The Study of Enteromorpha-Based Reinforcing-Type Flame Retardant on Flame Retardancy and Smoke Suppression of EPDM
Abstract
:1. Introduction
2. Experimental and Materials
2.1. Materials
2.2. Characterization
2.3. Preparation of GN
2.4. Preparation of Composite Materials
3. Results and Discussion
3.1. The Particle Size Distribution and Zeta Potential of EN
3.2. Thermal Stability of EN and AEG40
3.3. Flame-Retardant Properties of EPDM Rubber Composites
3.4. Morphology of Intumescent Char Layer
3.5. Static and Dynamic Mechanical Properties of EPDM/AEG Composites
3.6. Flame Retardancy Mechanism
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Ji, K.; Gao, Y.; Zhang, L.; Wang, S.; Yue, Q.; Xu, X.; Kong, W.; Gao, B.; Cai, Z.; Chen, Y. A tunable amphiphilic Enteromorpha-modified graphene aerogel for oil/water separation. Sci. Total Environ. 2021, 763, 142958. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Ma, T.; Shang, Y.; Gao, B.; Jin, B.; Dan, H.; Li, Q.; Yue, Q.; Li, Y.; Wang, Y.; et al. In-situ pyrolysis of Enteromorpha as carbocatalyst for catalytic removal of organic contaminants: Considering the intrinsic N/Fe in Enteromorpha and non-radical reaction. Appl. Catal. B Environ. 2019, 250, 382–395. [Google Scholar] [CrossRef]
- Zhong, R.T.; Wan, X.Z.; Wang, D.Y.; Zhao, C.; Liu, D.; Gao, L.Y.; Wang, M.F.; Wu, C.J.; Sayed, M.N.; Maria, D.L.; et al. Polysaccharides from marine enteromorpha: Structure and function. Trends Food Sci. Technol. 2020, 99, 11–20. [Google Scholar] [CrossRef]
- Li, Y.; Cui, J.; Zhang, G.; Liu, Z.; Guan, H.; Hwang, H.; Aker, W.G.; Wang, P. Optimization study on the hydrogen peroxide pretreatment and production of bioethanol from seaweed Ulva prolifera biomass. Bioresour. Technol. 2016, 214, 144–149. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yu, L.; Xie, F.; Zhang, L.; Liao, L.; Liu, H.; Chen, L. Morphology and properties of thermal/cooling-gel bi-phasic systems based on hydroxypropyl methylcellulose and hydroxypropyl starch. Compos. Part B Eng. 2016, 101, 46–52. [Google Scholar] [CrossRef] [Green Version]
- Duan, Q.; Jiang, T.; Xue, C.; Liu, H.; Liu, F.; Alee, M.; Ali, A.; Chen, L.; Yu, L. Preparation and characterization of starch/enteromorpha/nano-clay hybrid composites. Int. J. Biol. Macromol. 2020, 150, 16–22. [Google Scholar] [CrossRef]
- Pradhan, B.; Patra, S.; Behera, C.; Nayak, R.; Jena, M. Preliminary investigation of the antioxidant, anti-diabetic, and anti-inflammatory activity of enteromorpha intestinalis extracts. Molecules 2021, 26, 1171. [Google Scholar] [CrossRef]
- Shanab, S.M.M.; Shalaby, E.A. The role of salt stress on laboratory cultivation of green macroalga Enteromorpha compressa and its antioxidant activity. Baghdad Sci. J. 2020, 18, 54. [Google Scholar] [CrossRef]
- Wassie, T.; Niu, K.; Xie, C.; Wang, H.; Xin, W. Extraction Techniques, Biological Activities and Health Benefits of Marine Algae Enteromorpha prolifera Polysaccharide. Front. Nutr. 2021, 8, 747928. [Google Scholar] [CrossRef]
- Li, J.; Jiang, F.; Chi, Z.; Han, D.; Yu, L.; Liu, C. Development of Enteromorpha prolifera polysaccharide-based nanoparticles for delivery of curcumin to cancer cells. Int. J. Biol. Macromol. 2018, 112, 413–421. [Google Scholar] [CrossRef]
