Polymeric Electrochemical Sensor for Calcium Based on DNA
Abstract
1. Introduction
2. Experimental Methods
2.1. Reagents and Materials
2.2. Equipment
2.3. Electrode Preparation
2.4. Sensor Characterization Studies
Silver–silver chloride (outer reference) | Test solution | Membrane | IF | Silver–silver chloride (inner reference) |
2.5. Determination of Ca in Real Samples
3. Results and Discussion
3.1. Composition Effect
3.2. pH–Effect
3.3. Selective-Character Studies
3.4. Determination of Calcium in Real Samples
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cheng, Y.; Sun, C.; Ou, X.; Zhai, T.; Liu, B.; Lou, X.; Xia, F. Coordination-induced structural changes of DNA-based optical and electrochemical sensors for metal ions detection. Dalton Trans. 2019, 48, 5845–6292. [Google Scholar]
- Zhou, W.; Saran, R.; Jimmy Huang, P.-J.; Ding, J.; Liu, J. An Exceptionally Selective DNA Cooperatively Binding Two Ca2+Ions. ChemBioChem 2017, 18, 518–522. [Google Scholar] [CrossRef] [PubMed]
- Alizadeh, T.; Shamkhalib, A.N.; Hanifehpourc, Y.; Jooc, S.W. A Ca2+ selective membrane electrode based on calcium-imprinted polymeric nanoparticles. N. J. Chem. 2016, 40, 8479–8487. [Google Scholar] [CrossRef]
- Yu, T.; Zhou, W.; Liu, J. Screening of DNAzyme mutants for highly sensitive and selective detection of calcium in milk. Anal. Methods 2018, 10, 1740–1746. [Google Scholar] [CrossRef]
- Grynkiewicz, G.; Poenie, M.; Tsien, R.Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem. 1985, 260, 3440–3450. [Google Scholar] [CrossRef]
- Stelmach, E.; Szymczycha-Madeja, A.; Pohl, P. A Simplified Determination of Total Concentrations of Ca, Fe, Mg and Mn in Addition to Their Bioaccessible Fraction in Popular Instant Coffee Brews. Food Chem. 2016, 197, 388–394. [Google Scholar] [CrossRef]
- Lopez-Castilla, A.; Thomassin, J.L.; Bardiaux, B.; Zheng, W.L.; Nivaskumar, M.; Yu, X.; Nilges, M.; Egelman, E.H.; Izadi-Pruneyre, N.; Francetic, O. Structure of the Calcium-Dependent Type 2Secretion Pseudopilus. Nat. Microbiol. 2017, 2, 1686–1695. [Google Scholar] [CrossRef]
- Ostad, M.A.; Hajinia, A.; Heidari, T. A Novel Direct and Cost-Effective Method for Fabricating Paper-Based Microfluidic Device by Commercial Eye Pencil and its Application for Determining Simultaneous Calcium and Magnesium. Microchem. J. 2017, 133, 545–550. [Google Scholar] [CrossRef]
- Nyein, H.Y.Y.; Gao, W.; Shahpar, Z.; Emaminejad, S.; Challa, S.; Chen, K.; Fahad, H.M.; Tai, L.C.; Ota, H.; Davis, R.W.; et al. A Wearable Electrochemical Platform for Noninvasive Simultaneous Monitoring of Ca2+ and pH. ACS Nano 2016, 10, 7216–7224. [Google Scholar] [CrossRef]
- Li, L.; Ma, X.; Dong, W.; Miao, P.; Tang, Y. Electrochemical Determination of Ca2+ Based On Recycling Formation of Highly Selective DNAzyme and Gold Nanoparticle-Mediated Amplification. Bioconjugate Chem. 2018, 29, 1021–1024. [Google Scholar] [CrossRef]
- Liu, S.Y.; Wang, H.; Cheng, Z.; Liu, H.G. Hexametaphosphate-Capped Quantum Dots as Fluorescent Probes for Detection of Calcium Ion and Fluoride. Sens. Actuators 2016, 232, 306–312. [Google Scholar] [CrossRef]
- Umapathi, R.; Sonwal, S.; Lee, M.J.; Rani, G.M.; Lee, E.-S.; Jeon, T.-J.; Kang, S.-M.; Oh, M.-H.; Huh, Y.S. Colorimetric based on-site sensing strategies for the rapid detection of pesticides in agricultural foods: New horizons, perspectives, and challenges. Coord. Chem. Rev. 2021, 446, 214061. [Google Scholar] [CrossRef]
