Carboxymethyl-Cellulose-Containing Ag Nanoparticles as an Electrochemical Working Electrode for Fast Hydroxymethyl-Furfural Sensing in Date Molasses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Carboxymethyl Cellulose Extract
2.3. Synthesis of AgNPs@CMC Nanocomposites
2.4. Characterization
2.5. Electrochemical Determination of HMF
2.6. LV Determination of Real Samples
3. Results and Discussion
3.1. Material Characterization
3.1.1. XRD Analysis
3.1.2. Surface Morphology
3.1.3. TEM and DLS Analysis
3.1.4. Raman Spectroscopy
3.1.5. UV–VIS Spectroscopy
3.1.6. Thermal Analysis
3.2. Electrochemical Characteristics of AgNPs@CMC/GCE
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, M.; Li, P.; Yang, H.; Jiang, N.; Wang, D.; Sun, S.; Wei, W. Detection of 5-hydroxymethylfurfural Based on split-DNAzyme assisted signal amplification via quartz crystal microbalance. Sens. Actuators B Chem. 2022, 352, 131031. [Google Scholar] [CrossRef]
- Zhang, L.L.; Kong, Y.; Yang, X.; Zhang, Y.Y.; Sun, B.G.; Chen, H.T.; Sun, Y. Kinetics of 5-hydroxymethylfurfural formation in the sugar–amino acid model of Maillard reaction. J. Sci. Food Agric. 2019, 99, 2340–2347. [Google Scholar] [CrossRef] [PubMed]
- Liang, N.; Chen, X.; Kitts, D. Sugar loss attributed to non-enzymatic browning corresponds to reduce calories recovered in low-molecular-weight fraction. J. Nutr. Food Sci. 2018, 8, 674. [Google Scholar] [CrossRef]
- Chen, S.S.; Maneerung, T.; Tsang, D.C.; Ok, Y.S.; Wang, C.-H. Valorization of biomass to hydroxymethylfurfural, levulinic acid, and fatty acid methyl ester by heterogeneous catalysts. Chem. Eng. J. 2017, 328, 246–273. [Google Scholar] [CrossRef]
- Yang, W.; Zhang, C.; Li, C.; Huang, Z.Y.; Miao, X. Pathway of 5-hydroxymethyl-2-furaldehyde formation in honey. J. Food Sci. Technol. 2019, 56, 2417–2425. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.; Zhang, Y.; Wang, Y.; Cui, H.; Song, F.; Sun, X.; Zhang, L. Conversion of glucose into 5-hydroxymethylfurfural catalyzed by acid–base bifunctional heteropolyacid-based ionic hybrids. Green Chem. 2018, 20, 1551–1559. [Google Scholar] [CrossRef]
- Tang, Z.; Su, J. Direct conversion of cellulose to 5-hydroxymethylfurfural (HMF) using an efficient and inexpensive boehmite catalyst. Carbohydr. Res. 2019, 481, 52–59. [Google Scholar] [CrossRef]
- Jafarnia, A.; Soodi, M.; Shekarchi, M. Determination and comparision of hydroxymethylfurfural in industrial and traditional date syrup products. Iran. J. Toxicol. 2016, 10, 11–16. [Google Scholar] [CrossRef] [Green Version]
- Salhi, I.; Samet, Y.; Trabelsi, M. Direct electrochemical determination of very low levels of 5-hydroxymethyl furfural in natural honey by cyclic and square wave voltammetric techniques. J. Electroanal. Chem. 2020, 873, 114326. [Google Scholar] [CrossRef]
- Eshete, Y.; Eshete, T. A review on the effect of processing temperature and time duration on commercial honey quality. Madr. J. Food Technol. 2019, 4, 158–162. [Google Scholar] [CrossRef]
- Chen, Z.; Yan, X. Simultaneous determination of melamine and 5-hydroxymethylfurfural in milk by capillary electrophoresis with diode array detection. J. Agric. Food Chem. 2009, 57, 8742–8747. [Google Scholar] [CrossRef] [PubMed]
- Pereira, V.; Albuquerque, F.; Ferreira, A.; Cacho, J.; Marques, J. Evolution of 5-hydroxymethylfurfural (HMF) and furfural (F) in fortified wines submitted to overheating conditions. Food Res. Int. 2011, 44, 71–76. [Google Scholar] [CrossRef]