- Wassie, T.; Duan, X.; Xie, C.; Wang, R.; Wu, X. Dietary Enteromorpha polysaccharide-Zn supplementation regulates amino acid and fatty acid metabolism by improving the antioxidant activity in chicken. J. Anim. Sci. Biotechnol. 2022, 13, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Ray, B.; Schütz, M.; Mukherjee, S.; Jana, S.; Ray, S.; Marschall, M. Exploiting the Amazing Diversity of Natural Source-Derived Polysaccharides: Modern Procedures of Isolation, Engineering, and Optimization of Antiviral Activities. Polymers 2020, 13, 136. [Google Scholar] [CrossRef] [PubMed]
- Venkatesan, M.; Arumugam, V.; Pugalendi, R.; Ramachandran, K.; Sengodan, K.; Vijayan, S.R.; Sundaresan, U.; Ramachandran, S.; Pugazhendhi, A. Antioxidant, anticoagulant and mosquitocidal properties of water soluble polysaccharides (WSPs) from Indian seaweeds. Process. Biochem. 2019, 84, 196–204. [Google Scholar] [CrossRef]
- Ouyang, Y.; Liu, D.; Zhang, L.; Li, X.; Chen, X.; Zhao, C. Green Alga Enteromorpha prolifera Oligosaccharide Ameliorates Ageing and Hyperglycemia through Gut–Brain Axis in Age-Matched Diabetic Mice. Mol. Nutr. Food Res. 2022, 66, 2100564. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Xi, Y.; Chen, S.; Li, D.; She, X.; Sun, J.; Han, W.; Yang, D.; Guo, S. Prolifera-Green-Tide as Sustainable Source for Carbonaceous Aerogels with Hierarchical Pore to Achieve Multiple Energy Storage. Adv. Funct. Mater. 2016, 26, 8487–8495. [Google Scholar] [CrossRef]
- Pitchapa, P.; Sombat, T.; Taweechai, A. Comparative study of natural rubber and acrylonitrile rubber reinforced with aligned short aramid fiber. Polym. Test. 2017, 64, 109–116. [Google Scholar]
- Lee, M.C.H. Design and Applications of Short Fiber Reinforced Rubbers; De White, S.K., Ed.; Short Fiber-Polymer Composites, Woodhead Publishing: Cambridge, UK, 1996; pp. 192–209. [Google Scholar]
- Agarwal, K.; Setua, D.K.; Mathur, G.N. Short fiber and particulate reinforced rubber composites. Def. Sci. J. 2002, 52, 337–346. [Google Scholar] [CrossRef] [Green Version]
- Yang, G.; Qin, L.; Li, M.; Ou, K.; Fang, J.; Fu, Q.; Sun, Y. Shear-induced alignment in 3D-printed nitrile rubber-reinforced glass fiber composites. Compos. Part B Eng. 2022, 229, 109479. [Google Scholar] [CrossRef]
- Tang, L.; He, M.; Na, X.; Guan, X.; Zhang, R.; Zhang, J.; Gu, J. Functionalized glass fibers cloth/spherical BN fillers/epoxy laminated composites with excellent thermal conductivities and electrical insulation properties. Compos. Commun. 2019, 16, 5–10. [Google Scholar] [CrossRef]
- Lu, S.-Y.; Hamerton, I. Recent developments in the chemistry of halogen-free flame retardant polymers. Prog. Polym. Sci. 2002, 27, 1661–1712. [Google Scholar] [CrossRef]
- Bulota, M.; Budtova, T. PLA/algae composites: Morphology and mechanical properties. Compos. Part A Appl. Sci. Manuf. 2015, 73, 109–115. [Google Scholar] [CrossRef]
- Shao, Z.-B.; Deng, C.; Tan, Y.; Yu, L.; Chen, M.-J.; Chen, L.; Wang, Y.-Z. Ammonium polyphosphate chemically-modified with ethanolamine as an efficient intumescent flame retardant for polypropylene. J. Mater. Chem. A 2014, 2, 13955–13965. [Google Scholar] [CrossRef]
