Mechanical Performance of Direct Restorative Techniques Utilizing Long Fibers for “Horizontal Splinting” to Reinforce Deep MOD Cavities—An Updated Literature Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Eligibility Criteria
2.3. Data Synthesis
2.4. Quality Assessment
3. Results
4. Discussion
4.1. Fracture Resistance
4.2. Fracture Pattern
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schwartz, R.; Robbins, J. Post Placement and Restoration of Endodontically Treated Teeth: A Literature Review. J. Endod. 2004, 30, 289–301. [Google Scholar] [CrossRef]
- Plotino, G.; Buono, L.; Grande, N.M.; Lamorgese, V.; Somma, F. Fracture resistance of endodontically treated molars restored with extensive composite resin restorations. J. Prosthet. Dent. 2008, 99, 225–232. [Google Scholar] [CrossRef]
- Maslamani, M.; Khalaf, M.; Mitra, A. Association of Quality of Coronal Filling with the Outcome of Endodontic Treatment: A Follow-up Study. Dent. J. 2017, 5, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zicari, F.; de Munck, J.; Scotti, R.; Naert, I.; van Meerbeek, B. Factors affecting the cement–post interface. Dent. Mater. 2012, 28, 287–297. [Google Scholar] [CrossRef] [PubMed]
- Soares, P.V.; Santos-Filho, P.C.F.; Martins, L.R.M.; Soares, C.J. Influence of restorative technique on the biomechanical behavior of endodontically treated maxillary premolars. Part I: Fracture resistance and fracture mode. J. Prosthet. Dent. 2008, 99, 30–37. [Google Scholar] [CrossRef]
- Scotti, N.; Scansetti, M.; Rota, R.; Pera, F.; Pasqualini, D.; Berutti, E. The effect of the post length and cusp coverage on the cycling and static load of endodontically treated maxillary premolars. Clin. Oral Investig. 2011, 15, 923–929. [Google Scholar] [CrossRef]
- Zicari, F.; van Meerbeek, B.; Scotti, R.; Naert, I. Effect of fibre post length and adhesive strategy on fracture resistance of endodontically treated teeth after fatigue loading. J. Dent. 2012, 40, 312–321. [Google Scholar] [CrossRef]
- Aurélio, I.L.; Fraga, S.; Rippe, M.P.; Valandro, L.F. Are posts necessary for the restoration of root filled teeth with limited tissue loss? A structured review of laboratory and clinical studies. Int. Endod. J. 2016, 49, 827–835. [Google Scholar] [CrossRef] [PubMed]
- Deliperi, S.; Alleman, D.; Rudo, D. Stress-reduced Direct Composites for the Restoration of Structurally Compromised Teeth: Fiber Design According to the ‘Wallpapering’ Technique. Oper. Dent. 2017, 42, 233–243. [Google Scholar] [CrossRef]
- Braga, R.; Boaro, L.; Kuroe, T.; Azevedo, C.; Singer, J. Influence of cavity dimensions and their derivatives (volume and ‘C’ factor) on shrinkage stress development and microleakage of composite restorations. Dent. Mater. 2006, 22, 818–823. [Google Scholar] [CrossRef]
- Garoushi, S.; Vallittu, P.; Watts, D.; Lassila, L. Polymerization shrinkage of experimental short glass fiber-reinforced composite with semi-inter penetrating polymer network matrix. Dent. Mater. 2008, 24, 211–215. [Google Scholar] [CrossRef] [PubMed]
- Xie, K.X.; Wang, X.Y.; Gao, X.J.; Yuan, C.Y.; Li, J.X.; Chu, C.H. Fracture resistance of root filled premolar teeth restored with direct composite resin with or without cusp coverage: Fracture resistance of root filled premolar. Int. Endod. J. 2012, 45, 524–529. [Google Scholar] [CrossRef] [PubMed]
- Scotti, N.; Eruli, C.; Comba, A.; Paolino, D.S.; Alovisi, M.; Pasqualini, D.; Berutti, E. Longevity of class 2 direct restorations in root-filled teeth: A retrospective clinical study. J. Dent. 2015, 43, 499–505. [Google Scholar] [CrossRef] [PubMed]
- Mangoush, E.; Garoushi, S.; Lassila, L.; Vallittu, P.K.; Säilynoja, E. Effect of Fiber Reinforcement Type on the Performance of Large Posterior Restorations: A Review of In Vitro Studies. Polymers 2021, 13, 3682. [Google Scholar] [CrossRef]
