
Citation: Zikeli, F.; Vettraino, A.M.;

Biscontri, M.; Bergamasco, S.; Palocci,

C.; Humar, M.; Romagnoli, M. Lignin

Nanoparticles with Entrapped

Thymus spp. Essential Oils for the

Control of Wood-Rot Fungi. Polymers

2023, 15, 2713. https://doi.org/

10.3390/polym15122713

Academic Editor: Antonios

N. Papadopoulos

Received: 27 April 2023

Revised: 10 June 2023

Accepted: 13 June 2023

Published: 17 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

polymers

Article

Lignin Nanoparticles with Entrapped Thymus spp. Essential
Oils for the Control of Wood-Rot Fungi
Florian Zikeli 1,* , Anna Maria Vettraino 1 , Margherita Biscontri 1, Sara Bergamasco 1 , Cleofe Palocci 2,3,
Miha Humar 4 and Manuela Romagnoli 1,*

1 Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia,
01100 Viterbo, Italy; vettrain@unitus.it (A.M.V.); margherita.biscontri@unitus.it (M.B.);
sara.bergamasco@unitus.it (S.B.)

2 Department of Chemistry, Sapienza University of Rome, Piazzale A. Moro 5, 00185 Rome, Italy;
cleofe.palocci@uniroma1.it

3 Research Center for Applied Sciences to the Safeguard of Environment and Cultural Heritage (CIABC),
Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy

4 Department of Wood Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101,
1000 Ljubljana, Slovenia; miha.humar@bf.uni-lj.si

* Correspondence: zikeli@unitus.it (F.Z.); mroma@unitus.it (M.R.)

Abstract: After decades of utilization of fossil-based and environmentally hazardous compounds for
wood preservation against fungal attack, there is a strong need to substitute those compounds with
bio-based bioactive solutions, such as essential oils. In this work, lignin nanoparticles containing four
essential oils from thyme species (Thymus capitatus, Coridothymus capitatus, T. vulgaris, and T. vulgaris
Demeter) were applied as biocides in in vitro experiments to test their anti-fungal effect against two
white-rot fungi (Trametes versicolor and Pleurotus ostreatus) and two brown-rot fungi (Poria monticola
and Gloeophyllum trabeum). Entrapment of essential oils provided a delayed release over a time frame
of 7 days from the lignin carrier matrix and resulted in lower minimum inhibitory concentrations
of the essential oils against the brown-rot fungi (0.30–0.60 mg/mL), while for the white-rot fungi,
identical concentrations were determined compared with free essential oils (0.05–0.30 mg/mL).
Fourier Transform infrared (FTIR) spectroscopy was used to assess the fungal cell wall changes in
the presence of essential oils in the growth medium. The results regarding brown-rot fungi present
a promising approach for a more effective and sustainable utilization of essential oils against this
class of wood-rot fungi. In the case of white-rot fungi, lignin nanoparticles, as essential oils delivery
vehicles, still need optimization in their efficacy.

Keywords: wood decay; white-rot fungi; brown-rot fungi; beech; lignin nanoparticles; essential oils

1. Introduction

The interest in wood as the construction material of the future is steadily increasing
not only because of its role in CO2 sequestration into woody tissue but also because of
the 50% reduction in a new building’s carbon footprint when concrete or steel is replaced
by wood [1]. There are still obstacles for the general acceptance of wood-based buildings,
which are related to the risk of degradation by wood-rot fungi, especially when considering
less durable wood species such as beech, which is abundantly present in all of Europe
and suitable for the bio-building sector [2,3]. Wood preservation is imperative to extend
the service life of wood products. The strategies based on the use of toxic chemical wood
preservation agents, such as polycyclic aromatic hydrocarbons containing creosote or
chromated copper arsenate, which have a great impact on the environment, must be
replaced by eco-friendly strategies [4]. The most used methods for wood preservation
are still based on fossil-based organic compounds [5–7], non-renewable inorganic salts,
or combinations of the two [8,9]. Innovative methods also comprise the application of
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nanomaterials, although the possible effects on human and environmental health need to
be carefully assessed, as recently reviewed by Papadopoulos and Taghiyari [10]. In this
context, the interest for more environmentally friendly solutions for wood preservation,
such as thermal and other modification techniques [11–14], as well as impregnation with
natural products, has rapidly increased [15–18]. Among natural bioactive compounds,
essential oils (EOs) have gained considerable interest from researchers regarding their
application as biocides [19–38]. EOs have been used since Ancient Egypt where plants were
extracted using animal fats and vegetable oils, and their use increased after the invention
of steam distillation at approximately 1000 AD in Arabia, which set the standard industrial
method for EO extraction of today. In the first half of the 20th century, aromatherapy
was founded, and early research demonstrated the therapeutic properties of EOs that,
consequently, led to the treatments of various medical conditions, such as cancer, pain,
stress, and infectious diseases, utilizing EOs today [39].