- Vilian, A.E.; Umapathi, R.; Hwang, S.-K.; Huh, Y.S.; Han, Y.-K. Pd–Cu nanospheres supported on Mo2C for the electrochemical sensing of nitrites. J. Hazard. Mater. 2021, 408, 124914. [Google Scholar] [CrossRef]
- Vijayalakshmi, A.; Thamaraiselvi, J. Calcium Ion Selective Electrode Based on Surface Modified Zeolite Based Ionophore and its Analytical Application. Orient J. Chem. 2017, 33, 396–401. [Google Scholar]
- Yang, Q.; Zhang, M.; Ming, C.; Liu, G.; Wang, M. All-solid-state Ca2+ Ion-selective Electrode with Black Phosphorus and Reduced Graphene Oxide as the Mediator Layer. Int. J. Electrochem. Sci. 2019, 14, 4933–4945. [Google Scholar] [CrossRef]
- Vijayalakshmi, A.; Thamaraiselvi, J. Calcium Ion Selective Electrode Based on Schiff Base as Ionophore and Determination of Thermodynamic Functions and its Analytical Application. Orient. J. Chem. 2017, 33, 531–536. [Google Scholar] [CrossRef]
- Van Dat, N.; Tuan, H.T.; Phong, H.Q.; Huong, H.L.; Dat, N.T.; Hien, O.T.M.; Purwadi, R. The preparation of a fine tip calcium ion selective electrode. Can Tho Univ. J. Sci. 2020, 12, 45–49. [Google Scholar]
- Zareh, M.; Zordek, W.; Abd-Alhady, A. Iron-Selective Electrode Based on Phosphorylated Calix-6-arene Derivative. J. Sens. Technol. 2014, 4, 186–194. [Google Scholar] [CrossRef][Green Version]
- Buck, R.P.; Lindner, E. Recommendations for nomenclature of ion selective electrodes (IUPAC Recommendations 1994). Pure Appl. Chem. 1994, 66, 2527. [Google Scholar] [CrossRef]
- Abu-Salah, K.M.; Zourob, M.M.; Mouffouk, F.; Alrokayan, S.A.; Alaamery, M.A.; Ansari, A.A. DNA-Based Nanobiosensors as an Emerging Platform for Detection of Disease. Sensors 2015, 15, 14539–14568. [Google Scholar] [CrossRef]
- Zhou, W.; Saran, R.; Liu, J. Metal Sensing by DNA. Am. Chem. Soc. 2017, 117, 8272–8325. [Google Scholar] [CrossRef]
- Saidura, M.R.; Abdul Aziza, A.R.; Basirun, W.J. Recent advances in DNA-based electrochemical biosensors for heavy metal ion detection: A Review. Biosens. Bioelectron. 2017, 90, 125–139. [Google Scholar] [CrossRef]
- Vlascici, D.; Plesu, N.; Fagadar-Cosma, G.; Lascu, A.; Petric, M.; Crisan, M.; Belean, A.; Fagadar-Cosma, E. Potentiometric Sensors for Iodide and Bromide Based on Pt(II)-Porphyrin. Sensors 2018, 18, 2297. [Google Scholar] [CrossRef]
- Zareh, M.M. Blank Membranes versus Ionophore-based Membranes for the Selective Determination of H+. Anal. Sci. 2009, 25, 1131. [Google Scholar] [CrossRef][Green Version]
- Barreto, W.; Barreto, S.; Scarminio, I.; Ishikawa, D.; Soares, M.; de Proença, M. Determination of Ni(II) in metal alloys by spectrophotometry UV-Vis using dopasemiquinone. Quím. Nova 2010, 1, 33. [Google Scholar] [CrossRef]
- Buck Scientific. Manual Book, Buck Scientific 210/211 VGP Atomic Absorption Spectroscopy, Operator’s Manual February; VER 3.94 C; Buck Scientific: Norwalk, CT, USA, 2005. [Google Scholar]
Plasticizer | Chemical Name | Molecular Formula | Molecular Weight | Physical Properties |
---|---|---|---|---|
DOP | Dioctyl phthalate | C24H38O4 | 390.57 | Colorless, transparent oily liquid, slight odor. Boiling Point 386°C. Viscosity 80 c.p. (20). Refractive index 1.4831.48620. Flash point 109 °F. Insoluble in water. |
NPOE | 2-Nitrophenyloctyl ether | C14H21NO3 | 251.32 | Colorless liquid. Boiling Point 197–198 °C, 11 mm Hg. Flash Point > 230 °F. Refractive index n20/D 1.508 (lit.). Water Solubility, tetrahydrofuran: 0.1 g/mL. |
DEP | Diethyl phthalate | C12H14O4 | 222.24 | Colorless liquid without significant odor. Insoluble in water.Boiling Point 295 °C. Flash Point 325 °F. Refractive index 1.5002 at 25 °C/D. |