- Garoushi, S.; Gargoum, A.; Vallittu, P.K.; Lassila, L. Short fiber-reinforced composite restorations: A review of the current literature. J. Investig. Clin. Dent. 2018, 9, e12330. [Google Scholar] [CrossRef]
- Rudo, D.N.; Karbhari, V.M. Physical behaviors of fiber reinforcement as applied to tooth stabilization. Dent. Clin. N. Am. 1999, 43, 7–35. [Google Scholar]
- Belli, S.; Erdemir, A.; Ozcopur, M.; Eskitascioglu, G. The effect of fibre insertion on fracture resistance of root filled molar teeth with MOD preparations restored with composite. Int. Endod. J. 2005, 38, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Menzies, D. Systematic reviews and meta-analyses. Int. J. Tuberc. Lung Dis. 2011, 15, 582–593. [Google Scholar] [CrossRef]
- Zarow, M.; Dominiak, M.; Szczeklik, K.; Hardan, L.; Bourgi, R.; Cuevas-Suárez, C.E.; Zamarripa-Calderón, J.E.; Kharouf, N.; Filtchev, D. Effect of Composite Core Materials on Fracture Resistance of Endodontically Treated Teeth: A Systematic Review and Meta-Analysis of In Vitro Studies. Polymers 2021, 13, 2251. [Google Scholar] [CrossRef]
- Sáry, T.; Garoushi, S.; Braunitzer, G.; Alleman, D.; Volom, A.; Fráter, M. Fracture behaviour of MOD restorations reinforced by various fibre-reinforced techniques—An in vitro study. J. Mech. Behav. Biomed. Mater. 2019, 98, 348–356. [Google Scholar] [CrossRef] [Green Version]
- Bromberg, C.R.; Alves, C.B.; Stona, D.; Spohr, A.M.; Rodrigues-Junior, S.A.; Melara, R.; Burnett, L.H., Jr. Fracture resistance of endodontically treated molars restored with horizontal fiberglass posts or indirect techniques. J. Am. Dent. Assoc. 2016, 147, 952–958. [Google Scholar] [CrossRef] [PubMed]
- Daher, R.; Ardu, S.; di Bella, E.; Rocca, G.T.; Feilzer, A.J.; Krejci, I. Fracture strength of non-invasively reinforced MOD cavities on endodontically treated teeth. Odontology 2021, 109, 368–375. [Google Scholar] [CrossRef] [PubMed]
- Belli, S.; Erdemir, A.; Yildirim, C. Reinforcement effect of polyethylene fibre in root-filled teeth: Comparison of two restoration techniques. Int. Endod. J. 2006, 39, 136–142. [Google Scholar] [CrossRef] [PubMed]
- Küçük, Ö.; Keçeci, A.D. Strengthening effect of different fiber placement designs on root canal treated and bleached premolars. Odontology 2021, 109, 349–357. [Google Scholar] [CrossRef]
- Karzoun, W.; Abdulkarim, A.; Samran, A.; Kern, M. Fracture Strength of Endodontically Treated Maxillary Premolars Supported by a Horizontal Glass Fiber Post: An In Vitro Study. J. Endod. 2015, 41, 907–912. [Google Scholar] [CrossRef]
- Bahari, M.; Mohammadi, N.; Kimyai, S.; Kahnamoui, M.A.; Vahedpour, H.; Torkani MA, M.; Oskoee, A.S. Effect of Different Fiber Reinforcement Strategies on the Fracture Strength of Composite Resin Restored Endodontically Treated Premolars. Pesqui. Bras. Odontopediatr. Clín. Integr. 2019, 19, 1–10. [Google Scholar] [CrossRef]
- Akman, S.; Akman, M.; Eskitascioglu, G.; Belli, S. Influence of several fibre-reinforced composite restoration techniques on cusp movement and fracture strength of molar teeth: Effect of fibre-reinforced restorations on cusp movement. Int. Endod. J. 2011, 44, 407–415. [Google Scholar] [CrossRef]
- Abou-Elnaga, M.Y.; Alkhawas, M.-B.A.M.; Kim, C.H.; Refai, A.S. Effect of Truss Access and Artificial Truss Restoration on the Fracture Resistance of Endodontically Treated Mandibular First Molars. J. Endod. 2019, 45, 813–817. [Google Scholar] [CrossRef]
- Mergulhão, V.; de Mendonça, L.; de Albuquerque, M.; Braz, R. Fracture Resistance of Endodontically Treated Maxillary Premolars Restored with Different Methods. Oper. Dent. 2019, 44, E1–E11. [Google Scholar] [CrossRef] [PubMed]
- Scotti, N.; Forniglia, A.; Tempesta, R.M.; Comba, A.; Saratti, C.M.; Pasqualini, D.; Alovisi, M.; Berutti, E. Effects of fiber-glass-reinforced composite restorations on fracture resistance and failure mode of endodontically treated molars. J. Dent. 2016, 53, 82–87. [Google Scholar] [CrossRef] [Green Version]
