Determination of the Attenuation Coefficients of Epoxy Resin with Carbopol Polymer as a Breast Phantom Material at Low Photon Energy Range
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples Preparation
2.2. Linear and Mass Attenuation Coefficient Measurements
2.3. X-ray Computed Tomography (CT) Scanner
3. Results and Discussion
3.1. Mass Attenuation Coefficient Measurements
3.2. Half Value Layer (HVL) and Mean Free Path (MFP)
3.3. CT Number Measurement
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shetty, M.K. Optimizing Mammographic Screening and Diagnosis of Breast Cancer. In Breast Cancer Screening and Diagnosis: A Synopsis; Springer: New York, NY, USA, 2014; pp. 201–212. [Google Scholar]
- White, D.R.; Tucker, A.K. A test object for assessing image quality in mammography. Brit. J. Radiol. 1980, 53, 331–335. [Google Scholar] [CrossRef] [PubMed]
- Sechopoulos, I.; Suryanarayanan, S.; Vedantham, S.; D’Orsi, C.J.; Karellas, A. Radiation dose to organs and tissues from mammography: Monte Carlo and phantom study. Radiology 2008, 246, 434–443. [Google Scholar] [CrossRef] [Green Version]
- Argo, W.P.; Hintenlang, K.; Hintenlang, D.E. A tissue-equivalent phantom series for mammography dosimetry. J. Appl. Clin. Med. Phys 2004, 5, 112–119. [Google Scholar] [PubMed]
- Almeida, C.D.; Coutinho, C.M.C.; Dantas, B.M.; Peixoto, J.E.; Koch, H.A. A new mammography dosimetric phantom. Radiat. Prot. Dosim. 2012, 151, 196–198. [Google Scholar] [CrossRef] [PubMed]
- Panzade, P.; Puranik, P.K. Carbopol Polymers: A Versatile Polymer for Pharmaceutical Applications. Res. J. Pharm. Technol. 2010, 3, 672–675. [Google Scholar]
- Berardi, A.; Perinelli, D.R.; Merchant, H.A.; Bisharat, L.; Basheti, I.A.; Bonacucina, G.; Cespi, M.; Palmieri, G.F. Hand sanitisers amid CoViD-19: A critical review of alcohol-based products on the market and formulation approaches to respond to increasing demand. Int. J. Pharm. 2020, 584, 119431. [Google Scholar] [CrossRef]
- Guo, J.H.; Skinner, G.W.; Harcum, W.W.; Barnum, P.E. Pharmaceutical applications of naturally occurring water-soluble polymers. Pharm. Sci. Technol. Today 1998, 1, 254–261. [Google Scholar] [CrossRef]
- Hamdi, N.A.M.; Azmi, N.A.; Sabari, N.H.M.; Harun, A.F.; Haris, M.S. An insight into the use and advantages of Carbopol in topical mucoadhesive drug delivery system: A systematic review. J. Pharm. 2023, 3, 53–65. [Google Scholar]
- Bera, K.; Mazumder, B.; Khanam, J. Study of the mucoadhesive potential of carbopol polymer in the preparation of microbeads containing the antidiabetic drug glipizide. AAPS PharmSciTech 2016, 17, 743–756. [Google Scholar] [CrossRef] [Green Version]
- EFSA Panel on Food Additives and Flavourings (FAF); Younes, M.; Aquilina, G.; Engel, K.H.; Fowler, P.; Frutos Fernandez, M.J.; Fürst, P.; Gürtler, R.; Gundert-Remy, U.; Husøy, T.; et al. Safety evaluation of crosslinked polyacrylic acid polymers (carbomer) as a new food additive. EFSA J. 2021, 19, e06693. [Google Scholar]