- Wu, J.-N.; Chen, L.; Fu, T.; Zhao, H.-B.; Guo, D.-M.; Wang, X.-L.; Wang, Y.-Z. New application for aromatic Schiff base: High efficient flame-retardant and anti-dripping action for polyesters. Chem. Eng. J. 2018, 336, 622–632. [Google Scholar] [CrossRef]
- Li, L.; Liu, X.; Shao, X.; Jiang, L.; Huang, K.; Zhao, S. Synergistic effects of a highly effective intumescent flame retardant based on tannic acid functionalized graphene on the flame retardancy and smoke suppression properties of natural rubber. Compos. Part A Appl. Sci. Manuf. 2019, 129, 105715. [Google Scholar] [CrossRef]
- Lu, Y.; Liu, J.; Hou, G.; Ma, J.; Wang, W.; Wei, F.; Zhang, L. From nano to giant? Designing carbon nanotubes for rubber reinforcement and their applications for high performance tires. Compos. Sci. Technol. 2016, 137, 94–101. [Google Scholar] [CrossRef]
- Zheng, X.; Song, S.K.; Zhou, Z.; Jiang, X.; Sui, Y.; Che, M.; Xu, Q.; Wang, Y.; Zhao, S.; Li, L. Effect of silica dispersed by special dispersing agents with green strategy on tire rolling resistance and energy consumption. J. Appl. Polym. Sci. 2022, 139, e52933. [Google Scholar] [CrossRef]
- Jing, J.; Zhang, Y.; Fang, Z.-P.; Wang, D.-Y. Core-shell flame retardant/graphene oxide hybrid: A self-assembly strategy towards reducing fire hazard and improving toughness of polylactic acid. Compos. Sci. Technol. 2018, 165, 161–167. [Google Scholar] [CrossRef]
- Guo, W.; Yu, B.; Yuan, Y.; Song, L.; Hu, Y. In situ preparation of reduced graphene oxide/DOPO-based phosphonamidate hybrids towards high-performance epoxy nanocomposites. Compos. Part B Eng. 2017, 123, 154–164. [Google Scholar] [CrossRef]
- Xu, W.; Wang, X.; Wu, Y.; Li, W.; Chen, C. Functionalized graphene with Co-ZIF adsorbed borate ions as an effective flame retardant and smoke suppression agent for epoxy resin. J. Hazard. Mater. 2019, 363, 138–151. [Google Scholar] [CrossRef]
- Khalili, P.; Liu, X.; Tshai, K.Y.; Rudd, C.; Yi, X.; Kong, I. Development of fire retardancy of natural fiber composite encouraged by a synergy between zinc borate and ammonium polyphosphate. Compos. Part B Eng. 2019, 159, 165–172. [Google Scholar] [CrossRef]
- Dresselhaus, M.; Dresselhaus, G.; Jorio, A.; Souza Filho, A.G.; Saito, R. Raman spectroscopy on isolated single wall carbon nanotubes. Carbon 2002, 40, 2043–2061. [Google Scholar] [CrossRef]
- Tuinstra, F.; Koening, J.L. Raman spectrum of graphite. J. Chem. Phys. 1970, 53, 1126–1130. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Wang, X.; Zhou, Z.; Liu, X.; Xu, M.; Zhao, F.; Zhao, F.; Li, S.; Liu, Z.; Li, L.; et al. Flame-retardant effect of tannic acid-based intumescent fire-retardant applied on flammable natural rubber. RSC Adv. 2022, 12, 29928–29938. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, A.C.; Robertson, J. Interpretation of Raman spectra of disordered and amor phous carbon. Phys. Rev. B 2000, 61, 14095–14107. [Google Scholar] [CrossRef]
Samples | EPDM (phr) | CB (phr) | ZnO (phr) | SA (phr) | S (phr) | M (phr) | TT (phr) | APP (phr) | EN (phr) | GE (phr) | TA (phr) |
---|---|---|---|---|---|---|---|---|---|---|---|
Neat EPDM | 100 | 40 | 5 | 1 | 1.5 | 0.5 | 1.5 | -- | -- | -- | -- |