- Chai, H.; Lawn, B.R. Fracture resistance of molar teeth with mesial-occlusal-distal (MOD) restorations. Dent. Mater. 2017, 33, e283–e289. [Google Scholar] [CrossRef]
- Alleman, D.; Alleman, D.; Deliperi, S.; Diaz, J.A.; Martins, L.; Keulemans, F. Decoupling with Time. In Inside Dentistry; CDEWorld: Newtown, PA, USA, 2021. [Google Scholar]
- Lassila, L.; Keulemans, F.; Säilynoja, E.; Vallittu, P.K.; Garoushi, S. Mechanical properties and fracture behavior of flowable fiber reinforced composite restorations. Dent. Mater. 2018, 34, 598–606. [Google Scholar] [CrossRef]
- Başaran, E.G.; Ayna, E.; Vallittu, P.K.; Lassila, L.V.J. Load bearing capacity of fiber-reinforced and unreinforced composite resin CAD/CAM-fabricated fixed dental prostheses. J. Prosthet. Dent. 2013, 109, 88–94. [Google Scholar] [CrossRef]
- Garoushi, S.; Vallittu, P.K.; Lassila, L.V.J. Short glass fiber reinforced restorative composite resin with semi-inter penetrating polymer network matrix. Dent. Mater. 2007, 23, 1356–1362. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.I.R.; Ramachandran, A.; Alfadley, A.; Baskaradoss, J.K. Ex vivo fracture resistance of teeth restored with glass and fiber reinforced composite resin. J. Mech. Behav. Biomed. Mater. 2018, 82, 235–238. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.G.; Kim, S.S.; Levine, J.L.; Piracha, Y.S.; Solomon, C.S. A Novel Approach to Fracture Resistance Using Horizontal Posts after Endodontic Therapy: A Case Report and Review of Literature. J. Endod. 2020, 46, 545–550. [Google Scholar] [CrossRef] [PubMed]
- Scotti, N.; Coero Borga, F.A.; Alovisi, M.; Rota, R.; Pasqualini, D.; Berutti, E. Is fracture resistance of endodontically treated mandibular molars restored with indirect onlay composite restorations influenced by fibre post insertion? J. Dent. 2012, 40, 814–820. [Google Scholar] [CrossRef]
- Szabó, P.B.; Sáry, T.; Szabó, B. The key elements of conducting load-to-fracture mechanical testing on restoration-tooth units in restorative dentistry. Analecta Tech. Szeged. 2019, 13, 59–64. [Google Scholar] [CrossRef] [Green Version]
- Tang, W.; Wu, Y.; Smales, R.J. Identifying and Reducing Risks for Potential Fractures in Endodontically Treated Teeth. J. Endod. 2010, 36, 609–617. [Google Scholar] [CrossRef] [PubMed]
- Ozsevik, A.S.; Yildirim, C.; Aydin, U.; Culha, E.; Surmelioglu, D. Effect of fibre-reinforced composite on the fracture resistance of endodontically treated teeth: Coronal Strength of Root-Filled Teeth. Aust. Endod. J. 2016, 42, 82–87. [Google Scholar] [CrossRef]
- Wu, Y.; Cathro, P.; Marino, V. Fracture resistance and pattern of the upper premolars with obturated canals and restored endodontic occlusal access cavities. J. Biomed. Res. 2010, 24, 474–478. [Google Scholar] [CrossRef] [Green Version]
- Taha, N.A.; Palamara, J.E.A.; Messer, H.H. Cuspal deflection, strain and microleakage of endodontically treated premolar teeth restored with direct resin composites. J. Dent. 2009, 37, 724–730. [Google Scholar] [CrossRef] [PubMed]
- Hood, J.A. Biomechanics of the intact, prepared and restored tooth: Some clinical implications. Int. Dent. J. 1991, 41, 25–32. [Google Scholar] [PubMed]
- Forster, A.; Braunitzer, G.; Tóth, M.; Szabó, B.P.; Fráter, M. In Vitro Fracture Resistance of Adhesively Restored Molar Teeth with Different MOD Cavity Dimensions: Fracture Resistance of Adhesively Restored MOD Cavities. J. Prosthodont. 2019, 28, e325–e331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lassila, L.; Säilynoja, E.; Prinssi, R.; Vallittu, P.K.; Garoushi, S. Fracture behavior of Bi-structure fiber-reinforced composite restorations. J. Mech. Behav. Biomed. Mater. 2020, 101, 103444. [Google Scholar] [CrossRef] [PubMed]
First Author | Tested Parameter | Control Group | Type of Long Fibers | Application Technique | Main Conclusion |