- Kim, H.-J.; Richardson, M. Determination of 5-hydroxymethylfurfural by ion-exclusion chromatography with UV detection. J. Chromatogr. A 1992, 593, 153–156. [Google Scholar] [CrossRef]
- Bignardi, C.; Cavazza, A.; Corradini, C. Selected product ion monitoring for quantification of 5-hydroxymethylfurfural in food products by capillary zone electrophoresis-tandem ion trap mass spectrometry. Food Control. 2014, 46, 41–48. [Google Scholar] [CrossRef]
- Lee, T.P.; Sakai, R.; Manaf, N.A.; Rodhi, A.M.; Saad, B. High performance liquid chromatography method for the determination of patulin and 5-hydroxymethylfurfural in fruit juices marketed in Malaysia. Food Control. 2014, 38, 142–149. [Google Scholar] [CrossRef]
- Rkik, M.; Brahim, M.B.; Samet, Y. Electrochemical determination of levofloxacin antibiotic in biological samples using boron doped diamond electrode. J. Electroanal. Chem. 2017, 794, 175–181. [Google Scholar] [CrossRef]
- Harfield, J.C.; Batchelor-McAuley, C.; Compton, R.G. Electrochemical determination of glutathione: A review. Analyst 2012, 137, 2285–2296. [Google Scholar] [CrossRef]
- Alothman, Z.A.; Bukhari, N.; Wabaidur, S.M.; Haider, S. Simultaneous electrochemical determination of dopamine and acetaminophen using multiwall carbon nanotubes modified glassy carbon electrode. Sens. Actuators B Chem. 2010, 146, 314–320. [Google Scholar] [CrossRef]
- Kozub, B.R.; Rees, N.V.; Compton, R.G. Electrochemical determination of nitrite at a bare glassy carbon electrode; why chemically modify electrodes? Sens. Actuators B Chem. 2010, 143, 539–546. [Google Scholar] [CrossRef]
- Martín-Yerga, D.; González-García, M.B.; Costa-García, A. Electrochemical determination of mercury: A review. Talanta 2013, 116, 1091–1104. [Google Scholar] [CrossRef]
- Zuo, Y.; Xu, J.; Zhu, X.; Duan, X.; Lu, L.; Yu, Y. Graphene-derived nanomaterials as recognition elements for electrochemical determination of heavy metal ions: A review. Microchim. Acta 2019, 186, 171. [Google Scholar] [CrossRef] [PubMed]
- Sohrabi, H.; Majidi, M.R.; Arbabzadeh, O.; Khaaki, P.; Pourmohammad, S.; Khataee, A.; Orooji, Y. Recent advances in the highly sensitive determination of zearalenone residues in water and environmental resources with electrochemical biosensors. Environ. Res. 2022, 204, 112082. [Google Scholar] [CrossRef] [PubMed]
- Camargo, J.R.; Andreotti, I.A.; Kalinke, C.; Henrique, J.M.; Bonacin, J.A.; Janegitz, B.C. Waterproof paper as a new substrate to construct a disposable sensor for the electrochemical determination of paracetamol and melatonin. Talanta 2020, 208, 120458. [Google Scholar] [CrossRef]
- Fu, L.; Zhang, X.; Ding, S.; Chen, F.; Lv, Y.; Zhang, H.; Zhao, S. Recent developments in the electrochemical determination of sulfonamides. Curr. Pharm. Anal. 2022, 18, 4–13. [Google Scholar] [CrossRef]
- Peng, Y.; Li, M.; Jia, X.; Su, J.; Zhao, X.; Zhang, S.; Zhang, H.; Zhou, X.; Chen, J.; Huang, Y. Cu nanoparticle-decorated boron–carbon–nitrogen nanosheets for electrochemical determination of chloramphenicol. ACS Appl. Mater. Interfaces 2022, 14, 28956–28964. [Google Scholar] [CrossRef] [PubMed]
- Sant’Anna, M.V.; Jonatas de Oliveira, S.S.; Gevaerd, A.; Lima, L.S.; Monteiro, M.D.; Carregosa, I.S.; Wisniewski Jr, A.; Marcolino-Junior, L.H.; Bergamini, M.F.; Sussuchi, E.M. Selective carbonaceous-based (nano) composite sensors for electrochemical determination of paraquat in food samples. Food Chem. 2022, 373, 131521. [Google Scholar] [CrossRef] [PubMed]
- Škugor Rončević, I.; Skroza, D.; Vrca, I.; Kondža, A.M.; Vladislavić, N. Development and optimization of electrochemical method for determination of vitamin C. Chemosensors 2022, 10, 283. [Google Scholar] [CrossRef]
