Ljubljana, Slovenia, 1995. [Google Scholar]
- Van, N.T.B.; Vi, O.T.; Yen, N.T.P.; Nhung, N.T.; Cuong, N.V.; Kiet, B.T.; Hoang, N.V.; Hien, V.B.; Thwaites, G.; Campell, J.; et al. Minimum inhibitory concentrations of commercial essential oils against common chicken pathogenic bacteria and their relationship with antibiotic resistance. J. Appl. Microbiol. 2022, 132, 1025–1035. [Google Scholar] [CrossRef] [PubMed]
- Szeghalmi, A.; Kaminskyj, S.; Gough, K.M. A synchrotron FTIR microspectroscopy investigation of fungal hyphae grown under optimal and stressed conditions. Anal. Bioanal. Chem. 2007, 387, 1779–1789. [Google Scholar] [CrossRef]
- Bekiaris, G.; Tagkouli, D.; Koutrotsios, G.; Kalogeropoulos, N.; Zervakis, G.I. Pleurotus Mushrooms Content in Glucans and Ergosterol Assessed by ATR-FTIR Spectroscopy and Multivariate Analysis. Foods 2020, 9, 535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhat, R. Potential Use of Fourier Transform Infrared Spectroscopy for Identification of Molds Capable of Producing Mycotoxins. Int. J. Food Prop. 2013, 16, 1819–1829. [Google Scholar] [CrossRef]
- Dzurendova, S.; Zimmermann, B.; Kohler, A.; Tafintseva, V.; Slany, O.; Certik, M.; Shapaval, V. Microcultivation and FTIR spectroscopy-based screening revealed a nutrient-induced co-production of high-value metabolites in oleaginous Mucoromycota fungi. PLoS ONE 2020, 15, e0234870. [Google Scholar] [CrossRef]
- Gupta, B.S.; Jelle, B.P.; Gao, T. Application of ATR-FTIR Spectroscopy to Compare the Cell Materials of Wood Decay Fungi with Wood Mould Fungi. Int. J. Spectrosc. 2015, 2015, 521938. [Google Scholar] [CrossRef] [Green Version]
- Gupta, B.S.; Jelle, B.P.; Gao, T. In vitro cell composition identification of wood decay fungi by Fourier transform infrared spectroscopy. R. Soc. Open. Sci. 2022, 9, 201935. [Google Scholar] [CrossRef]
- Skotti, E.; Kountouri, S.; Bouchagier, P.; Tsitsigiannis, D.I.; Polissiou, M.; Tarantilis, P.A. FTIR spectroscopic evaluation of changes in the cellular biochemical composition of the phytopathogenic fungus Alternaria alternata induced by extracts of some Greek medicinal and aromatic plants. Spectrochim. Acta Part. A Mol. Biomol. Spectrosc. 2014, 127, 463–472. [Google Scholar] [CrossRef]
- Sompong, M.; Thumanu, K.; Prakhongka, I.; Burapatpong, B.; Athinuwat, D.; Prathuangwong, S.; Buensanteai, N. Infrared spectroscopy: Methods for investigating cellular components of phytopathogenic fungi response to temperature stress. Afr. J. Microbiol. Res. 2013, 7, 4331–4337. [Google Scholar] [CrossRef]
- Huang, C.; Jiang, X.; Shen, X.; Hu, J.; Tang, W.; Wu, X.; Ragauskas, A.; Jameel, H.; Meng, X.; Yong, Q. Lignin-enzyme interaction: A roadblock for efficient enzymatic hydrolysis of lignocellulosics. Renew. Sustain. Energy Rev. 2022, 154, 111822. [Google Scholar] [CrossRef]
- del Cerro, C.; Erickson, E.; Dong, T.; Wong, A.R.; Eder, E.K.; Purvine, S.O.; Mitchell, H.D.; Weitz, K.K.; Markillie, L.M.; Burnet, M.C.; et al. Intracellular pathways for lignin catabolism in white-rot fungi. Proc. Natl. Acad. Sci. USA 2021, 118, e2017381118. [Google Scholar] [CrossRef] [PubMed]
- Kijpornyongpan, T.; Schwartz, A.; Yaguchi, A.; Salvachúa, D. Systems biology-guided understanding of white-rot fungi for biotechnological applications: A review. iScience 2022, 25, 104640. [Google Scholar] [CrossRef] [PubMed]