---|---|---|---|---|---|
M. Bahari [26] | Fracture strength + Fracture pattern | Positive control (sound teeth) + Negative control (unrestored teeth) | Glass fiber | FRC post through the buccal and lingual walls + Glass fiber strip in bucco-lingually oriented groove on the restorations occlusal surface | The usage of different long fibers did not alter the fracture strength of the direct restoration compared to composite fillings in endodontically treated premolars. The fracture pattern varied according to the position and type of the long fiber. |
M. Y. Abou-Elnaga [28] | Fracture resistance + Fracture pattern | Sound teeth | Glass fiber | FRC post through the buccal and lingual walls | The artificial trust access utilizing a long fiber post did not improve the fracture resistance of endodontically treated molar teeth with MOD cavities. |
T. Sáry [20] | Fracture resistance + Fracture pattern | Sound teeth | Polyethylene fiber | Polyethylene fiber through the buccal and lingual walls | Using polyethylene fibers incorporated into composite fillings seems to always be beneficial in terms of fracture resistance in deep vital MOD cavities, regardless of its position within the cavity or the restoration. |
C. R. Bromberg [21] | Fracture strength + Fracture pattern | Sound teeth | Glass fiber | FRC posts through the buccal and lingual walls | In case of endodontically treated molars, using transfixed fiber posts in direct fillings resulted in fracture resistance values not different to indirect overlays; however, the fracture pattern was dominantly non repairable. |
R. Daher [22] | Fracture strength + Fracture pattern | Sound teeth | Glass fiber | Glass fiber strip was wrapped twice around the buccal and lingual walls | Utilizing fiber-reinforcing rings around molar MOD cavities present comparable fracture strength to indirect inlays and onlays. Furthermore, it increases the percentage of repairable fractures. |
S. Belli [23] | Fracture strength + Fracture pattern | Positive control (sound teeth) + Negative control (unrestored teeth) | Polyethylene fiber | Polyethylene fiber in bucco-lingually oriented groove on the restorations’ occlusal surface | Horizontal splinting with polyethylene fibers significantly increased the fracture strength of restored endodontically treated molars. |
S. Akman [27] | Mean cusp movement + Fracture strength | Composite restoration | Polyethylene fiber | Polyethylene fiber in bucco-lingually oriented groove on the restorations’ occlusal surface | Regardless of position of the fibers inside the restoration, polyethylene fibers were not able to reinforce endodontically treated MOD molar cavities. |
Ö. Küçük [24] | Fracture resistance + Fracture pattern | Sound teeth + Composite restoration | Glass fiber | Glass fiber strip in bucco-lingually oriented groove on the restorations’ occlusal surface | Long glass fibers in the form of a glass fiber strip were able to strengthen root-canal-treated premolar MOD cavities to the extent of sound teeth. Furthermore, all fiber materials produced repairable fracture fractures. |
W. Karzoun [25] | Fracture resistance + Fracture pattern | Positive control (sound teeth) + Negative control (unrestored teeth) | Glass fiber | FRC posts through the buccal and lingual walls | Using a horizontal glass fiber post to restore endodontically treated MOD cavities increased the fracture resistance of the restoration-tooth unit significantly. |
N. Scotti [30] | Fracture resistance + Fracture pattern | Positive control (sound teeth) + Negative control (unrestored teeth) | Glass fiber | FRC posts through the buccal and lingual walls + FRC posts placed mesio-distally | Insertion of long glass fibers into the direct composite restoration in root-canal-treated molar MOD cavities was able to significant increase in their fracture resistance. |