- Karthick, R.A.; Devi, D.R.; Hari, B.V. Investigation of sustained release mucoadhesive in-situ gel system of Secnidazole for the persistent treatment of vaginal infections. J. Drug Deliv. Sci. Technol. 2018, 43, 362–368. [Google Scholar] [CrossRef]
- Khan, F.M.; Gibbons, J.P. Khan’s the Physics of Radiation Therapy; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2014. [Google Scholar]
- Ozdogan, H.; Kilicoglu, O.; Akman, F.; Agar, O. Comparison of Monte Carlo simulations and theoretical calculations of nuclear shielding characteristics of various borate glasses including Bi, V, Fe, and Cd. Appl. Radiat. Isot. 2022, 189, 110454. [Google Scholar] [CrossRef] [PubMed]
- Akman, F.; Kilicoglu, O.; Agar, O. Feasibility of a novel shield of nuclear radiation with W–Ni–Fe–Co and La–Bi alloys alternative to Pb and ordinary concrete absorbers. Prog. Nucl. Energy 2023, 156, 104537. [Google Scholar] [CrossRef]
- Al-Buriahi, M.S.; Gaikwad, D.K.; Hegazy, H.H.; Sriwunkum, C.; Neffati, R. Fe-based alloys and their shielding properties against directly and indirectly ionizing radiation by using FLUKA simulations. Phys. Scr. 2021, 96, 045303. [Google Scholar] [CrossRef]
- Kara, U.; Kilicoglu, O.; Ersoy, S. Structural and gamma-ray attenuation coefficients of different OAD films for nuclear medicine applications. Radiat. Phys. Chem. 2020, 172, 108785. [Google Scholar] [CrossRef]
- Berger, M.J.; Hubbell, J.H. XCOM: Photon Cross Sections on a Personal Computer; No. NBSIR-87-3597; National Bureau of Standards: Washington, DC, USA; Center for Radiation Research: Bethesda, MD, USA, 1987. [Google Scholar]
- Marashdeh, M.W.; Bauk, S.; Tajuddin, A.A.; Hashim, R. Measurement of mass attenuation coefficients of Rhizophora spp. binderless particleboards in the 16.59–25.26 keV photon energy range and their density profile using x-ray computed tomography. Appl. Radiat. Isot. 2012, 70, 656–662. [Google Scholar] [CrossRef]
- Akhdar, H.; Marashdeh, M.W.; AlAqeel, M. Investigation of gamma radiation shielding properties of polyethylene glycol in the energy range from 8.67 to 23.19 keV. Nucl. Eng. Technol. 2022, 54, 701–708. [Google Scholar] [CrossRef]
- Marashdeh, M.; Al-Hamarneh, I.F. Evaluation of Gamma Radiation Properties of Four Types of Surgical Stainless Steel in the Energy Range of 17.50–25.29 keV. Materials 2021, 14, 6873. [Google Scholar] [CrossRef]
- Curry, T.S.; Dowdey, J.E.; Murry, R.C. Christensen’s Physics of Diagnostic Radiology; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 1990. [Google Scholar]
- Constantinou, C. Phantom materials for radiation dosimetry. I. Liquids and gels. Brit. J. Radiol 1982, 55, 217–224. [Google Scholar] [CrossRef]
- Lee, W.F.; Huang, Y.C. Swelling and antibacterial properties for the superabsorbent hydrogels containing silver nanoparticles. J. Appl. Polym. Sci. 2007, 106, 1992–1999. [Google Scholar] [CrossRef]
