Silver Nanoparticle-Embedded Conductive Hydrogels for Electrochemical Sensing of Hydroquinone
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.3. Hydrogel Preparation
2.4. Modified Glassy Carbon Electrode (GCE)
2.5. Electrochemical Measurement
2.6. Statistical Analysis
3. Results and Discussion
3.1. Silver-Embedded Conductive Hydrogel (Ag NP-CH)
3.2. Electrochemical Activity
3.3. Optimization of the Experimental Conditions
3.4. Electrochemical HQ Sensing
3.5. Selectivity, Reproducibility, and Stability of Ag NP-CH/GCE
3.6. Practical Sample Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Chang, M.-C.; Chang, B.-E.; Pan, Y.-H.; Lin, B.-R.; Lian, Y.-C.; Lee, M.-S.; Yeung, S.-Y.; Lin, L.-D.; Jeng, J.-H. Antiplatelet, antioxidative, and anti-inflammatory effects of hydroquinone. J. Cell. Physiol. 2019, 234, 18123–18130. [Google Scholar] [CrossRef] [PubMed]
- Ding, C.; Li, Y.; Wang, Y.; Li, J.; Sun, Y.; Lin, Y.; Sun, W.; Luo, C. Highly selective adsorption of hydroquinone by hydroxyethyl cellulose functionalized with magnetic/ionic liquid. Int. J. Biol. Macromol. 2018, 107, 957–964. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, Q.; Guo, S.; Jia, P.; Shui, Y.; Yao, S.; Huang, C.; Zhang, M.; Wang, L. Highly selective and sensitive fluorescence detection of hydroquinone using novel silicon quantum dots. Sens. Actuators B Chem. 2018, 275, 415–421. [Google Scholar] [CrossRef]
- Zamarchi, F.; Silva, T.R.; Winiarski, J.P.; Santana, E.R.; Vieira, I.C. Polyethylenimine-based electrochemical sensor for the determination of caffeic acid in aromatic herbs. Chemosensors 2022, 10, 357. [Google Scholar] [CrossRef]
- Ren, H.; Zhang, Y.; Liu, L.; Li, Y.; Wang, D.; Zhang, R.; Zhang, W.; Li, Y.; Ye, B.-C. Synthesis of hollow Mo2C/carbon spheres, and their application to simultaneous electrochemical detection of hydroquinone, catechol, and resorcinol. Microchim. Acta 2019, 186, 306. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, X.; Zhang, S.; Yang, L.; Liu, M.; Zhang, Y.; Yao, S. Ultrasensitive and simultaneous detection of hydroquinone, catechol and resorcinol based on the electrochemical co-reduction prepared Au-Pd nanoflower/reduced graphene oxide nanocomposite. Electrochim. Acta 2017, 231, 677–685. [Google Scholar] [CrossRef]
- Cornwell, D.J.; Okesola, B.O.; Smith, D.K. Multidomain hybrid hydrogels: Spatially resolved photopatterned synthetic nanomaterials combining polymer and low-molecular-weight gelators. Angew. Chem. Int. Ed. 2014, 53, 12461–12465. [Google Scholar] [CrossRef][Green Version]
- Dhanjai; Sinha, A.; Kalambate, P.K.; Mugo, S.M.; Kamau, P.; Chen, J.; Jain, R. Polymer hydrogel interfaces in electrochemical sensing strategies: A review. TrAC Trends Anal. Chem. 2019, 118, 488–501. [Google Scholar] [CrossRef]
- Liang, Z.; Zhang, J.; Wu, C.; Hu, X.; Lu, Y.; Wang, G.; Yu, F.; Zhang, X.; Wang, Y. Flexible and self-healing electrochemical hydrogel sensor with high efficiency toward glucose monitoring. Biosens. Bioelectron. 2020, 155, 112105. [Google Scholar] [CrossRef]
- Chang, G.; Dang, Q.; Liu, C.; Wang, X.; Song, H.; Gao, H.; Sun, H.; Zhang, B.; Cha, D. Carboxymethyl chitosan and carboxymethyl cellulose based self-healing hydrogel for accelerating diabetic wound healing. Carbohydr. Polym. 2022, 292, 119687. [Google Scholar] [CrossRef]
