Assembly of Supramolecular Nanoplatelets with Tailorable Geometrical Shapes and Dimensions
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Preparation of Hexagonal Platelets, Square Platelets and Circular Platelets of P-E-P/𝛼-CD Inclusion Complex
2.2.2. Interconversion of Hexagonal Platelets, Square Platelets and Circular Platelets
2.2.3. Transmission Electron Microscopy (TEM)
2.2.4. Scanning Electron Microscopy (SEM)
2.2.5. Wide-Angle X-ray Scattering (WAXS)
2.2.6. Differential Scanning Calorimetry (DSC)
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater. 2007, 6, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Fiori, G.; Bonaccorso, F.; Iannaccone, G.; Palacios, T.; Neu-maier, D.; Seabaugh, A.; Banerjee, S.K.; Colombo, L. Electronics Based on Two-Dimensional Materials. Nat. Nanotechnol. 2014, 9, 768–779. [Google Scholar] [CrossRef] [PubMed]
- Kamysbayev, V.; Filatov, A.S.; Hu, H.; Rui, X.; Lagunas, F.; Wang, D.; Klie, R.F.; Talapin, D.V. Covalent Surface Modifications and Superconductivity of Two-Dimensional Metal Carbide MXenes. Science 2020, 369, 979–983. [Google Scholar] [CrossRef] [PubMed]
- Yuan, S.; Peng, J.; Cai, B.; Huang, Z.; Garcia-Esparza, A.T.; Sokaras, D.; Zhang, Y.; Giordano, L.; Akkiraju, K.; Zhu, Y.; et al. Tunable Metal Hydroxide-Organic Frameworks for Catalysing Oxygen Evolution. Nat. Mater. 2022, 21, 673–680. [Google Scholar] [CrossRef]
- Xu, J.; Shao, G.; Tang, X.; Lv, F.; Xiang, H.; Jing, C.; Liu, S.; Dai, S.; Li, Y.; Luo, J.; et al. Frenkel-Defected Monolayer MoS2 Catalysts for Efficient Hydrogen Evolution. Nat. Commun. 2022, 13, 2193. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Chen, S.; Duo, Y.; Zhu, Y.; Fan, T.; Zou, Q.; Qu, M.; Lin, Z.; Zhao, J.; Li, Y.; et al. Biocompatible Two-Dimensional Titanium Nanosheets for Multimodal Imaging-Guided Cancer Theranostics. ACS Appl. Mater. Interfaces 2019, 11, 22129–22140. [Google Scholar] [CrossRef]
- Ji, X.; Kong, N.; Wang, J.; Li, W.; Xiao, Y.; Gan, S.T.; Zhang, Y.; Li, Y.; Song, X.; Xiong, Q.; et al. A Novel Top-Down Synthesis of Ultrathin 2D Boron Nanosheets for Multimodal Imaging-Guided Cancer Therapy. Adv. Mater. 2018, 30, 1803031. [Google Scholar] [CrossRef]
- Han, L.; Fan, H.; Zhu, Y.; Wang, M.; Pan, F.; Yu, D.; Zhao, Y.; He, F. Precisely Controlled Two-Dimensional Rhombic Copolymer Micelles for Sensitive Flexible Tunneling Devices. CCS Chem. 2020, 2, 1399–1409. [Google Scholar] [CrossRef]
- Wang, X.; Li, X.; Aya, S.; Araoka, F.; Ishida, Y.; Kikkawa, A.; Kriener, M.; Taguchi, Y.; Ebina, Y.; Sasaki, T.; et al. Reversible Switching of the Magnetic Orientation of Titanate Nanosheets by Photochemical Reduction and Autoxidation. J. Am. Chem. Soc. 2018, 140, 16396–16401. [Google Scholar] [CrossRef]
- Yang, S.; Kang, S.Y.; Choi, T.L. Semi-Conducting 2D Rectangles with Tunable Length via Uniaxial Living Crystallization-Driven Self-Assembly of Homopolymer. Nat. Commun. 2021, 12, 2602. [Google Scholar] [CrossRef]
- Rajak, A.; Das, A. Crystallization-Driven Controlled Two-Dimensional(2D) Assemblies from Chromophore-Appended Poly(L-lactide)s: Highly Efficient Energy Transfer on a 2D Surface. Angew. Chem. Int. Ed. 2022, 61, e202116572. [Google Scholar]
- Gong, Y.; Cheng, C.; Ji, H.; Che, Y.; Zang, L.; Zhao, J.; Zhang, Y. Unprecedented Small Molecule-Based Uniform Two-Dimensional Platelets with Tailorable Shapes and Sizes. J. Am. Chem. Soc. 2022, 144, 15403–15410. [Google Scholar] [CrossRef]