- Mahmoud, K.M.; Rammah, Y.S. Investigation of gamma-ray shielding capability of glasses doped with Y, Gd, Nd, Pr and Dy rare earth using MCNP-5 code. Phys. B Condens. Matter 2020, 577, 411756. [Google Scholar] [CrossRef]
- Liberman, L.; Menell, J.H. Breast imaging reporting and data system (BI-RADS). Radiol. Clin. 2002, 40, 409–430. [Google Scholar] [CrossRef] [PubMed]
Samples | Concentration (wt.%) | Measured Density (g/cm3) | ||
---|---|---|---|---|
Araldite-GY6010 | Jeffamine-T403 | Carbopol 974p Polymer | ||
E0 | 75.00 | 25.00 | 0.00 | 1.102 |
E5 | 71.25 | 23.75 | 5.00 | 1.110 |
E10 | 67.50 | 22.5 | 10.00 | 1.130 |
E15 | 63.75 | 21.25 | 15.00 | 1.150 |
E20 | 60.00 | 20.00 | 20.00 | 1.160 |
E25 | 56.25 | 18.75 | 25.00 | 1.170 |
Element | Atomic No. (Z) | Weight (g) | Thickness (mm) | Purity (%) | Kα1 (keV) | Io (Counts s−1) |
---|---|---|---|---|---|---|
Niobium | 41 | 2.25 | 0.14 | 99.80 | 16.65 | 2616 |
Molybdenum | 42 | 2.06 | 0.11 | 99.90 | 17.44 | 2639 |
Palladium | 46 | 3.00 | 0.10 | 99.90 | 21.16 | 3169 |
Silver | 47 | 13.20 | 2.00 | 99.99 | 22.18 | 3023 |
Tin | 50 | 3.80 | 0.28 | 99.99 | 25.21 | 3217 |
Nb | Mo | Pd | Ag | Sn | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
16.65 KeV | 17.44 KeV | 21.16 KeV | 22.18 KeV | 25.21 KeV | |||||||||||
Sample | μ cm−1 | μ/ρ cm2/g | ±σ (μ/ρ) | μ cm−1 | μ/ρ cm2/g | ±σ (μ/ρ) | μ cm−1 | μ/ρ cm2/g | ±σ (μ/ρ) | μ cm−1 | μ/ρ cm2/g | ±σ (μ/ρ) | μ cm−1 | μ/ρ cm2/g | ±σ (μ/ρ) |
E0 | 0.982 | 0.891 | 0.127 | 0.877 | 0.796 | 0.050 | 0.607 | 0.551 | 0.068 | 0.529 | 0.480 | 0.052 | 0.444 | 0.403 | 0.049 |
E5 | 0.974 | 0.877 | 0.106 | 0.873 | 0.786 | 0.085 | 0.587 | 0.529 | 0.117 | 0.534 | 0.481 | 0.095 | 0.432 | 0.389 | 0.046 |
E10 | 0.996 | 0.881 | 0.110 | 0.892 | 0.790 | 0.075 | 0.597 | 0.528 | 0.120 | 0.546 | 0.483 | 0.110 | 0.441 | 0.391 | 0.081 |
E15 | 1.026 | 0.892 | 0.101 | 0.915 | 0.796 | 0.075 | 0.610 | 0.530 | 0.090 | 0.557 | 0.485 | 0.111 | 0.450 | 0.391 | 0.042 |
E20 | 1.043 | 0.899 | 0.099 | 0.930 | 0.802 | 0.062 | 0.620 | 0.534 | 0.065 | 0.564 | 0.486 | 0.061 | 0.396 | 0.341 | 0.070 |
E25 | 1.057 | 0.904 | 0.087 | 0.941 | 0.804 | 0.055 | 0.626 | 0.535 | 0.078 | 0.572 | 0.489 | 0.045 | 0.461 | 0.394 | 0.052 |
Percentage of Deviation from Breast 1 | ||||||
ENERGY | E0 | E5 | E10 | E15 | E20 | E25 |
16.65 | 21.884 | 23.113 | 22.749 | 21.845 | 21.166 | 20.800 |
17.44 | 21.740 | 22.703 | 22.348 | 21.763 | 21.188 | 20.910 |
21.16 | 15.756 | 19.122 | 19.155 | 18.890 | 18.292 | 18.187 |
22.18 | 19.120 | 18.958 | 18.551 | 18.305 | 17.978 | 17.571 |
25.21 | 13.544 | 16.532 | 16.166 | 16.069 | 15.789 | 15.462 |
Percentage of Deviation from Breast 2 | ||||||
ENERGY | E0 | E5 | E10 | E15 | E20 | E25 |
16.65 | 9.310 | 10.736 | 10.314 | 9.265 | 8.476 | 8.052 |
17.44 | 9.516 | 10.628 | 10.218 | 9.542 | 8.877 | 8.556 |
21.16 | 4.641 | 8.450 | 8.488 | 8.188 | 7.510 | 7.392 |
22.18 | 9.010 | 8.827 | 8.370 | 8.093 | 7.726 | 7.267 |
25.21 | 4.437 | 7.740 | 7.335 | 7.227 | 6.919 | 6.557 |
Percentage of Deviation from Breast 3 | ||||||
ENERGY | E0 | E5 | E10 | E15 | E20 | E25 |