- Rajendran, J.; Kannan, T.S.; Dhanasekaran, L.S.; Murugan, P.; Atchudan, R.; ALOthman, Z.A.; Ouladsmane, M.; Sundramoorthy, A.K. Preparation of 2D Graphene/MXene nanocomposite for the electrochemical determination of hazardous bisphenol A in plastic products. Chemosphere 2022, 287, 132106. [Google Scholar] [CrossRef]
- Ye, Y.; Zhang, H.; Kahaljan, G.; Wang, M.; Mohet, A.; He, S.; Cao, X.; Zheng, H. Electro-oxidation and determination 5-hydroxymethylfurfural in food on co-electrodeposited Cu-Ni bimetallic microparticles modified copper electrode. Food Chem. 2022, 367, 130659. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, J.; Lv, M.; Bai, Y.; Weng, X.; You, C.; Liu, Z. Voltammetric Determination of 5-Hydroxymethyl-2-furfural in Processed Cheese Using an Easy-Made and Economic Integrated 3D Graphene-like Electrode. Sensors 2021, 22, 64. [Google Scholar] [CrossRef]
- Musella, E.; Gualandi, I.; Scavetta, E.; Rivalta, A.; Venuti, E.; Christian, M.; Morandi, V.; Mullaliu, A.; Giorgetti, M.; Tonelli, D. Newly developed electrochemical synthesis of Co-based layered double hydroxides: Toward noble metal-free electro-catalysis. J. Mater. Chem. A 2019, 7, 11241–11249. [Google Scholar] [CrossRef]
- Zhu, J.-H.; Wu, X.-Y.; Mohamed, I.M.A.; Xing, F. Synthesis and microstructural analysis of calcined double hydroxide material and its performance for alkaline-decline resistance in concrete pores and chloride adsorption from simulated concrete pore solution. Chem. Phys. Lett. 2022, 786, 139186. [Google Scholar] [CrossRef]
- Zhu, J.-H.; Wu, X.-Y.; Mohamed, I.M.A.; Xing, F. Electrochemical and microstructural evaluation of acidification damage induced by impressed current cathodic protection after incorporating a hydroxy activated-Mg/Al-double oxide in the external anode mortar. Constr. Build. Mater. 2021, 309, 125116. [Google Scholar] [CrossRef]
- Upan, J.; Lerdsri, J.; Soongsong, J.; Sridara, T.; Reanpang, P.; Jakmunee, J. A novel and portable electrochemical sensor for 5-hydroxymethylfurfural detection using silver microdendrite electrodeposited paper-based electrode. Analyst 2022, 147, 2170–2179. [Google Scholar] [CrossRef]
- Akel, S.; Dillert, R.; Balayeva, N.O.; Boughaled, R.; Koch, J.; El Azzouzi, M.; Bahnemann, D.W. Ag/Ag2O as a co-catalyst in TiO2 photocatalysis: Effect of the co-catalyst/photocatalyst mass ratio. Catalysts 2018, 8, 647. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Zhao, Q.; Li, Y.; Li, Y.; Gou, J.; Cheng, X. Degradation of sulfamethoxazole by peroxymonosulfate activated by waste eggshell supported Ag2O-Ag nano–particles. Chem. Eng. J. 2021, 405, 126719. [Google Scholar] [CrossRef]
- Bhalothia, D.; Lee, D.-W.; Jhao, G.-P.; Liu, H.-Y.; Jia, Y.; Dai, S.; Wang, K.-W.; Chen, T.-Y. Reaction pathways for the highly selective and durable electrochemical CO2 to CO conversion on ZnO supported Ag nanoparticles in KCl electrolyte. Appl. Surf. Sci. 2023, 608, 155224. [Google Scholar] [CrossRef]
- Wolf, S.; Roschger, M.; Genorio, B.; Kolar, M.; Garstenauer, D.; Bitschnau, B.; Hacker, V. Ag-MnxOy on graphene oxide derivatives as oxygen reduction reaction catalyst in alkaline direct ethanol fuel cells. Catalysts 2022, 12, 780. [Google Scholar] [CrossRef]
- Huang, S.; Liu, Y.; Jafari, M.; Siaj, M.; Wang, H.; Xiao, S.; Ma, D. Highly Stable Ag–Au Core–Shell Nanowire Network for ITO-Free Flexible Organic Electrochromic Device. Adv. Funct. Mater. 2021, 31, 2010022. [Google Scholar] [CrossRef]