- Hudson, Z.M.; Boott, C.E.; Robinson, M.E.; Rupar, P.A.; Winnik, M.A.; Manners, I. Tailored Hierarchical Micelle Architectures Using Living Crystallization-Driven Self-Assembly in Two Dimensions. Nat. Chem. 2014, 6, 893–898. [Google Scholar] [CrossRef]
- He, X.; Hsiao, M.S.; Boott, C.E.; Harniman, R.L.; Nazemi, A.; Li, X.; Winnik, M.A.; Manners, I. Two-Dimensional Assemblies from Crystallizable Homopolymers with Charged Termini. Nat. Mater. 2017, 16, 481–488. [Google Scholar] [CrossRef]
- Nazemi, A.; He, X.; MacFarlane, L.R.; Harniman, R.L.; Hsiao, M.S.; Winnik, M.A.; Faul, C.F.J.; Manners, I. Uniform “Patchy” Platelets by Seeded Heteroepitaxial Growth of Crystallizable Polymer Blends in Two Dimensions. J. Am. Chem. Soc. 2017, 139, 4409–4417. [Google Scholar] [CrossRef]
- Jarrett-Wilkins, C.N.; Pearce, S.; MacFarlane, L.R.; Davis, S.A.; Faul, C.F.J.; Manners, I. Surface Patterning of Uniform 2D Platelet Block Comicelles via Coronal Chain Collapse. ACS Macro Lett. 2020, 9, 1514–1520. [Google Scholar] [CrossRef]
- Barrow, S.J.; Kasera, S.; Rowland, M.J.; Barrio, J.D.; Scherman, O.A. Cucurbituril-Based Molecular Recognition. Chem. Rev. 2015, 115, 12320–12406. [Google Scholar] [CrossRef]
- Liu, Y.; Wan, J.; Zhao, X.; Zhao, J.; Guo, Y.; Bai, R.; Zhang, Z.; Yu, W.; Gibson, H.W.; Yan, X. Highly Strong and Tough Supramolecular Polymer Networks Enabled by Cryptand-Based Host-Guest Recognition. Angew. Chem. Int. Ed. 2023, 62, e202302370. [Google Scholar] [CrossRef]
- Zhao, D.; Zhang, Z.; Zhao, J.; Liu, K.; Liu, Y.; Li, G.; Zhang, X.; Bai, R.; Yang, X.; Yan, X. A Mortise-and-Tenon Joint Inspired Mechanically Interlocked Network. Angew. Chem. Int. Ed. 2021, 60, 16224–16229. [Google Scholar] [CrossRef]
- Harada, A.; Kobayashi, R.; Takashima, Y.; Hashidzume, A.; Yamaguchi, H. Macroscopic Self-Assembly through Molecular Recognition. Nat. Chem. 2011, 3, 34–37. [Google Scholar] [CrossRef]
- Wenz, G.; Han, B.H.; Müller, A. Cyclodextrin Rotaxanes and Polyrotaxanes. Chem. Rev. 2006, 106, 782–817. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Cheng, L.; Li, G.; Liu, K.; Zhang, Z.; Li, P.; Dong, S.; Yu, W.; Huang, F.; Yan, X. A Self-Cross-Linking Supramolecular Polymer Network Enabled by Crown-Ether-Based Molecular Recognition. J. Am. Chem. Soc. 2020, 142, 2051–2058. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Jiang, M. Cyclodextrin-Based Inclusion Complexation Bridging Supramolecular Chemistry and Macromolecular Self-Assembly. Chem. Soc. Rev. 2011, 40, 2254–2266. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, S.; Yamada, N.L.; Ito, K.; Yokoyama, H. Inclusion Complex of α-Cyclodextrin with Poly(ethylene glycol) Brush. Macromolecules 2016, 49, 6947–6952. [Google Scholar] [CrossRef]
- Li, J.; Ni, X.; Leong, K. Block-Selected Molecular Recognition and Formation of Polypseudorotaxanes between Poly(propylene oxide)-Poly(ethylene oxide)-Poly(propylene oxide) Triblock Copolymers and α-Cyclodextrin. Angew. Chem. Int. Ed. 2003, 42, 69–72. [Google Scholar] [CrossRef]
- Uenuma, S.; Maeda, R.; Yokoyama, H.; Ito, K. Autonomously Isolated Pseudo-Polyrotaxane Nanosheets Fabricated via Hierarchically Ordered Supramolecular Self-Assembly. Chem. Commun. 2019, 55, 4158–4161. [Google Scholar] [CrossRef]
- Li, J.; Ni, X.; Zhou, Z.; Leong, K.W. Preparation and Characterization of Polypseudorotaxanes Based on Block-Selected Inclusion Complexation between Poly(propylene oxide)-Poly(ethylene oxide)-Poly(propylene oxide) Triblock Copolymers and α-Cyclodextrin. J. Am. Chem. Soc. 2003, 125, 1788–1795. [Google Scholar] [CrossRef]