EOs can contain up to several hundreds of individual compounds, and through this
large palette of molecules with various functional moieties and their respective chemical
and physiological properties, EOs exhibit a multi-target activity in contrast to single chemi-
cal compounds [40]. Thus, these mixtures of plant secondary metabolites, such as terpenes,
aldehydes, alcohols, ketones, and phenols, play an important role in growth inhibition of a
wide range of human, as well as plant, pathogens. Further, broad antiviral properties of
EOs were reported, where EOs stimulate immune response and, at the same time, suppress
inflammation caused by viral infection. Thus, EOs were also utilized for supplemental treat-
ments against COVID-19, causing rapid viral clearance, reduced fatigue, as well as shorter
recovery times, as recently reviewed by [41]. The antibacterial activities of EOs comprise
the destruction of cell membranes and eventual leakage of cell contents, damage of genetic
material of microorganisms, inhibition of enzymes responsible for their metabolism, and
consumption of ATP stored in their cells [42,43]. Regarding plant fungal pathogens, the
mycelia growth of Botrytis cinerea, Penicillium italicum, and P. digitatum can be significantly
reduced by EOs from oregano (Origanum vulgare L. ssp. hirtum), thyme (Thymus vulgaris
L.), and lemon (Citrus limon L.) [44]. EOs from clove (Syzygium aromaticum), lemongrass
(Cymbopogon citratus), mint (Mentha × piperita), and eucalyptus (Eucalyptus globulus) inhibit
tomato wilt by Fusarium oxysporum f. sp. lycopersici 1322 [45]. EO from Pinus rigida wood
completely inhibited the growth of the common wood mold fungi Alternaria alternata, Fusar-
ium subglutinans, Chaetomium globosum, and Aspergillus niger, while Eucalyptus camaldulensis
leaf EO showed inhibitory effects against F. subglutinans and C. globosum [46]. Dill seed EO
inhibited mycelium growth and sclerotial germination of Sclerotinia sclerotiorum in vitro
and suppressed S. sclerotium on infected oilseed rape leaves in vivo [47].

One of the advantages when utilizing EOs as biocides is that most of the terpenoids
and phenols found in the plant EOs are relatively less toxic to humans and the environ-
ment than are synthetic chemicals [48]. Accordingly, thyme EO, as well as its principal
components thymol and carvacrol, is generally recognized as safe for use in minimum-risk
pesticides, and there are no significant adverse effects known to human health and the
environment [49,50]. Since thyme EO and the thymol and carvacrol it contains are readily
biodegradable in air, water, and soil, their utilization as biocides for wood protection is
not expected to cause negative environmental effects [51]. Thymus spp. EOs, in general,
consist of the two phenolic monoterpenes thymol and carvacrol, the aromatic terpenoid
p-cymene, and the terpene y-terpinene, but the contents of these compounds can vary
strongly depending on the respective thyme species as well as on the respective cultivation
methods and locations. For Tunisian T. capitatus EO, carvacrol contents of 62–83% were
reported [52,53], while the major component in T. capitatus EO from Sardinia was thymol
with 29.3% [54]. The great variability of the main components is supported in a study by
Miceli et al., who collected samples of T. capitatus at 23 different sites in Southern Apulia,
Italy, where thymol contents ranged from 1 to 72%, and the carvacrol contents ranged from
7 to 74% [55].
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Despite significant advances in the use of EOs against plant pathogens, only a few
studies have investigated the antifungal effect of thyme EOs against specific wood-rot
fungi and showed promising bioactivity against white-rot fungi, such as Trametes versicolor
and T. hirsuta, and against the brown-rot Laetiporous sulphureus and the wet-rot Coniopohora
puteana [25,56,57]. In a recent work, the authors studied in vitro the antifungal effects of
pure thyme EOs against brown-rot (Gloeophyllum trabeum and Poria monticola) as well as
white-rot fungi (T. versicolor and Pleurotus ostreatus) and proved their efficiency as biocides
against wood-rot fungi [22]. Other alternatives for greener wood protection approaches
are the substitution of fossil-based components in commonly used wood protection formu-
lations with bio-based additives or, e.g., the utilization of lignin nanoparticles (LNPs) as
coatings or as carriers of bioactives [4,25,58–69].

Recently, LNPs have been investigated in detail as nano- or microcarriers in the design
of biocide delivery systems in agricultural or pharma applications [70–79]. Lignin qualifies
as a carrier material due to its intrinsic properties as an aromatic phenolic macromolecule. It
can provide protection to UV-sensitive loaded compounds and prevent the oxidation of the
loadings due to its anti-oxidant properties as well as provide an unwanted fast evaporation
of the volatile bioactive loadings, such as in the case of volatile essential oils [76,80]. LNPs
were successfully tested as carriers and for the eventual controlled release of fungicides and
plant growth regulators [81,82]. Others additionally took advantage of the UV-protective
properties of lignin to prepare LNPs containing the photosensitive abscisic acid for its
controlled release for plant growth stimulation [83]. The literature reports regarding the
encapsulation of EOs into LNPs, however, are rather rare. Chen et al. prepared pickering
emulsions of EOs containing cinnamaledhyde and eugenol stabilized by LNPs and applied
them for the post-harvest protection of oranges, where fruit decay by Penicillium italicum
was reduced by almost 50% when EOs were stabilized by LNPs [84]. Another research
work utilized lignin for the encapsulation of orange EO and found an increased toxicity of
orange EO against the pest insect Spodoptera frugiperda compared with non-encapsulated
orange EO in the conducted bioassay [85].

In recent works, Zikeli et al. successfully tested the entrapment of cinnamon and thyme
EOs into LNPs, and the successive delayed release of the entrapped EOs [24]. Additionally,
LNPs with entrapped thyme EOs were successfully applied for controlling Phytophtora
cactorum diseases [23].

The aim of this study was to apply EOs from Thymus spp. entrapped into LNPs as
antifungal additives in the cultivation substrate of the two white-rot fungi T. versicolor
and P. ostreatus and of the two brown-rot fungi G. trabeum and P. monticola, respectively.
Entrapment of EOs in LNPs for their utilization in industrial wood preservation applications
will reduce treatment costs significantly and are expected to have a positive effect on their
efficiency as biocides due to the decreased release rate and longer duration of their biocidal
effect. To our best knowledge, this is the first time that EO-containing LNPs are applied as
biological control agents against wood-rot fungi.

2. Materials and Methods
2.1. Essential Oils Containing Lignin Nanoparticles Preparation

Organsolv lignin (OSL) from beech wood was supplied by Fraunhofer CBP (Leuna,
Germany). Acetone (HPLC grade) and EtOH (96%, ACS reagent grade) were purchased
from Carlo Erba reagents (Cornaredo, Italy). Seamless cellulose dialysis tubing with a
MWCO of 12 kDa was purchased from Sigma-Aldrich (Merck KGaA, Darmstadt, Germany).