V. A. Mergulhao [29] | Fracture resistance + Fracture pattern | Sound teeth | Glass fiber | FRC posts through the buccal and lingual walls | Horizontally positioned glass fiber post did not increase the fracture resistance in case of premolar MOD cavities compared to composite fillings; however, a dominance of repairable fractures could be observed when fiber post was used. |
First Author | Control Group | Sample Size Calculation | Standardized Samples | Randomized Samples | Single Operator | Blinded Operator | Failure Mode Evaluation | Risk of Bias |
---|---|---|---|---|---|---|---|---|
M. Bahari [26] | Yes | Yes | Yes | Yes | NA | No | Yes | Medium |
M. Y. Abou-Elnaga [28] | Yes | Yes | Yes | Yes | No | No | Yes | Medium |
T. Sáry [20] | Yes | No | Yes | Yes | Yes | No | Yes | Medium |
C. R. Bromberg [21] | Yes | No | Yes | Yes | No | No | Yes | Medium |
R. Daher [22] | Yes | No | Yes | Yes | No | No | Yes | Medium |
S. Belli [23] | Yes | No | Yes | Yes | No | No | Yes | Medium |
S. Akman [27] | Yes | No | Yes | Yes | NA | No | Yes | Medium |
Ö. Küçük [24] | Yes | Yes | Yes | No | NA | No | Yes | Medium |
W. Karzoun [25] | Yes | No | Yes | Yes | Yes | No | Yes | Medium |
N. Scotti [30] | Yes | No | Yes | Yes | Yes | No | Yes | Medium |
V. A. Mergulhao [29] | Yes | No | Yes | Yes | Yes | No | Yes | Medium |
First Author | Direction of Loading | Statical Loading | Dynamic Loading | Any Additional Tests | Investigation of Fracture Pattern |
---|---|---|---|---|---|
M. Bahari [26] | Vertical (long axis) | 0.5 mm/min | No | No | Yes |
M. Y. Abou-Elnaga [28] | Vertical (long axis) | 1 mm/min | No | No | Insufficient data |
T. Sáry [20] | Vertical (long axis) | 2 mm/min | No | No | Yes |
C. R. Bromberg [21] | Vertical (long axis) | 1 mm/min | Yes (200 N, 500,000 cycles) | No | Yes |
R. Daher [22] | Vertical (long axis) | 1 mm/min | Yes (49 N, 600,000 cycles) | Cyclic thermal loading | Yes |
S. Belli [23] | Vertical (long axis) | 0.5 mm/min | No | No | Insufficient data |
S. Akman [27] | Vertical (long axis) | 5 mm/min | No | Cusp movement under loading | Yes |
Ö. Küçük [24] | Vertical (long axis) | 1 mm/min | No | No | Yes |
W. Karzoun [25] | Vertical (long axis) | NA | No | No | Yes |
N. Scotti [30] | 45° Oblique | 0.5 mm/min | Yes (50 N, 20,000 cycles) | Cyclic thermal loading | Yes |
V. A. Mergulhao [29] | Vertical (long axis) | 1 mm/min | Yes (0–100 N, 50,000 cycles) | Cyclic thermal loading | Yes |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jakab, A.; Volom, A.; Sáry, T.; Vincze-Bandi, E.; Braunitzer, G.; Alleman, D.; Garoushi, S.; Fráter, M. Mechanical Performance of Direct Restorative Techniques Utilizing Long Fibers for “Horizontal Splinting” to Reinforce Deep MOD Cavities—An Updated Literature Review. Polymers 2022, 14, 1438. https://doi.org/10.3390/polym14071438
Jakab A, Volom A, Sáry T, Vincze-Bandi E, Braunitzer G, Alleman D, Garoushi S, Fráter M. Mechanical Performance of Direct Restorative Techniques Utilizing Long Fibers for “Horizontal Splinting” to Reinforce Deep MOD Cavities—An Updated Literature Review. Polymers. 2022; 14(7):1438. https://doi.org/10.3390/polym14071438
Chicago/Turabian StyleJakab, András, András Volom, Tekla Sáry, Eszter Vincze-Bandi, Gábor Braunitzer, David Alleman, Sufyan Garoushi, and Márk Fráter. 2022. "Mechanical Performance of Direct Restorative Techniques Utilizing Long Fibers for “Horizontal Splinting” to Reinforce Deep MOD Cavities—An Updated Literature Review" Polymers 14, no. 7: 1438. https://doi.org/10.3390/polym14071438
APA StyleJakab, A., Volom, A., Sáry, T., Vincze-Bandi, E., Braunitzer, G., Alleman, D., Garoushi, S., & Fráter, M. (2022). Mechanical Performance of Direct Restorative Techniques Utilizing Long Fibers for “Horizontal Splinting” to Reinforce Deep MOD Cavities—An Updated Literature Review. Polymers, 14(7), 1438. https://doi.org/10.3390/polym14071438