- Liu, C.; Liao, D.; Ma, F.; Huang, Z.; Liu, J.a.; Mohamed, I.M. Enhanced Conductivity and Antibacterial Behavior of Cotton via the Electroless Deposition of Silver. Molecules 2021, 26, 4731. [Google Scholar] [CrossRef]
- Zhang, J.; Raza, S.; Wang, P.; Wen, H.; Zhu, Z.; Huang, W.; Mohamed, I.M.A.; Liu, C. Polymer brush-grafted ZnO-modified cotton for efficient oil/water separation with abrasion/acid/alkali resistance and temperature “switch” property. J. Colloid Interface Sci. 2020, 580, 822–833. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Wu, G.; Huang, J.; Wang, B.; Li, H.; Chen, W.; Liang, J.; Tan, M.; Zhou, Z. Nanozyme-mediated cascade reaction system for electrochemical detection of 1,5-anhydroglucitol. Bioelectrochemistry 2022, 147, 108204. [Google Scholar] [CrossRef] [PubMed]
- Althomali, R.H.; Alamry, K.A.; Hussein, M.A.; Guedes, R. Hybrid PANI@ dialdehyde carboxymethyl cellulose/ZnO nanocomposite modified glassy carbon electrode as a highly sensitive electrochemical sensor. Diam. Relat. Mater. 2022, 122, 108803. [Google Scholar] [CrossRef]
- Van Boekel, M. Zia-Ur-Rehman. Determination of HMF in heated milk by HPLC. Neth. Milk Dairy J. 1987, 41, 297–306. [Google Scholar]
- Wang, Q.; Zhang, J.; Xu, Y.; Wang, Y.; Wu, L.; Weng, X.; You, C.; Feng, J. A one-step electrochemically reduced graphene oxide based sensor for sensitive voltammetric determination of furfural in milk products. Anal. Methods 2021, 13, 56–63. [Google Scholar] [CrossRef]
- Huang, T.-H.; Bhalothia, D.; Dai, S.; Yan, C.; Wang, K.-W.; Chen, T.-Y. Bifunctional Pt–SnOx nanorods for enhanced oxygen reduction and hydrogen evolution reactions. Sustain. Energy Fuels 2021, 5, 2960–2971. [Google Scholar] [CrossRef]
- Bai, L.; Guo, R.; Chen, Z.; Liu, L.; Dong, G.; Zhang, J.; Wu, Y.; Zhao, H.; Shan, D.; Su, Y.; et al. Chemically fabricated ZnO/Ag/AgmMonOl/ZnxMoyOz heterojunction nanophotocatalysts for abating organic dyes in wastewater. J. Clean. Prod. 2022, 363, 132481. [Google Scholar] [CrossRef]
- Salimi, E.; Nigje, A.K. Investigating the antibacterial activity of carboxymethyl cellulose films treated with novel Ag@GO decorated SiO2 nanohybrids. Carbohydr. Polym. 2022, 298, 120077. [Google Scholar] [CrossRef]
- Rahman, M.M.; Alam, M.; Rahman, M.M.; Susan, M.A.B.H.; Shaikh, M.A.A.; Nayeem, J.; Jahan, M.S. A novel approach in increasing carboxymethylation reaction of cellulose. Carbohydr. Polym. Technol. Appl. 2022, 4, 100236. [Google Scholar] [CrossRef]
- Estrada-Montaño, A.S.; Espinobarro-Velázquez, D.; Sauzameda, M.; Terrazas, E.; Reyes-Martinez, R.; Lardizábal, D.; Manjarrez-Nevárez, L.A.; Zaragoza-Galan, G. Photoluminescence in non-conjugated polyelectrolyte films containing 7-hydroxy-flavylium cation. Polym. Bull. 2020, 77, 5051–5063. [Google Scholar] [CrossRef]
- Tausenev, A.; Obraztsova, E.; Lobach, A.; Chernov, A.; Konov, V.; Kryukov, P.; Konyashchenko, A.; Dianov, E. 177 fs erbium-doped fiber laser mode locked with a cellulose polymer film containing single-wall carbon nanotubes. Appl. Phys. Lett. 2008, 92, 171113. [Google Scholar] [CrossRef]
- Taubner, T.; Synytsya, A.; Čopíková, J. Preparation of amidated derivatives of carboxymethylcellulose. Int. J. Biol. Macromol. 2015, 72, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Lai, C.-H.; Wang, G.-A.; Ling, T.-K.; Wang, T.-J.; Chiu, P.-K.; Chou Chau, Y.-F.; Huang, C.-C.; Chiang, H.-P. Near infrared surface-enhanced Raman scattering based on star-shaped gold/silver nanoparticles and hyperbolic metamaterial. Sci. Rep. 2017, 7, 5446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gouda, M.; Khalaf, M.M.; Al-Shuaibi, M.A.A.; Mohamed, I.M.A.; Shalabi, K.; El-Shishtawy, R.M.; El-Lateef, H.M.A. Facile Synthesis and Characterization of CeO2-Nanoparticle-Loaded Carboxymethyl Cellulose as Efficient Protective Films for Mild Steel: A Comparative Study of Experiential and Computational Findings. Polymers 2022, 14, 3078. [Google Scholar] [CrossRef]