Essential oils (EOs) from Thymus capitatus (TC), Coridothymus capitatus (CC), T. vulgaris
(TV), and T. vulgaris Demeter (TVD), identical to those used in an earlier work [22], were
kindly provided by Flora srl, Florence, Italy (Table 1). The plants were cultivated either on
organic farms in Spain (TC and TV) or on Demeter biodynamic (TVD) or organic farms
(TV) in Italy, respectively. Flora srl extracted respective essential oils by hydrodistillation
using a Clevenger-type apparatus. Chemical compositions were determined by Flora srl,
using a PerkinElmer Clarus 500 GC-FIDMS system, and are reported in Table 1.
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Table 1. Main chemical compounds (relative abundance) contained in the essential oils of Thymus
capitatus (EO TC), Coridothymus capitatus (EO CC), T. vulgaris (EO TV), and T. vulgaris Demeter
(EO TVD).

EO TC EO CC EO TV EO TVD

Component % Peak Area Component % Peak Area Component % Peak Area Component % Peak Area

carvacrol 68.6 carvacrol 76.9 thymol 47.9 p-cymene 26.7
p-cymene 7.7 α-bisabolene 3.7 p-cymene 15.8 thymol 20.7

γ-terpinene 6.8 caryophyllene
oxide 3.3 γ-terpinene 10.0 limonene 5.6

β-caryophyllene 2.6 β-bisabolene 3.2 carvacrol 4.4 α-terpinolene 5.0
β-myrcene 1.8 β-caryophyllene 2.8 linalool 4.1 carvacrol 3.8

linalool 1.5 carvacrol acetate 1.4 β-caryophyllene 2.1 β-caryophyllene 2.9
α-thujene 1.2 L-terpinen-4 ol 0.6 β-myrcene 2.0 camphene 2.3
α-terpinene 1.1 eugenol 0.3 borneol 1.3 α-pinene 2.1
α-pinene 0.9 borneol 0.3 α-terpinene 1.3 borneol 2.1

terpinene 4-ol 0.7 δ-cadinene 0.2 α-thujene 1.2 linalool 2.0
thymol 0.6 cedrenol 0.7 camphene 1.1 β-pinene 1.9

Essential oils containing lignin nanoparticles (EOLs) were prepared according to the
protocol reported in Zikeli et al. [24], with small modifications. OSL (300 mg) and respective
EOs (100 mg) were dissolved in 10 mL acetone and filled into dialysis bags, which were
exposed to an excess of distilled water under stirring for 2.5 h at room temperature. Dialysis
time was retained long enough to get rid of acetone and short enough to prevent release
of the entrapped EOs. After dialysis, the samples were kept in the refrigerator for further
analysis and application. Solid content of the EOL was determined by freeze-drying of
aliquots of the prepared EOL dispersions. EO contents were determined with a Ultrospec
1000 photometer (Pharmacia Biotech, GE Healthcare Europe GmbH, Milano, Italy), diluting
the EOL dispersions in EtOH/water (50/50 vol%) at 280 nm against external calibration by
dilutions of the respective pure EO samples. EO contents were determined in triplicate.

For preparation of the samples for SEM, three drops of the EOL suspensions were
adsorbed onto a glass coverslip and air-dried at 25 ◦C (4 h). The cover slips were then
attached to aluminum stubs using carbon tape and sputter-coated with gold in a Balzers
MED 010 unit (Oerlikon Balzers, Balzers, Liechtenstein), followed by SEM analysis using a
JSM 6010LA electron microscope (JEOL Ltd., Tokyo, Japan).

Release experiments were conducted using 25 µL EOL samples in 225 µL liquid fungal
cultivation medium (potato dextrose broth, 24 g/L, autoclaved at 121 ◦C for 20 min, VWR
International S.r.l., Milan, Italy) in steady state in the refrigerator. Every 24 h, a sample
was taken, the EO content was quantified using UV photometry as explained above, and
a cumulative release of the EO was determined. Release experiments were conducted in
triple determination, and the reported values represent the average of three experiments.

2.2. Fungal Strains

Trametes versicolor (ZIML057), G. trabeum (ZIML018), P. ostreatus (ZIML030), and P. mon-
ticola (ZIML037) from the Department of Wood Science and Technology, University of
Ljubljana (Slovenia), were cultivated on Malt Extract Agar medium (MEA, 20 g/L malt
extract (Oxoid, Basingstoke, UK) and 15 g/L bacteriological agar (VWR International srl,
Milan, Italy)) plates by subculture of mycelia from an active 7-day culture at 24 ◦C for seven
days. The fungal isolates derived from the fungal collection of the Biotechnical Faculty,
University of Ljubljana, and are available to research institutions on demand. Origin and
details of the fungal isolates are described in the respective catalogue [86].

2.3. Anti-Fungal Assay

In vitro antifungal activity of EOLs on mycelia growth of the selected fungi were
determined using the method described by Vettraino et al. [23]. In particular, treatments
were prepared within the concentration range of 0.05–1.20 mg/mL (0.05, 0.15, 0.30, 0.60, and
1.20 mg/mL). Five different concentrations of nano-encapsulated essential oils, as well as



Polymers 2023, 15, 2713 5 of 19

empty LNPs (LNPs solo), were dissolved into Malt Extract Agar (MEA, 20 mL) just before
it was poured into the Petri dishes (9 cm) at a temperature of 45–50 ◦C. A 6 mm diameter
circular disk of each fungal isolate, cut from the margin of the actively growing cultures
on MEA using a cork borer, was inoculated in the center of each Petri dish containing the
different treatments. Negative controls had only empty nanoparticles and untreated MEA.
Petri dishes were sealed with polyethylene film and incubated at 25 ± 2 ◦C. Mycelia growth
was measured every day for 7 days. Five replicates for each treatment were performed.
The minimum inhibitory concentration (MIC) was determined as the lowest concentration
that completely inhibited the fungal growth.