16.65 | −5.119 | −3.466 | −3.954 | −5.171 | −6.086 | −6.577 |
17.44 | −4.367 | −3.083 | −3.557 | −4.336 | −5.104 | −5.474 |
21.16 | −7.454 | −3.161 | −3.118 | −3.456 | −4.220 | −4.354 |
22.18 | −1.890 | −2.095 | −2.607 | −2.917 | −3.329 | −3.842 |
25.21 | −5.115 | −1.481 | −1.927 | −2.045 | −2.384 | −2.783 |
Percentage of Deviation from Perspex | ||||||
ENERGY | E0 | E5 | E10 | E15 | E20 | E25 |
16.65 | 0.146 | 1.716 | 1.251 | 0.096 | −0.773 | −1.240 |
17.44 | 0.550 | 1.773 | 1.321 | 0.579 | −0.153 | −0.505 |
21.16 | −3.866 | 0.283 | 0.324 | −0.003 | −0.741 | −0.870 |
22.18 | 1.154 | 0.956 | 0.459 | 0.158 | −0.241 | −0.739 |
25.21 | −3.018 | 0.543 | 0.107 | −0.009 | −0.342 | −0.733 |
Energy (keV) | E0 | E5 | E10 | E15 | E20 | E25 | Perspex (XCOM) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
HVL (cm) | MFP (cm) | HVL (cm) | MFP (cm) | HVL (cm) | MFP (cm) | HVL (cm) | MFP (cm) | HVL (cm) | MFP (cm) | HVL (cm) | MFP (cm) | HVL (cm) | MFP (cm) | |
16.65 | 0.706 | 1.018 | 0.712 | 1.027 | 0.696 | 1.004 | 0.676 | 0.975 | 0.664 | 0.958 | 0.655 | 0.946 | 0.652 | 0.941 |
17.44 | 0.790 | 1.140 | 0.794 | 1.146 | 0.777 | 1.121 | 0.757 | 1.093 | 0.745 | 1.076 | 0.736 | 1.063 | 0.728 | 1.050 |
21.16 | 1.142 | 1.648 | 1.181 | 1.704 | 1.160 | 1.675 | 1.137 | 1.640 | 1.118 | 1.614 | 1.108 | 1.598 | 1.098 | 1.585 |
22.18 | 1.311 | 1.892 | 1.299 | 1.874 | 1.270 | 1.832 | 1.244 | 1.795 | 1.228 | 1.772 | 1.212 | 1.748 | 1.200 | 1.732 |
25.21 | 1.561 | 2.253 | 1.605 | 2.317 | 1.570 | 2.266 | 1.541 | 2.224 | 1.750 | 2.525 | 1.504 | 2.170 | 1.489 | 2.149 |
CT Number | Calculated Density (g/cm3) | ||||
---|---|---|---|---|---|
Sample | Mean | Maximum | Minimum | Standard Deviation | |
E0 | 24.53 | 46.07 | 12.55 | 2.32 | 1.102 |
E5 | 27.02 | 49.61 | 11.83 | 7.19 | 1.110 |
E10 | 31.56 | 52.95 | 14.90 | 6.22 | 1.130 |
E15 | 37.66 | 55.39 | 12.48 | 5.32 | 1.150 |
E20 | 35.81 | 60.22 | 13.92 | 4.18 | 1.160 |
E25 | 40.28 | 65.45 | 14.67 | 4.77 | 1.170 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marashdeh, M.; Abdulkarim, M. Determination of the Attenuation Coefficients of Epoxy Resin with Carbopol Polymer as a Breast Phantom Material at Low Photon Energy Range. Polymers 2023, 15, 2645. https://doi.org/10.3390/polym15122645
Marashdeh M, Abdulkarim M. Determination of the Attenuation Coefficients of Epoxy Resin with Carbopol Polymer as a Breast Phantom Material at Low Photon Energy Range. Polymers. 2023; 15(12):2645. https://doi.org/10.3390/polym15122645
Chicago/Turabian StyleMarashdeh, Mohammad, and Muthanna Abdulkarim. 2023. "Determination of the Attenuation Coefficients of Epoxy Resin with Carbopol Polymer as a Breast Phantom Material at Low Photon Energy Range" Polymers 15, no. 12: 2645. https://doi.org/10.3390/polym15122645
APA StyleMarashdeh, M., & Abdulkarim, M. (2023). Determination of the Attenuation Coefficients of Epoxy Resin with Carbopol Polymer as a Breast Phantom Material at Low Photon Energy Range. Polymers, 15(12), 2645. https://doi.org/10.3390/polym15122645