- Karimi, T.; Mottaghitalab, F.; Keshvari, H.; Farokhi, M. Carboxymethyl chitosan/sodium carboxymethyl cellulose/agarose hydrogel dressings containing silk fibroin/polydopamine nanoparticles for antibiotic delivery. J. Drug Deliv. Sci. Technol. 2023, 80, 104134. [Google Scholar] [CrossRef]
- Xu, T.; Li, J.; Zhang, S.; Jin, Y.; Wang, R. Integration of diagnosis and treatment in the detection and kill of S.aureus in the whole blood. Biosens. Bioelectron. 2019, 142, 111507. [Google Scholar] [CrossRef] [PubMed]
- El-Lateef, H.M.A.; Albokheet, W.A.; Gouda, M. Carboxymethyl cellulose/metal (Fe, Cu and Ni) nanocomposites as non-precious inhibitors of C-steel corrosion in HCl solutions: Synthesis, characterization, electrochemical and surface morphology studies. Cellulose 2020, 27, 8039–8057. [Google Scholar] [CrossRef]
- Xu, T.T.; Dai, H.Q.; Jin, Y.C. Electrochemical sensing of lead(II) by differential pulsevoltammetry using conductive polypyrrole nanoparticles. Microchim. Acta 2020, 187, 23. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, Y.; Chen, S.; Cheong, K.-L.; Teng, B. Carboxymethyl β-cyclodextrin grafted carboxymethyl chitosan hydrogel-based microparticles for oral insulin delivery. Carbohydr. Polym. 2020, 246, 116617. [Google Scholar] [CrossRef]
- Qiao, Z.; Yang, X.; Yang, S.; Zhang, L.; Cao, B. 3D hierarchical MnO2 nanorod/welded Ag-nanowire-network composites for high-performance supercapacitor electrodes. Chem. Commun. 2016, 52, 7998–8001. [Google Scholar] [CrossRef]
- Huang, J.W.; Qian, X.R.; An, X.H.; Li, X.; Guan, J. Double in situ fabrication of PPy@MnMoO4/cellulose fibers flexible electrodes with high electrochemical performance for supercapacitor applications. Cellulose 2020, 27, 5829–5843. [Google Scholar] [CrossRef]
- Shervedani, R.K.; Pourbeyram, S. Zirconium immobilized on gold–mercaptopropionic acid self-assembled monolayer for trace determination of phosphate in blood serum by using CV, EIS, and OSWV. Biosens. Bioelectron. 2009, 24, 2199–2204. [Google Scholar] [CrossRef]
- Canevari, T.C.; Raymundo-Pereira, P.A.; Landers, R.; Machado, S.A.S. Direct synthesis of Ag nanoparticles incorporated on a mesoporous hybrid material as a sensitive sensor for the simultaneous determination of dihydroxybenzenes isomers. Eur. J. Inorg. Chem. 2013, 2013, 5746–5754. [Google Scholar] [CrossRef]
- Kumar, P.; Narwal, V.; Jaiwal, R.; Pundir, C. Construction and application of amperometric sarcosine biosensor based on SOxNPs/AuE for determination of prostate cancer. Biosens. Bioelectron. 2018, 122, 140–146. [Google Scholar] [CrossRef]
- de Lima, C.A.; Santana, E.R.; Piovesan, J.V.; Spinelli, A. Silver nanoparticle-modified electrode for the determination of nitro compound-containing pesticides. Anal. Bioanal. Chem. 2016, 408, 2595–2606. [Google Scholar] [CrossRef]
- Xia, J.J.; Wang, P.Y.; Zou, B.; Onyinye, A.I. Enhancing electrochemical sensing for catechol by biomimetic oxidase covalently functionalized graphene oxide. Bioproc. Biosyst. Eng. 2021, 44, 343–353. [Google Scholar]
- Ye, R.I.; Yong, M.K.; Lee, Y.; Choi, W.Y.; Kim, S.H.; Lee, S.W.; Moon, H.C. Ultra-low power electrochromic heat shutters through tailoring diffusion-controlled behaviors. ACS Appl. Mater. Interfaces 2020, 12, 30635–30642. [Google Scholar]