2.4. FTIR Spectroscopy

FTIR spectra of T. versicolor, P. ostreatus, P. monticola, and G. trabeum grown on MEA
and MEA amended with EOLs, respectively, were recorded on a Jasco FTIR-4100 FTIR spec-
trometer (Jasco Corporation, Easton, MD, USA). For the evaluation of fungal growth under
stress conditions, the FTIR spectra of culture medium samples with EO concentrations
just below the respective MICs were taken. The mycelium samples were analyzed after
thorough and repeated (3 times) washing with distilled water, followed by centrifugation
and freeze-drying (−50 ◦C, 72 h) to remove cultivation medium residues. After grinding in
an agate mortar, potassium bromide (KBr) discs were prepared with a sample concentration
of 2% (wt.) using a Specac Mini-Pellets Press (Specac Inc., Fort Washington, MD, USA).
The spectra were acquired in the absorbance mode in the range of 4000–400 cm−1, with a
resolution of 4 cm−1 against a background of pure KBr, and 64 scans were accumulated.
Raw FTIR spectra were smoothed using the Means–Movement method with a convolu-
tion width of 15, baseline-corrected (zero absorbance at 822 cm−1, 1815 cm−1, 1860 cm−1,
2350 cm−1, and 3800 cm−1), and normalized to the absorbance maximum in the fingerprint
region at 1076 cm−1 using Spectra Manager software (v. 2.15.01, Jasco Corporation, Easton,
MD, USA). The resulting FTIR spectra were background-corrected in order to eliminate
spectral information deriving from the cultivation substrate, as described in Vettraino
et al. [22]. Second-derivative FTIR spectra were produced using the Savitzky–Golay algo-
rithm (polynomial degree 3, 11 data points) and utilized for IR band area integration as
well as principal component analysis (PCA) using Spectra Manager software.

2.5. Statistical Analysis

In order to evaluate the effect of pure nanoparticles against fungal growth, obtained
data and control data were subjected to analysis of variance (ANOVA) using the Shapiro–
Wilk test, and the means were compared by the Kruskal–Wallis test (p > 0.05) using Graph-
Pad Prism 5.0 (GraphPad Software, San Diego, CA, USA). PCA was applied on second-
derivative FTIR spectra using the PCA Model Editor of the Spectra Manager Software.
Number of principal components was 3, and the calculation ranges were 3050–2750 cm−1

and 1835–825 cm−1.

3. Results and Discussion
3.1. Characterization of Lignin Nanoparticles Loaded with Essential Oils (EOL)

The detailed compositions of the utilized essential oils and their percentages are
provided in Table 1. The three terpenoids—carvacrol, thymol, and p-cymene—can be
considered as key compounds, as at least one of them is present in high concentrations
in each of the four EOs. Further description of the contained substance classes is already
presented in detail in Vettraino et al. [22].

The prepared EOLs had solid contents of 15.7–17.3 mg/mL, and the respective EO
contents ranged from 5.0 to 7.5 mg (Table 2). The resulting drug-loading efficiencies (DLE)
were between 50 and 75%, with the highest value for TVD and the lowest for CC. Drug-
loading capacities (DLC) were in the same range for EOL-CC and EOL-TV, respectively,
while the values were higher for EOL-TC and EOL-TVD. The results for DLE and DLC
were in good accordance with those reported in an earlier work for T. vulgaris and T.
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serpyllum, respectively, where acidolysis lignin from beech wood was used in contrast to
the technical Organosolv beech lignin utilized in this study, indicating little influence of the
lignin extraction process on the EO entrapment into the lignin matrix [24].

Table 2. Solids content, essential oil (EO) content, drug-loading efficiency (DLE), and drug-loading
capacity (DLC) of empty lignin nanoparticles (LNP solo) as well as LNPs with entrapped EOs from C.
capitatus (EOL-CC), T. capitatus (EOL-TC), T. vulgaris (EOL-TV), and T. vulgaris Demeter (EOL-TVD).

Solids
(mg/mL)

EO
(mg/mL)

DLE
(%)

DLC
(%)

LNPs solo 16.7 - - -
EOL-CC 15.7 5.0 50 32
EOL-TC 16.7 7.1 71 43
EOL-TV 17.3 5.6 56 32

EOL-TVD 15.7 7.5 75 48

SEM analysis revealed LNPs with a high polydispersity, ranging from 100 to 200
nanometers to several micrometers (Figure 1). EOLs showed surface pores and hollow
shapes, and some larger particles were observed that contained smaller particles inside
them and, in higher magnifications, film-like structures were observed on the EOL surface,
which were attributed to EOs incorporated into the shells of the particles (Figure 1B,D,F,H,
yellow arrows). This assumption was confirmed by the absence of these film-like structures
on the respective SEM photos of the empty LNPs (Figure 1J).