EPDM/AEG20 | 100 | 40 | 5 | 1 | 1.5 | 0.5 | 1.5 | 20 | 20 | 1 | 0.1 |
EPDM/AEG30 | 100 | 40 | 5 | 1 | 1.5 | 0.5 | 1.5 | 30 | 20 | 1 | 0.1 |
EPDM/AG40 | 100 | 40 | 5 | 1 | 1.5 | 0.5 | 1.5 | 40 | -- | 1 | 0.1 |
EPDM/AE40 | 100 | 40 | 5 | 1 | 1.5 | 0.5 | 1.5 | 40 | 20 | -- | -- |
EPDM/AEG40 | 100 | 40 | 5 | 1 | 1.5 | 0.5 | 1.5 | 40 | 20 | 1 | 0.1 |
T-5% (°C) | Tmax(°C) | Residue at 800 °C | |||
---|---|---|---|---|---|
T1max (°C) | T2max (°C) | T3max (°C) | |||
EN | 103.8 | 92.3 | 242.5 | 710.6 | 38.1 |
AEG40 | 261.5 | 244 | 249.1 | 701.7 | 31.7 |
Samples | ML/dNm−1 | MH/dNm−1 | MH-ML/dNm−1 | tc10/s | t90/s |
---|---|---|---|---|---|
Neat EPDM | 3.10 | 29.45 | 26.35 | 66.6 | 330.6 |
EPDM/AEG20 | 3.38 | 34.37 | 30.99 | 64.2 | 322.2 |
EPDM/AEG30 | 3.61 | 37.83 | 34.22 | 65.4 | 328.2 |
EPDM/AG40 | 3.34 | 38.29 | 34.95 | 64.8 | 311.4 |
EPDM/AE40 | 3.69 | 37.70 | 34.01 | 66.6 | 312.6 |
EPDM/AEG40 | 3.96 | 38.34 | 34.38 | 65.4 | 313.2 |
Samples | t1 | t2 | LOI (%) | UL-94 | Dripping |
---|---|---|---|---|---|
Neat EPDM | 45 | 78 | 24.1 ± 0.2 | NC | Yes |
EPDM/AEG20 | 39 | 69 | 28.8 ± 0.4 | NC | Yes |
EPDM/AEG30 | 8 | 12 | 30.1 ± 0.4 | V-1 | No |
EPDM/AG40 | 15 | 20 | 29.5 ± 0.3 | V-2 | Yes |
EPDM/AE40 | 13 | 18 | 31.2 ± 0.5 | V-1 | No |
EPDM/AEG40 | 4 | 10 | 32.5 ± 0.5 | V-0 | No |
Samples | TTI (s) | PHRR (kW/m2) | THR (MJ/m2) | TSP (m2) | MASS (g) | FIGRA (kW/(m2/s)) | FPI (10−2m2s/kW)) | EHC (MJ/kg) |
---|---|---|---|---|---|---|---|---|
EPDM | 34 | 997.1 | 167.4 | 15.2 | 9.3 | 3.63 | 3.41 | 49.04 |
EPDM/AEG20 | 70 | 460.2 | 153.5 | 12.8 | 16.2 | 2.01 | 15.21 | 40.53 |
EPDM/AEG30 | 80 | 428.1 | 129.4 | 10.4 | 25.4 | 2.38 | 18.69 | 38.84 |
EPDM/AG40 | 77 | 383.4 | 144.8 | 11.9 | 24.3 | 3.19 | 20.08 | 39.07 |
EPDM/AE40 | 85 | 300.75 | 122.1 | 10.8 | 27.6 | 1.77 | 28.26 | 28.62 |
EPDM/AEG40 | 97 | 325.9 | 117.6 | 9.9 | 28.1 | 1.31 | 29.76 | 21.86 |
Samples | C (Weight, %) | N (Weight, %) | O (Weight, %) | P (Weight, %) |
---|---|---|---|---|
Neat EPDM | 57.91 | 0.93 | 31.64 | 2.38 |
EPDM/AEG20 | 72.78 | 2.44 | 17.70 | 4.18 |
EPDM/AEG30 | 74.13 | 2.16 | 19.63 | 4.08 |
EPDM/AG40 | 77.39 | 2.24 | 15.85 | 4.05 |
EPDM/AE40 | 79.38 | 2.61 | 14.06 | 3.96 |
EPDM/AEG40 | 86.22 | 2.75 | 6.31 | 4.72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, P.; Zhou, Z.; Jiang, L.; Zhao, S.; Li, L. The Study of Enteromorpha-Based Reinforcing-Type Flame Retardant on Flame Retardancy and Smoke Suppression of EPDM. Polymers 2023, 15, 55. https://doi.org/10.3390/polym15010055
Sun P, Zhou Z, Jiang L, Zhao S, Li L. The Study of Enteromorpha-Based Reinforcing-Type Flame Retardant on Flame Retardancy and Smoke Suppression of EPDM. Polymers. 2023; 15(1):55. https://doi.org/10.3390/polym15010055
Chicago/Turabian StyleSun, Peipei, Ziwen Zhou, Licong Jiang, Shuai Zhao, and Lin Li. 2023. "The Study of Enteromorpha-Based Reinforcing-Type Flame Retardant on Flame Retardancy and Smoke Suppression of EPDM" Polymers 15, no. 1: 55. https://doi.org/10.3390/polym15010055
APA StyleSun, P., Zhou, Z., Jiang, L., Zhao, S., & Li, L. (2023). The Study of Enteromorpha-Based Reinforcing-Type Flame Retardant on Flame Retardancy and Smoke Suppression of EPDM. Polymers, 15(1), 55. https://doi.org/10.3390/polym15010055