- Tootoonchi, A.; Davarani, S.S.H.; Sedghi, R.; Shaabani, A.; Moazami, H.R. A non-enzymatic biosensor based on Pd decorated reduced graphene oxide poly (2-anilinoethanol) nanocomposite and its application for the determination of dopamine. J. Electrochem. Soc. 2018, 165, B150. [Google Scholar] [CrossRef]
- Yousef, A.; Al-Enizi, A.M.; Mohamed, I.M.; El-Halwany, M.; Ubaidullah, M.; Brooks, R.M. Synthesis and characterization of CeO2/rGO nanoflakes as electrode material for capacitive deionization technology. Ceram. Int. 2020, 46, 15034–15043. [Google Scholar] [CrossRef]
- Yasin, A.S.; Mohamed, I.M.; Park, C.H.; Kim, C.S. Design of novel electrode for capacitive deionization using electrospun composite titania/zirconia nanofibers doped-activated carbon. Mater. Lett. 2018, 213, 62–66. [Google Scholar] [CrossRef]
- Mohamed, I.M.; Yasin, A.S.; Liu, C. Synthesis, surface characterization and electrochemical performance of ZnO@ activated carbon as a supercapacitor electrode material in acidic and alkaline electrolytes. Ceram. Int. 2020, 46, 3912–3920. [Google Scholar] [CrossRef]
- Zahran, M.; Khalifa, Z.; Zahran, M.A.-H.; Azzem, M.A. Recent advances in silver nanoparticle-based electrochemical sensors for determining organic pollutants in water: A review. Mater. Adv. 2021, 2, 7350–7365. [Google Scholar] [CrossRef]
- De, A.; Kalita, D. Bio-Fabricated Gold and Silver Nanoparticle Based Plasmonic Sensors for Detection of Environmental Pollutants: An Overview. Crit. Rev. Anal. Chem. 2021, Sep 3, 1–17. [Google Scholar] [CrossRef]
- Wahab, R.; Khan, F.; Alam, M.; Mishra, Y.K. Silver nanoparticle based selective, sensitive and instantaneous electrochemical nanosensors for the analysis of riboflavin. Mater. Sci. Semicond. Process. 2023, 153, 107166. [Google Scholar] [CrossRef]
Molasses Samples | AgNPs@CMC Electrode | |
---|---|---|
HMF (mg/g) | SD (%) | |
1 | 87 | 5.3 |
2 | 81 | 3.01 |
3 | 76 | 4.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alqahtani, N.K.; Alnemr, T.M.; Shulaybi, F.A.; Mohamed, H.A.; Gouda, M. Carboxymethyl-Cellulose-Containing Ag Nanoparticles as an Electrochemical Working Electrode for Fast Hydroxymethyl-Furfural Sensing in Date Molasses. Polymers 2023, 15, 79. https://doi.org/10.3390/polym15010079
Alqahtani NK, Alnemr TM, Shulaybi FA, Mohamed HA, Gouda M. Carboxymethyl-Cellulose-Containing Ag Nanoparticles as an Electrochemical Working Electrode for Fast Hydroxymethyl-Furfural Sensing in Date Molasses. Polymers. 2023; 15(1):79. https://doi.org/10.3390/polym15010079
Chicago/Turabian StyleAlqahtani, Nashi K., Tareq M. Alnemr, Faisal A. Shulaybi, Hisham Abdelmonem Mohamed, and Mohamed Gouda. 2023. "Carboxymethyl-Cellulose-Containing Ag Nanoparticles as an Electrochemical Working Electrode for Fast Hydroxymethyl-Furfural Sensing in Date Molasses" Polymers 15, no. 1: 79. https://doi.org/10.3390/polym15010079
APA StyleAlqahtani, N. K., Alnemr, T. M., Shulaybi, F. A., Mohamed, H. A., & Gouda, M. (2023). Carboxymethyl-Cellulose-Containing Ag Nanoparticles as an Electrochemical Working Electrode for Fast Hydroxymethyl-Furfural Sensing in Date Molasses. Polymers, 15(1), 79. https://doi.org/10.3390/polym15010079