Release experiments were designed in order to prove the retention of the bioactive
compound inside its carrier matrix and its eventual gradual release over a prolonged time.
The release behavior of the prepared EOLs was tested in a standard liquid cultivation
medium for fungi in order to simulate fungal growth conditions and observe their effect on
the release of the EOs from the lignin nanoparticles. The cumulative release was determined
for 7 days, with the respective cumulative release rates reported in Figure 2. For all four
EOL samples, the initial release from Day 0 to Day 1 was higher than the later daily release
rates. In the SEM images, film-like structures formed from EOs were observed (Figure 1),
which could be responsible for the rather large portion of EOs released during Day 1 of
the release experiment, while EOs incorporated in deeper layers of the LNP matrix were
assumed to be retained for a longer time. Interestingly, the release rate of EOL-TC was
already higher from Day 1 onward, resulting in almost 100% release already after five days.
EOL-CC also showed a high initial release rate, but the release relatively slowed down
afterwards, reaching almost 100% after six days. The release rate of EOL-TVD initially
was rather low, with <40% release after one day but also reaching approximately 95% after
six days of the experiment. In contrast, EOL-TV showed a quite different release, with
the lowest release after one day (32%) and an almost constant release rate until Day 7,
indicating that even after 7 days of release, there was still EO-TV contained inside the
lignin nanoparticles. Interestingly, EOL-TC and EOL-CC, which consisted of an elevated
content of the single component carvacrol, showed a higher initial release rate than EOL-TV
and EOL-TVD, respectively, which contained more thymol and p-cymene, respectively
(Table 1). The different chemical structures of the compounds might interact to a different
extent with the lignin carrier material, which results in a faster or slower release from the
LNPs. Considering the chemical structures of the compounds contained in the EOs, the
non-phenolic terpenoid p-cymene, whose content was higher in EOL-TVD and EOL-TV,
respectively, seemed to contribute to a stronger interaction of the EOs with the lignin carrier.
Compared with an earlier study [24], where full release was already achieved after 72 h, it
must be stated that the release experiment method used strongly affects the outcome. While
in [24], the release experiment was conducted at room temperature and under magnetic
stirring, in this study, the release was assessed in a steady state and in the refrigerator to
prevent the spoilage of the utilized fungal growth medium.



Polymers 2023, 15, 2713 7 of 19
Polymers 2023, 15, x FOR PEER REVIEW  7  of  21 
 

 
 

Figure 1. SEM images of lignin nanoparticles containing essential oils from T. capitatus (A,B), T. vul-
garis (C,D), C. capitatus (E,F), T. vulgaris Demeter (G,H), and empty LNPs (I,J). Yellow arrows indicate
film-like structures.
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3.2. In Vitro Inhibition Experiments

The fungal growth of T. versicolor, G. trabeum, P. ostreatus, and P. monticola was not
significantly affected by the empty LNPs (Kruskal–Wallis statistics, p = 0.07; p = 0.10;
p = 0.98; p = 0.56, respectively). In contrast, the tested EOs entrapped in the LNPs showed
an inhibition effect against the pathogens, with MIC values ranging from 0.05 mg/mL
(P. monticola treated with EOL-TC) up to 0.60 mg/mL (P. ostreatus treated with EOL-TVD
and T. versicolor treated with EOL-TVD and EOL-CC) (Table 3). Of all the EOs investigated,
EOL-TVD had the highest median MIC across all four tested strains (median 0.3 mg/mL;
0.15–0.60 mg/mL). In accordance with previous studies, a considerable variation in the
in vitro inhibitory effects of the different EOs investigated was observed. To a lesser extent,
the observed differences also depended on the pathogen investigated [22,87]. The entrap-
ment of the EOs resulted in a higher inhibition effect against G. trabeum and P. monticola
mycelia growth than treatments with free EOs, while no differences were observed for the
treatments against T. versicolor and P. ostreatus, respectively. The ability of the two white-rot
fungi T. versicolor and P. ostreatus to degrade lignin most likely caused the absence of a
visible effect on the determined MIC of the entrapped EOs compared with pure EOs in
contrast to the brown-rot strains. A positive effect of EOs entrapment into the LNPs also in
the case of the white-rots might be achieved when extending the experimental time to a
point, where all of the lignin carrier material is consumed, and the EOs are fully released.
Another approach to increase efficacy against white-rot may be to decrease the ratio of
lignin to EOs for the preparation of the respective EOLs so that the biocide delivery system
provides relatively less substrate for the white-rot fungi.

3.3. FTIR Spectroscopy

Figure 3 shows the FTIR spectra of the four investigated fungi grown under control
conditions on pure MEA (MEA) and on MEA containing lignin nanoparticles with the four
applied thyme essential oils entrapped. To maintain their ability to carry out specialized
and life-essential functions in the cell, microorganisms are used to adapt to changes and
stressful events in their environment by variation of their cell wall composition in order to
keep the metabolic processes up and running, which is essential for their survival. Thus,
the detection of intensity differences of IR bands specific to their cell wall compounds
indicate modifications in the cell wall composition [88]. IR bands were assigned to specific
compounds in the fungal cell wall—lipids (bands 1, 4, 5, and 9), polyphosphates (bands
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8, 11, and 13), and chitin/carbohydrates (bands 2, 3, 6, 7, 10, 12, and 13)—based on the
respective functional groups (Table A2) and according to the respective literature [89–95].
Regarding G. trabeum (Figure 3A), the largest changes were observed at the IR bands 1
(lipids), 3 (chitin), 12 (chitin), and 14 (polyphosphates). For EOL-TV, the absorbance at IR
band 1 increased, and it decreased for all other MEA formulations, being almost eliminated
in the case of EOL-CC. The absorbance of IR band 14 was strongly affected by the applied
EOLs compared with pure MEA. This could mean that the structure of the fungal cell wall
phospholipid layer was significantly influenced by the presence of the respective EOLs in
the culture medium. The intensity of the chitin-related IR band 3 was strongly reduced
for EOL-TC, EOL-CC, and EOL-TVD, while the absorbance loss was lower for EOL-TV
and the empty LNPs. Further, increases in absorbance were registered for IR band 12 for
all formulations except EOL-TVD, indicating an increased chitin synthesis as a possible
defense mechanism of G. trabeum against stress caused by the EOs entrapped in the LNPs.

Table 3. Minimal inhibitory concentration (MIC) lignin nanoparticles containing the essential oils
from C. capitatus (EOL-CC), T. capitatus (EOL-TC), T. vulgaris (EOL-TV), and T. vulgaris Demeter
(EOL-TVD) against the four wood-rot fungi T. versicolor, G. trabeum, P. ostreatus, and P. monticola. * The
table also includes data obtained in a previous study focused on the antifungal activity of the EOs
against the same wood-rot fungi [22].