- Uenuma, S.; Maeda, R.; Yokoyama, H.; Ito, K. Formation of Isolated Pseudo-Polyrotaxane Nanosheet Consisting of α-Cyclodextrin and Poly(ethylene glycol). Macromolecules 2019, 52, 3881–3887. [Google Scholar] [CrossRef]
- Uyar, T.; Kingshott, P.; Besenbacher, F. Electrospinning of Cyclodextrin-Pseudopolyrotaxane Nanofibers. Angew. Chem. Int. Ed. 2008, 47, 9108–9111. [Google Scholar] [CrossRef]
- Harada, A.; Kamachi, M. Complex Formation between Poly(ethylene Glycol) and α-Cyclodextrin. Macromolecules 1990, 23, 2821–2823. [Google Scholar] [CrossRef]
- Zhang, Y.M.; Liu, Y.H.; Liu, Y. Cyclodextrin-Based Multistimuli-Responsive Supramolecular Assemblies and Their Biological Functions. Adv. Mater. 2020, 32, 1806158. [Google Scholar] [CrossRef]
- Chen, G.; Zhang, G.; Jin, B.; Luo, M.; Luo, Y.; Aya, S.; Li, X. Supramolecular Hexagonal Platelet Assemblies with Uniform and Precisely-Controlled Dimensions. J. Am. Chem. Soc. 2019, 141, 15498–15503. [Google Scholar] [CrossRef]
- Peet, J.; Rusa, C.C.; Hunt, M.A.; Tonelli, A.E.; Balik, C.M. Solid-State Complexation of Poly(Ethylene Glycol) with α-Cyclodextrin. Macromolecules 2005, 38, 537–541. [Google Scholar] [CrossRef]
- Tu, C.W.; Kuo, S.W.; Chang, F.C. Supramolecular Self-Assembly through Inclusion Complex Formation between Poly(ethylene oxide-b-N-isopropylacrylamide) Block Copolymer and α-Cyclodextrin. Polymer 2009, 50, 2958–2966. [Google Scholar] [CrossRef]
- Hunt, M.A.; Rusa, C.C.; Tonelli, A.E.; Balik, C.M. Structure and stability of columnar cyclomaltohexaose (α-cyclodextrin) hydrate. Carbohydr. Res. 2004, 339, 2805–2810. [Google Scholar] [CrossRef]
- Pinsk, N.; Wagner, A.; Cohen, L.; Smalley, C.J.H.; Hughes, C.E.; Zhang, G.; Pavan, M.J.; Casati, N.; Jantschke, A.; Goobes, G.; et al. Biogenic Guanine Crystals Are Solid Solutions of Guanine and Other Purine Metabolites. J. Am. Chem. Soc. 2022, 144, 5180–5189. [Google Scholar] [CrossRef]
- Song, S.; Yu, Q.; Zhou, H.; Hicks, G.; Zhu, H.; Rastogi, C.K.; Manners, I.; Winnik, M.A. Solvent Effects Leading to a Variety of Different 2D Structures in the Self-Assembly of a Crystalline-Coil Block Copolymer with an Amphiphilic Corona-Forming Block. Chem. Sci. 2020, 11, 4631–4643. [Google Scholar] [CrossRef]
- Thanh, N.T.K.; Maclean, N.; Mahiddine, S. Mechanisms of Nucleation and Growth of Nanoparticles in Solution. Chem. Rev. 2014, 114, 7610–7630. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.; Chen, G.; Hou, X.; Luo, Y.; Jin, B.; Li, X. Assembly of Supramolecular Nanoplatelets with Tailorable Geometrical Shapes and Dimensions. Polymers 2023, 15, 2547. https://doi.org/10.3390/polym15112547
Wang M, Chen G, Hou X, Luo Y, Jin B, Li X. Assembly of Supramolecular Nanoplatelets with Tailorable Geometrical Shapes and Dimensions. Polymers. 2023; 15(11):2547. https://doi.org/10.3390/polym15112547
Chicago/Turabian StyleWang, Moyan, Gangfeng Chen, Xiaojian Hou, Yunjun Luo, Bixin Jin, and Xiaoyu Li. 2023. "Assembly of Supramolecular Nanoplatelets with Tailorable Geometrical Shapes and Dimensions" Polymers 15, no. 11: 2547. https://doi.org/10.3390/polym15112547
APA StyleWang, M., Chen, G., Hou, X., Luo, Y., Jin, B., & Li, X. (2023). Assembly of Supramolecular Nanoplatelets with Tailorable Geometrical Shapes and Dimensions. Polymers, 15(11), 2547. https://doi.org/10.3390/polym15112547