- Liu, Y.; Liao, H.; Zhou, Y.; Du, Y.; Wei, C.; Zhao, J.; Sun, S.; Loo, J.S.; Xu, Z.J. Fe2O3 Nanoparticle/SWCNT Composite Electrode for Sensitive Electrocatalytic Oxidation of Hydroquinone. Electrochim. Acta 2015, 180, 1059–1067. [Google Scholar] [CrossRef]
- Zhang, B.; She, N.; Du, J.; Zhang, M.; Fang, G.; Wang, S. Nanocomposites based on quasi-networked Au1.5Pt1Co1 ternary alloy nanoparticles and decorated with poly-L-cysteine film for the electrocatalytic application of hydroquinone sensing. Ecotoxicol. Environ. Saf. 2020, 207, 111251. [Google Scholar] [CrossRef]
- Wang, H.L.; Hu, Q.Q.; Meng, Y.; Jin, Z.; Fang, Z.; Fu, Q.; Gao, W.; Xu, L.; Song, Y.; Lu, F. Efficient detection of hazardous catechol and hydroquinone with MOF-rGO modified carbon paste electrode. J. Hazard. Mater. 2018, 353, 151–157. [Google Scholar] [CrossRef]
- Xin, Y.; Wang, N.; Wang, C.; Gao, W.; Chen, M.; Liu, N.; Duan, J.; Hou, B. Electrochemical detection of hydroquinone and catechol with covalent organic framework modified carbon paste electrode. J. Electroanal. Chem. 2020, 877, 114530. [Google Scholar] [CrossRef]
- Yang, S.; Yang, M.; Yao, X.; Fa, H.; Wang, Y.; Hou, C. A zeolitic imidazolate framework/carbon nanofiber nanocomposite based electrochemical sensor for simultaneous detection of co-existing dihydroxybenzene isomers. Sens. Actuators B Chem. 2020, 320, 128294. [Google Scholar] [CrossRef]
- Aydar, S.; Bayraktepe, D.E.; Filik, H.; Yazan, Z. A Nano-Sepiolite clay electrochemical sensor for the rapid electro–catalytic detection of hydroquinone in cosmetic products. Acta Chim. Slov. 2018, 65, 946–954. [Google Scholar] [CrossRef]
- Wu, F.; Zhao, J.; Han, D.; Zhao, S.; Zhu, R.; Cui, G. A three-electrode integrated electrochemical platform based on nanoporous gold for the simultaneous determination of hydroquinone and catechol with high selectivity. Analyst 2020, 146, 232–243. [Google Scholar] [CrossRef]
- Buledi, J.A.; Ameen, S.; Khand, N.H.; Solangi, A.R.; Taqvi, I.H.; Agheem, M.H.; Wajdan, Z. CuO Nanostructures based electrochemical sensor for simultaneous determination of hydroquinone and ascorbic acid. Electroanalysis 2020, 32, 1600–1607. [Google Scholar] [CrossRef]
- Koçak, S. Platinum nanoparticles/poly(isoleucine) modified glassy carbon electrode for the simultaneous determination of hydroquinone and catechol. Electroanalysis 2020, 33, 375–382. [Google Scholar] [CrossRef]
- Mashhadizadeh, M.H.; Kalantarian, S.M.; Azhdeh, A. A novel electrochemical sensor for simultaneous determination of hydroquinone, catechol, and resorcinol using a carbon paste electrode modified by Zn-MOF, nitrogen-doped graphite, and AuNPs. Electroanalysis 2020, 33, 160–169. [Google Scholar] [CrossRef]
- Yazid, S.N.A.M.; Isa, I.M.; Ali, N.M.; Hashim, N.; Saidin, M.I.; Ahmad, M.S.; Asiri, A.M.; Khan, A.; Zainul, R. Graphene/iridium(III) dimer complex composite modified glassy carbon electrode as selective electrochemical sensor for determination of hydroquinone in real-life water samples. Int. J. Environ. Anal. Chem. 2020, 102, 2607–2624. [Google Scholar] [CrossRef]
- Chetankumar, K.; Swamy, B.K.; Sharma, S. Fabrication of voltammetric efficient sensor for catechol, hydroquinone and resorcinol at MgO modified pre-treated carbon paste electrode. Mater. Chem. Phys. 2020, 252, 123231. [Google Scholar] [CrossRef]