Fungal Strain EOL MIC * MIC EOs Solo

(mg/mL) (mg/mL)

T. versicolor

EOL-CC 0.60 0.60
EOL-TC 0.30 0.30
EOL-TV 0.30 0.30

EOL-TVD 0.60 0.60

P. ostreatus

EOL-CC 0.30 0.30
EOL-TC 0.30 0.30
EOL-TV 0.30 0.30

EOL-TVD 0.60 0.60

G. trabeum

EOL-CC 0.30 0.60
EOL-TC 0.30 0.60
EOL-TV 0.15 0.30

EOL-TVD 0.30 0.60

P. monticola

EOL-CC 0.15 0.30
EOL-TC 0.05 0.05
EOL-TV 0.15 0.30

EOL-TVD 0.15 0.30

In the overlay of the FTIR spectra of P. monticola grown on the different substrates
in Figure 1B, the respective spectrum of the fungus grown on MEA containing EOL-CC
is missing because there was 100% inhibition, even in the lowest used concentration of
EO-CC. The respective background and baseline-corrected FTIR spectrum is, therefore,
considered to be a straight horizontal line of zero absorbance (Figure 3B, EOL-CC) since
there was no growth and, therefore, no mycelium of P. monticola in the cultivation substrate.
The FTIR spectra of P. monticola grown on modified MEA showed absorbance decreases
at IR band 1 (lipids) for all four EOs. Further, changes in the chitin-related IR band 3 as
well as the IR band 8 related to polyphosphates were observed. The absorbance of IR
band 3 became slightly lower for EOL-TC and slightly higher for EOL-TV and the empty
LNPs, respectively. The IR band 8 showed higher absorbance for EOL-TV, EOL-TVD, as
well as the empty LNPs. Considering simultaneous changes in the lipid IR band 1 and the
poylphosphate IR band 8, the EOs apparently had an effect on the phospholipid layer of
the cell wall of P. monticola.
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Figure 3. FTIR spectra, background and baseline-corrected, of Gloeophyllum trabeum (A), Poria
monticola (B), Pleurotus ostreatus (C), and Trametes versicolor (D) grown on pure MEA as well as on
MEA containing lignin nanoparticles with essential oils from T. capitatus (EOL-TC), T. vulgaris (EOL-
TV), T. vulgaris Demeter (EOL-TVD) and C. capitatus (EOL-CC) in concentrations below the respective
minimum inhibitory concentrations.

The white-rot fungus P. ostreatus showed stronger absorbance differences at the IR
bands 1, 3, 6, and 9 (Figure 3C). Similar to those of G. trabeum and P. monticola, an ab-
sorbance decrease in IR band 1 (lipids) was registered for EOL-CC, EOL-TC, and EOL-TVD,
respectively, while for the empty LNPs and EOL-TV, the absorbance remained in the range
of the control sample. There were absorbance decreases in another lipid IR band (9) for
all samples except EOL-TVD when compared with the control sample. Further, the chitin-
related IR bands 3 and 6 showed differences: the formulation with EOL-CC had a strong
absorbance decrease, while the other EOs remained at the intensity of the control sample,
and the pure LNPs caused an absorbance increase.

Similar to the other three fungal strains, T. versicolor showed IR absorbance changes
at IR band 1 and 3 compared with the control experiment on pure MEA (Figure 3D).
Additionally, changes were detected at the IR bands 10, 12, and 14. At IR band 1, an
absorbance decrease was registered for the MEA formulations containing EOL-CC, EOL-
TC, and EOL-TVD, while an increase was observed for MEA containing the empty LNPs.
Regarding the chitin-related IR band 3, the EOLs from TC, CC, and TVD caused a strong
absorbance decrease, while EOL-TV and the empty LNPs led to a higher absorbance than
for pure MEA. The polyphosphates IR band 14 was reduced for EOL-TV, EOL-TVD, and the
empty LNPs, while the absorbance of this band was larger than in pure MEA when adding
EOL-CC and EOL-TC, respectively. Simultaneous changes in the lipids as well as the
polyphosphate-related IR band indicated a disturbance in the phospholipid biosynthesis of
T. versicolor caused by the different formulations. Additionally, the changed absorbance in
the chitin-related bands indicated a modified chitin biosynthesis as a stress response to the
added EOs.

In all in vitro inhibition experiments, changes in band 1 (lipids) were observed, namely
a decrease in IR absorbance when the EOLs were used. This is in contrast to the earlier work
of the authors, in which a respective IR absorbance increase in the lipid band was observed
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in the presence of pure EOs [22], which is a known fungal response to stressful events in
order to protect the cell membrane and the proteins contained therein [95]. This indicates
that the effect on the fungi was different in the presented work when the EOs were applied
entrapped inside the LNPs. Lignin is known to non-productively adsorb polysaccharide
hydrolases by hydrophobic-, electrostatic-, or hydrogen-bonding interactions when they
are used for enzymatic digestion of biomass [96]. It could, therefore, be speculated, that the
presence of LNPs could somehow inhibit or deactivate the conventional fungal response
and the respective enzymes responsible for an increased lipid synthesis to protect their cell
wall against stress caused by EOs.