Composition, w/w% | PVC, mg | DNA, mg | DOP, mg | DEP, mg | NPOE, mg | Slope, mV/Decde | Detection Limit, M | Linear Range, M |
---|---|---|---|---|---|---|---|---|
I-membrane | 60 | 2 | 120 | _ | _ | 30 | 7.9 × 10−6 | 5.0 × 10−2–5.0 × 10−5 |
II-membrane | 60 | 2 | _ | _ | 120 | 26 | 6.3 × 10−6 | 1.0 × 10−2–1.0 × 10−5 |
III-membrane | 60 | 2 | _ | 120 | _ | 29 | 2.5 × 10−5 | 5.0 × 10−2–5.0 × 10−5 |
No. | Inner Filling Solution | Slope, mV/Decade | Linear Range, M | R2 |
---|---|---|---|---|
A | (10−1 M CaCl2 + 10−1 M KCl) | 22 | 5.0 × 10−2–1.0 × 10−4 | 0.9917 |
B | (10−2 M CaCl2 + 10−2 M KCl) | 25 | 5.0 × 10−2–5.0 × 10−5 | 0.9797 |
C | (10−3 M CaCl2 + 10−3 M KCl) | 30 | 5.0 × 10−2–5.0 × 10−5 | 0.9978 |
D | (10−4 M CaCl2 + 10−4 M KCl) | 23 | 5.0 × 10−2–1.0 × 10−4 | 0.9923 |
Sensor/Ionophore | LDR, M | LOD, M | Slope, mV/Decade−1 | pH | Response Time, s | Age, Days | Ref. |
---|---|---|---|---|---|---|---|
Nano-sized Ca+2 imprinted polymers | 1.0 × 10−6–1.0 × 10−1 | 7.5 × 10−7 | 30.3 | 5.0–7.0 | 10 | – | [3] |
Surface modified zeolite | 1.0 × 10−4–1.0 × 10−1 | – | 33.0 | 5.7–6.2 | – | – | [14] |
Composite mediator layer of RGO-coated BP | 1.0 × 10−6–1.0 × 10−1 | 7.2 × 10−6 | 28.3 | – | 10 | 10 | [15] |
Fine tip calcium ion selective electrode | 1.0 × 10−7–1.0 × 10−3 | 3.2 × 10−8 | 30.0 | – | 10 | – | [17] |
Schiff base | – | – | – | – | – | 90 | [16] |
DNA | 5.0 × 10−5–5.0 × 10−2 | 7.9 × 10−6 | 30.0 | 4.0–9.5 | 3 | 21 | Present work |
Interference | KPotCa2+, jz+ | ||
---|---|---|---|
I-DOP | II-NPOE | III-DEP | |
Ba2+ | 2.27 × 10−4 | 1.60 | 1.71 × 10−6 |
Mg2+ | 4.21 × 10−4 | 1.05 | 2.91 × 10−6 |
Cu2+ | 2.13 × 10−4 | 1.09 | 1.30 × 10−6 |
Ni2+ | 3.60 × 10−4 | 0.49 | 4.29 × 10−6 |
Zn2+ | 2.88 × 10−4 | 0.63 | 3.33 × 10−6 |
Mn2+ | 3.51 × 10−4 | 0.59 | 3.47 × 10−6 |
Pb2+ | 1.80 × 10−4 | 0.50 | 3.17 × 10−6 |
NH4 + | 8.91 × 10−4 | 1.30 | 1.46 × 10−5 |
K+ | 8.71 × 10−4 | 0.49 | 1.57 × 10−5 |
Na+ | 9.33 × 10−4 | 0.52 | 9.75 × 10−6 |
Fe3+ | 2.44 × 10−4 | 0.72 | 3.29 × 10−7 |
Sr2+ | 2.40 × 10−4 | 0.99 | 1.77 × 10−6 |
Hg2+ | 2.70 × 10−4 | 0.26 | 8.00 × 10−5 |
Cr2+ | 5.37 × 10−4 | 0.60 | 3.28 × 10−6 |
Cd2+ | 1.21 × 10−4 | 0.25 | 1.10 × 10−6 |
No. | Sample | Ca2+, ppm | Recovery, % | RSD, % | |
---|---|---|---|---|---|
AAS Method | Ca-ISE Method | ||||
A | Milk (Al-Marai) | 52.31 | 50.48 | 96.48 | 0.52 |
B | Milk (Danone) | 101.98 | 100.71 | 88.19 | 0.18 |
C | Powder milk (Nido) | 483.71 | 449.87 | 93.66 | 0.14 |
D | Cheese (Domty) | 163.83 | 159.62 | 89.00 | 0.17 |
E | Cheese (Président) | 479.56 | 449.87 | 83.47 | 0.24 |
F | Yogurt (Danone) | 241.33 | 200.95 | 83.66 | 0.20 |
G | Orange | 76.32 | 63.55 | 74.42 | 0.65 |
H | Guava | 63.08 | 50.40 | 79.84 | 0.75 |
I | Decal B12N (calcium syrup) | 67.86 | 56.63 | 93.63 | 0.67 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zareh, M.M.; Mohamed, S.F.; Elsheikh, A.M. Polymeric Electrochemical Sensor for Calcium Based on DNA. Polymers 2022, 14, 1896. https://doi.org/10.3390/polym14091896
Zareh MM, Mohamed SF, Elsheikh AM. Polymeric Electrochemical Sensor for Calcium Based on DNA. Polymers. 2022; 14(9):1896. https://doi.org/10.3390/polym14091896
Chicago/Turabian StyleZareh, Mohsen M., Soha F. Mohamed, and Anas M. Elsheikh. 2022. "Polymeric Electrochemical Sensor for Calcium Based on DNA" Polymers 14, no. 9: 1896. https://doi.org/10.3390/polym14091896
APA StyleZareh, M. M., Mohamed, S. F., & Elsheikh, A. M. (2022). Polymeric Electrochemical Sensor for Calcium Based on DNA. Polymers, 14(9), 1896. https://doi.org/10.3390/polym14091896