- Subhash, G.V.; Mohan, S.V. Sustainable biodiesel production through bioconversion of lignocellulosic wastewater by oleaginous fungi. Biomass Convers. Biorefinery 2015, 5, 215–226. [Google Scholar] [CrossRef]
- Hao, G.; Barker, G.C. Fatty acid secretion by the white-rot fungus, Trametes versicolor. J. Ind. Microbiol. Biotechnol. 2021, 49, kuab083. [Google Scholar] [CrossRef] [PubMed]
EO TC | EO CC | EO TV | EO TVD | ||||
---|---|---|---|---|---|---|---|
Component | % Peak Area | Component | % Peak Area | Component | % Peak Area | Component | % Peak Area |
carvacrol | 68.6 | carvacrol | 76.9 | thymol | 47.9 | p-cymene | 26.7 |
p-cymene | 7.7 | α-bisabolene | 3.7 | p-cymene | 15.8 | thymol | 20.7 |
γ-terpinene | 6.8 | caryophyllene oxide | 3.3 | γ-terpinene | 10.0 | limonene | 5.6 |
β-caryophyllene | 2.6 | β-bisabolene | 3.2 | carvacrol | 4.4 | α-terpinolene | 5.0 |
β-myrcene | 1.8 | β-caryophyllene | 2.8 | linalool | 4.1 | carvacrol | 3.8 |
linalool | 1.5 | carvacrol acetate | 1.4 | β-caryophyllene | 2.1 | β-caryophyllene | 2.9 |
α-thujene | 1.2 | L-terpinen-4 ol | 0.6 | β-myrcene | 2.0 | camphene | 2.3 |
α-terpinene | 1.1 | eugenol | 0.3 | borneol | 1.3 | α-pinene | 2.1 |
α-pinene | 0.9 | borneol | 0.3 | α-terpinene | 1.3 | borneol | 2.1 |
terpinene 4-ol | 0.7 | δ-cadinene | 0.2 | α-thujene | 1.2 | linalool | 2.0 |
thymol | 0.6 | cedrenol | 0.7 | camphene | 1.1 | β-pinene | 1.9 |
Solids (mg/mL) | EO (mg/mL) | DLE (%) | DLC (%) | |
---|---|---|---|---|
LNPs solo | 16.7 | - | - | - |
EOL-CC | 15.7 | 5.0 | 50 | 32 |
EOL-TC | 16.7 | 7.1 | 71 | 43 |
EOL-TV | 17.3 | 5.6 | 56 | 32 |
EOL-TVD | 15.7 | 7.5 | 75 | 48 |
Fungal Strain | EOL | MIC | * MIC EOs Solo |
---|---|---|---|
(mg/mL) | (mg/mL) | ||
T. versicolor | EOL-CC | 0.60 | 0.60 |
EOL-TC | 0.30 | 0.30 | |
EOL-TV | 0.30 | 0.30 | |
EOL-TVD | 0.60 | 0.60 | |
P. ostreatus | EOL-CC | 0.30 | 0.30 |
EOL-TC | 0.30 | 0.30 | |
EOL-TV | 0.30 | 0.30 | |
EOL-TVD | 0.60 | 0.60 | |
G. trabeum | EOL-CC | 0.30 | 0.60 |
EOL-TC | 0.30 | 0.60 | |
EOL-TV | 0.15 | 0.30 | |
EOL-TVD | 0.30 | 0.60 | |
P. monticola | EOL-CC | 0.15 | 0.30 |
EOL-TC | 0.05 | 0.05 | |
EOL-TV | 0.15 | 0.30 | |
EOL-TVD | 0.15 | 0.30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zikeli, F.; Vettraino, A.M.; Biscontri, M.; Bergamasco, S.; Palocci, C.; Humar, M.; Romagnoli, M. Lignin Nanoparticles with Entrapped Thymus spp. Essential Oils for the Control of Wood-Rot Fungi. Polymers 2023, 15, 2713. https://doi.org/10.3390/polym15122713
Zikeli F, Vettraino AM, Biscontri M, Bergamasco S, Palocci C, Humar M, Romagnoli M. Lignin Nanoparticles with Entrapped Thymus spp. Essential Oils for the Control of Wood-Rot Fungi. Polymers. 2023; 15(12):2713. https://doi.org/10.3390/polym15122713
Chicago/Turabian StyleZikeli, Florian, Anna Maria Vettraino, Margherita Biscontri, Sara Bergamasco, Cleofe Palocci, Miha Humar, and Manuela Romagnoli. 2023. "Lignin Nanoparticles with Entrapped Thymus spp. Essential Oils for the Control of Wood-Rot Fungi" Polymers 15, no. 12: 2713. https://doi.org/10.3390/polym15122713
APA StyleZikeli, F., Vettraino, A. M., Biscontri, M., Bergamasco, S., Palocci, C., Humar, M., & Romagnoli, M. (2023). Lignin Nanoparticles with Entrapped Thymus spp. Essential Oils for the Control of Wood-Rot Fungi. Polymers, 15(12), 2713. https://doi.org/10.3390/polym15122713