When analyzing the band area ratios of the respective second derivatives of the FTIR
spectra (Figure 4), it was observed that in the spectra of the fungi grown on MEA containing
the empty LNPs (LNPs solo), the ratio of Lipids/Amide I decreased just a little (P. monticola,
P. ostreatus, T. versicolor) or even increased (G. trabeum). On the basis of Figure 1, it was
already observed that the lipid-related IR band 1 had a similar absorbance intensity for
MEA containing the empty LNPs (LNPs solo) compared with the control samples for all
four fungi. Therefore, this can be confirmed by the FTIR data of the second derivatives
illustrated in Figure 4, where the lipid band at 3000–2800 cm−1, which lies outside the
fingerprint region of the respective FTIR spectra, was also taken into account. In contrast
to the empty LNPs, in the FTIR spectra of the four fungi grown on MEA containing the
EOLs, the ratio of Lipids/Amide I decreased in almost all the cases compared with the
respective control samples. In just two cases (T. versicolor vs. EOL-TVD and T. versicolor
vs. EOL-TC), this ratio increased compared with the control experiment. In three other
cases, the ratio of Lipids/Amide I remained at the level of the control sample (G. trabeum
vs. EOL-CC, G. trabeum vs. EOL-TC, and P. monticola vs. EOL-TV). The general decrease
in the ratio of Lipids/Amide I in the EOL-containing MEA formulations compared with
pure MEA was already indicated by the observations of the respective FTIR spectra in
Figure 2, where the absorbance of the lipid-related IR band 1 decreased in most cases. When
analyzing the IR band ratio of Lipids/Amide II, the general pattern was similar to the ratio
of Lipids/Amide I for P. monticola and P. ostreatus, respectively. In the case of G. trabeum,
the ratio of Lipids/Amide II increased for MEA containing EOL-CC, EOL-TC, and EOL-TV,
which correlated with the strong absorbance decrease in IR band 3 observed in Figure 3A.
In the case of T. versicolor, a strong increase in the ratio of Lipids/Amide II was registered
for MEA containing EOL-TC and EOL-TVD, respectively.

When considering the MIC values calculated for EOL-TC and EOL-TVD against T.
versicolor (Table 3), it is evident that an increase in the IR band ratio of Lipids/Amide
II, which indicated a stress reaction of the fungus, was not always in correlation with
a growth inhibition of the fungus by the applied EOLs. Although the IR band ratio of
Lipids/Amide II was highest for EOL-TVD, the MIC values were lower for EOL-TC and
EOL-TV, respectively, meaning that EOL-TVD was less effective against T. versicolor. On
the contrary, the high Lipids/Amide II ratio of EOL-TC against T. versicolor correlated with
the low MIC determined for this case (Table 3). When observing the Lipids/Carbos IR
band ratio of the fungi grown on MEA containing the empty LNPs, it became evident that
for the brown-rot fungi G. trabeum and P. monticola, the ratio decreased compared with
that of pure MEA, while it increased for the white-rot fungi P. ostreatus and T. versicolor.
Their ability to degrade lignin could be a reason for the different response to the LNPs in
the MEA terrain observed for the white-rot strains. The processing of lignin can provide
additional acetyl-CoA and succinyl-CoA that, in turn, feed their central metabolism for lipid
biosynthesis, for example, as an eventual stress response leading to a higher Lipids/Carbos
IR band ratio [97–100]. On the contrary, it could be speculated that the presence of the LNPs
might disturb lipid synthesis in brown-rot fungal cell walls via the inhibition of enzymes
responsible for the construction of the phospholipid layer in the cell wall, as pointed out
above. While the ratios of Lipids/Carbos for EOL-CC and EOL-TVD were in the range of
the empty LNPs and lower than in the control MEA for G. trabeum, it was higher than in
the control MEA when the cultivation medium contained EOL-TC or EOL-TV, respectively.
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This could have been caused by a relatively greater stress imposed by EOL-TC and EOL-TV
on G. trabeum, triggering a lipid accumulation stress response, to a certain extent, which
was not disturbed by the amount of LNPs present in the cultivation medium. While the
IR band ratio of Amide I/Total Amides showed only slight variations between pure and
EOL-containing MEA (Table A1), respectively, the ratio of Amide II/Total Amides varied
much more, which means that the EOs affected the Amide II band to a greater extent,
which corresponds to IR band 3 in Figure 2. Figure 4 shows that the ratio of Amide II/Total
Amides decreased for EOL-CC, EOL-TC, and EOL-TV, while it increased for EOL-TVD and
the empty LNPs compared with pure MEA in the case of G. trabeum. P. monticola, instead,
showed low variations for both the IR band ratios of Amide I/Total Amides and Amide
II/Total Amides. Interestingly, P. ostreatus had the largest variation in the case of MEA
with added EOL-TC, but the MIC results were equal to those for EOL-CC and EOL-TV,
respectively, which showed a much lower change in the Amide II/Total Amides ratio. In
the case of T. versicolor, the strongest variations in this IR band ratio were registered for
EOL-TV and EOL-TC, which correlated with the MIC results that were lowest for those
two substrate formulations. Interestingly, the ratio was almost the same for pure MEA and
MEA containing EOL-CC, but the respective MIC for EOL-CC was comparable to MEA
containing EOL-TV, where the IR band ratio of Amide II/Total Amides was the largest. As
mentioned above, the changes in the IR band ratios might not always reflect the respectively
determined MICs, as changes in the cell wall structure induced by the fungi might not
affect its growth but instead should allow the fungus to cope with the stress induced by the
present EOLs.
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of the four fungi grown on pure MEA (MEA) and on MEA containing empty lignin nanoparticles
(LNPs solo) as well as LNPs containing the essential oils of the four thyme species (EOL-CC, EOL-TC,
EOL-TV, EOL-TVD).