- Huang, R.; Liao, D.; Chen, S.; Yu, J.; Jiang, X. A strategy for effective electrochemical detection of hydroquinone and catechol: Decoration of alkalization-intercalated Ti3C2 with MOF-derived N-doped porous carbon. Sens. Actuators B Chem. 2020, 320, 128386. [Google Scholar] [CrossRef]
- Chetankumar, K.; Swamy, B.E.K.; Naik, T.S.S.K. A reliable electrochemical sensor for detection of catechol and hydroquinone at MgO/GO modified carbon paste electrode. J. Mater. Sci. Mater. Electron. 2020, 31, 19728–19740. [Google Scholar] [CrossRef]
- Zhou, T.; Gao, W.; Gao, Y.; Wang, Q. Simultaneous determination of catechol and hydroquinone using non-enzymatic Co3O4@carbon core/shell composites based sensor. J. Electrochem. Soc. 2019, 166, B1069–B1078. [Google Scholar] [CrossRef]
- Balakumar, V.; Prakash, P. A facile in situ synthesis of highly active and reusable ternary Ag-PPy-GO nanocomposite for catalytic oxidation of hydroquinone in aqueous solution. J. Catal. 2016, 344, 795–805. [Google Scholar] [CrossRef]
- Zhang, Y.; Lv, Z.; Zhou, J.; Fang, Y.; Wu, H.; Xin, F.; Zhang, W.; Ma, J.; Xu, N.; He, A.; et al. Amperometric biosensors based on recombinant bacterial laccase CotA for hydroquinone determination. Electroanalysis 2019, 32, 142–148. [Google Scholar] [CrossRef]
Electrochemical Sensor | Linear Range (μM) | LOD (μM) | Ref. |
---|---|---|---|
Fe2O3/CNTs/FTO electrode | 1.0~80.0 | 0.5 | [24] |
P-L-Cys/Au1.5Pt1Co1/GCE | 0.1~200 | 0.045 | [25] |
MIL-101(Cr)-rGO-2-CPE | 4~1000 | 0.66 | [26] |
COF-3-BPPF6-CPE | 2~2000 | 0.31 | [27] |
ZIF-8/CNF/GCE | 2~510 | 0.06 | [28] |
NSC/CPE | 0.01~700 | 0.0103 | [29] |
NPG electrode | 0.2~100 | 0.083 | [30] |
CuO/GCE | 0.3~250 | 0.009 | [31] |
Pt/Poly(Isoleucine)/GCE | 0.1~100 | 0.08 | [32] |
Au-gC3N4-MOF-CPE | 0.005~100 | 0.001 | [33] |
graphene/Ir(III) complex/GCE | 0.05~100 | 0.001 | [34] |
MgOMPCPE | 10~100 | 0.11 | [35] |
alk-Ti3C2/N-PC/GCE | 0.5~50 | 0.0048 | [36] |
MgO/GO/ MCPE | 50~400 | 0.3 | [37] |
Co3O4@carbon-2/GCE | 0.8~127.1 | 0.03 | [38] |
Ag NP-CH/GCE | 0.1–100 | 0.12 | This work |
Sample | Added (μM) | Measured (μM) | Recovery (%) | RSD (%) |
---|---|---|---|---|
Tap water | 0 | 0 | - | - |
10 | 10.4 | 103.9 | 2.34 | |
30 | 31.0 | 103.5 | 3.94 | |
50 | 49.2 | 98.4 | 2.88 | |
River water | 0 | 0 | - | - |
10 | 9.9 | 98.7 | 3.47 | |
30 | 30.9 | 103.3 | 2.36 | |
50 | 51.3 | 102.7 | 4.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, T.; Gao, H.; Rojas, O.J.; Dai, H. Silver Nanoparticle-Embedded Conductive Hydrogels for Electrochemical Sensing of Hydroquinone. Polymers 2023, 15, 2424. https://doi.org/10.3390/polym15112424
Xu T, Gao H, Rojas OJ, Dai H. Silver Nanoparticle-Embedded Conductive Hydrogels for Electrochemical Sensing of Hydroquinone. Polymers. 2023; 15(11):2424. https://doi.org/10.3390/polym15112424
Chicago/Turabian StyleXu, Tingting, Huanli Gao, Orlando J. Rojas, and Hongqi Dai. 2023. "Silver Nanoparticle-Embedded Conductive Hydrogels for Electrochemical Sensing of Hydroquinone" Polymers 15, no. 11: 2424. https://doi.org/10.3390/polym15112424
APA StyleXu, T., Gao, H., Rojas, O. J., & Dai, H. (2023). Silver Nanoparticle-Embedded Conductive Hydrogels for Electrochemical Sensing of Hydroquinone. Polymers, 15(11), 2424. https://doi.org/10.3390/polym15112424