The results of the PCA analysis of the second derivatives of the respective FTIR spectra
are illustrated in a scatter plot, where the single experiments were grouped according to the
different fungal strains (Figure 5). This is in contrast to an earlier work of the authors, where
the pure EOs were utilized in their free form as additives of the cultivation substrate, and the
single experiments were grouped according to the different EOs applied [22]. Interestingly,
the single experiments of the two fungi T. versicolor (Figure 5, squares) and P. ostreatus
(Figure 5, downward triangles), which are both white-rot fungi, strongly overlap in the PCA
scatter plots (Figure 5B, grey circle). Their ability to degrade lignin and eventually even
deactivate phenolic compounds in the EOs, such as thymol and carvacrol, via peroxidases
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as pointed out by Pánek et al. [56], apparently caused these two fungi to react in a similar
way to the stress caused by the present EOLs. When considering the PCA scatter plot of the
first two PCs (Figure 5, left), the fungus P. monticola (circles) grouped up in distance to the
other three fungi, similar as G. trabeum (upward triangles), for which the grouping is clearer
in the PCA scatter plot of P.C.2 and P.C.3, respectively (Figure 5A, right). A concordance of
the results of the white-rot fungi was also observed in the in vitro inhibition experiments
regarding the respective MIC values, as mentioned above, confirming the findings of FTIR
spectroscopic investigations.
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triangles) grown on pure MEA (Control, black) as well as on MEA with lignin nanoparticles containing
essential oils from T. capitatus (EOL-TC, purple), C. capitatus (EOL-CC, red), T. vulgaris (EOL-TV,
orange), and T. vulgaris Demeter (EOL-TVD, green). (A) Groupings according to the fungal species.
(B) Groupings according to white-rot (grey circle) and brown-rot (brown circle) fungi.

4. Conclusions

EOL from thyme spp. proved to be efficient as a biocide delivery system for the
control of wood-rot fungi, such as T. versicolor, P. ostreatus, G. trabeum, and P. monticola
in in vitro experiments. The EOL dispersions showed a delayed release of the entrapped
EOs when applied in a liquid fungal cultivation medium. FTIR spectroscopy once again
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proved to be a useful tool to estimate the fungal cell wall changes caused by the presence
of the EOs in the cultivation medium. For each one of the four wood-rot fungi, an EOL
sample with satisfying efficacy was identified. EOL dispersions are now ready to be tested
as wood coatings against wood-rot fungi, and the respective in vitro experiments using
coated wood specimens will be conducted next. EOL dispersions from thyme showed
a promising potential approach for a wide range of wood protection applications where
wooden structures in indoor as well as outdoor conditions encounter humidity and the
danger of an attack by wood-rot fungi.
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Appendix A

Table A1. IR band area ratios of the second derivatives of the FTIR spectra of the fungi grown on pure
MEA and MEA containing empty LNPs as well as LNPs loaded with EOs of the four thyme species
(EOL-CC, EOL-TC, EOL-TV, EOL-TVD). Spectral regions used for band area integration: Lipids,
3000–2800 cm−1; Amide I, 1705–1575 cm−1; Amide II, 1575–1480 cm−1; Amide III, 1350–1240 cm−1;
Carbohydrates, 1200–900 cm−1.

Fungus Substrate Lipids/Amide
I

Lipids/Amide
II

Amide
I/Total

Amides

Amide
II/Total
Amides

Lipids/Carbos

Gloeophyllum
trabeum

EOL-CC 0.955 2.465 0.448 0.174 0.177
EOL-TC 0.963 1.422 0.439 0.297 0.263
EOL-TV 0.762 1.363 0.463 0.259 0.190

EOL-TVD 0.706 1.021 0.540 0.373 0.231
LNPs solo 1.068 1.131 0.416 0.393 0.180
MEA pure 1.004 1.163 0.401 0.346 0.221
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Table A1. Cont.

Fungus Substrate Lipids/Amide
I

Lipids/Amide
II

Amide
I/Total

Amides

Amide
II/Total
Amides

Lipids/Carbos

Poria
monticola

EOL-CC - - - - -
EOL-TC 0.210 0.394 0.517 0.275 0.080
EOL-TV 0.401 0.980 0.580 0.237 0.144

EOL-TVD 0.340 0.745 0.476 0.217 0.128
LNPs solo 0.306 0.822 0.584 0.217 0.111
MEA pure 0.409 0.849 0.529 0.255 0.150

Pleorotus
ostreatus

EOL-CC 0.675 1.314 0.454 0.233 0.164
EOL-TC 0.412 0.483 0.479 0.409 0.177
EOL-TV 0.487 0.812 0.512 0.307 0.186

EOL-TVD 0.565 1.101 0.485 0.249 0.141
LNPs solo 0.920 1.367 0.401 0.270 0.260
MEA pure 0.941 1.532 0.378 0.232 0.229

Trametes
versicolor

EOL-CC 0.528 1.101 0.455 0.219 0.154
EOL-TC 0.663 1.888 0.399 0.140 0.195
EOL-TV 0.571 0.663 0.463 0.399 0.201

EOL-TVD 1.115 1.790 0.377 0.234 0.305
LNPs solo 0.533 0.867 0.467 0.288 0.192
MEA pure 0.640 1.182 0.428 0.232 0.180

Table A2. Main IR absorption bands and signal assignments of chemical structures derived from the
respective biopolymers [89–95].

Band Number Wavenumber (cm−1) Signal Assignment Biopolymer
Contribution

- 3500–3200 O-H stretching carbohydrates
- 3275 N-H stretching chitin/chitosan
- 3105 N-H stretching chitin/chitosan
- 2955 =C-H stretching lipids
- 2925 -C-H (CH3) stretching lipids
- 2855 -C-H (CH2) stretching lipids

1 1745 -C=O stretching in
esters lipids

2 1680–1630 -C=O stretching,
Amide I proteins, chitin

3 1560–1530 C-N-H deformation,
Amide II proteins, chitin

4 1465 -C-H (CH2, CH3)
bending lipids

5 1402 C=O pf COO- groups lipids
6 1377 -C-H (CH3) bending chitin
7 1320 Amide III proteins, chitin

8 1265 P=O stretching polyphosphates,
phospholipids

9 1180 C-O-C stretching in
esters lipids

10 1150 C-O and C-O-C
stretching carbohydrates

11 1075 PO2 symmetric
stretching

polyphosphates,
phospholipids

12 1043 C-O stretching carbohydrates
13 930 glycosidic linkages carbohydrates
14 894 P-O-P stretching polyphosphates
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