The Influence of Bi2O3 Nanoparticle Content on the γ-ray Interaction Parameters of Silicon Rubber
Abstract
:1. Introduction
2. Materials and Methods
2.1. Matrix
2.2. Fillers
2.3. Composites
2.4. Morphological Images
2.5. Mechanical Properties
2.6. Shielding Properties
3. Results and Discussion
3.1. SEM Results
3.2. Mechanical Results
3.3. Shielding Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dong, M.; Zhou, S.; Xue, X.; Feng, X.; Sayyed, M.I.; Khandaker, M.U.; Bradley, D.A. The potential use of boron containing resources for protection against nuclear radiation. Radiat. Phys. Chem. 2021, 188, 109601. [Google Scholar] [CrossRef]
- Dong, M.; Xue, X.; Yang, H.; Li, Z. Highly cost-effective shielding composite made from vanadium slag and boron-rich slag and its properties. Radiat. Phys. Chem. 2017, 141, 239–244. [Google Scholar] [CrossRef]
- Kamislioglu, M. Research on the effects of bismuth borate glass system on nuclear radiation shielding parameters. Results Phys. 2021, 22, 103844. [Google Scholar] [CrossRef]
- Kamislioglu, M. An investigation into gamma radiation shielding parameters of the (Al:Si) and (Al+Na):Si-doped international simple glasses (ISG) used in nuclear waste management, deploying Phy-X/PSD and SRIM software. J. Mater. Sci. Mater. Electron. 2021, 32, 12690–12704. [Google Scholar] [CrossRef]
- Gökçe, H.; Öztürk, B.C.; Çam, N.; Andiç-Çakır, Ö. Gamma-ray attenuation coefficients and transmission thickness of high consistency heavyweight concrete containing mineral admixture. Cem. Concr. Compos. 2018, 92, 56–69. [Google Scholar] [CrossRef]
- Gökçe, H.S.; Yalçınkaya, Ç.; Tuyan, M. Optimization of reactive powder concrete by means of barite aggregate for both neutrons and gamma rays. Constr. Build. Mater. 2018, 189, 470–477. [Google Scholar] [CrossRef]
- Mahmoud, M.E.; El-Khatib, A.M.; Halbas, A.M.; El-Sharkawy, R.M. Investigation of physical, mechanical and gamma-ray shielding properties using ceramic tiles incorporated with powdered lead oxide. Ceram. Int. 2020, 46, 15686–15694. [Google Scholar] [CrossRef]
- Sayyed, M.I.; Elmahroug, Y.; Elbashir, B.O.; Issa, S. Gamma-ray shielding properties of zinc oxide soda lime silica glasses. J. Mater. Sci. Mater. Electron. 2016, 28, 4064–4074. [Google Scholar] [CrossRef]
- El-Nahal, M.A.; Elsafi, M.; Sayyed, M.I.; Khandaker, M.U.; Osman, H.; Elesawy, B.H.; Saleh, I.H.; Abbas, M.I. Understanding the Effect of Introducing Micro- and Nanoparticle Bismuth Oxide (Bi2O3) on the Gamma Ray Shielding Performance of Novel Concrete. Materials 2021, 14, 6487. [Google Scholar] [CrossRef]
- Azeez, A.B.; Kahtan, S.; Mohammed, K.S.; Al Bakrı Abdullah, M.M.; Zulkeplı, N.N.; Sandu, A.V.; Hussın, K.; Rahmat, A. Design of Flexible Green Anti Radiation Shielding Material against Gamma-ray. Mater. Plast. 2014, 51, 300–308. [Google Scholar]
- Yılmaz, S.N.; Gungor, A.; Ozdemir, T. The investigations of mechanical, thermal and rheological properties of polydimethylsiloxane/bismuth (III) oxide composite for X/Gamma ray shielding. Radiat. Phys. Chem. 2020, 170, 108649. [Google Scholar] [CrossRef]
- Mahmoud, M.E.; El-Khatib, A.M.; El-Sharkawy, R.M.; Rashad, A.R.; Badawi, M.S.; Gepreel, M.A. Design and testing of high-density polyethylene nanocompositesfilled with lead oxide micro- and nano-particles: Mechanical, thermal, and morphological properties. J. Appl. Polym. Sci. 2019, 136, 47812. [Google Scholar] [CrossRef]
- Almurayshid, M.; Alsagabi, S.; Alssalim, Y.; Alotaibi, Z.; Almsalam, R. Feasibility of polymer-based composite materials as radiation shield. Radiat. Phys. Chem. 2021, 183, 109425. [Google Scholar] [CrossRef]
- Nagaraja, N.; Manjunatha, H.; Seenappa, L.; Sridhar, K.; Ramalingam, H. Radiation shielding properties of silicon polymers. Radiat. Phys. Chem. 2020, 171, 108723. [Google Scholar] [CrossRef]
- Labouriau, A.; Robison, T.; Shonrock, C.; Simmonds, S.; Cox, B.; Pacheco, A.; Cady, C. Boron filled siloxane polymers for radiation shielding. Radiat. Phys. Chem. 2018, 144, 288–294. [Google Scholar] [CrossRef]
- Ambika, M.; Nagaiah, N.; Harish, V.; Lokanath, N.; Sridhar, M.; Renukappa, N.; Suman, S. Preparation and characterisation of Isophthalic-Bi2O3 polymer composite gamma radiation shields. Radiat. Phys. Chem. 2017, 130, 351–358. [Google Scholar] [CrossRef]
- Karabul, Y.; Içelli, O. The assessment of usage of epoxy based micro and nano-structured composites enriched with Bi2O3 and WO3 particles for radiation shielding. Results Phys. 2021, 26, 104423. [Google Scholar] [CrossRef]
- Kameesy, S.; Nashar, D.; Fiki, S. Development of silicone rubber/lead oxide composites as gamma ray shielding materials. Int. J. Adv. Res. 2015, 3, 1017–1023. [Google Scholar] [CrossRef]
- Gong, P.; Ni, M.; Chai, H.; Chen, F.; Tang, X. Preparation and characteristics of a flexible neutron and γ-ray shielding and radiation-resistant material reinforced by benzophenone. Nucl. Eng. Technol. 2018, 50, 470–477. [Google Scholar] [CrossRef]
- Özdemir, T.; Yılmaz, S.N. Mixed radiation shielding via 3-layered polydimethylsiloxane rubber composite containing hexagonal boron nitride, boron (III) oxide, bismuth (III) oxide for each layer. Radiat. Phys. Chem. 2018, 152, 17–22. [Google Scholar] [CrossRef]
- Chai, H.; Tang, X.; Ni, M.; Chen, F.; Zhang, Y.; Chen, D.; Qiu, Y. Preparation and properties of flexible flame-retardant neutron shielding material based on methyl vinyl silicone rubber. J. Nucl. Mater. 2015, 464, 210–215. [Google Scholar] [CrossRef]
- Colas, A.; Curtis, J. Silicone Biomaterials: History and Chemistry & Medical Applications of Silicones. In Biomaterials Science, 2nd ed.; Elsevier Academic Publishing: Amsterdam, The Netherlands, 2004; ISBN 0-12-582463-7. [Google Scholar]
- El-Khatib, A.M.; Elsafi, M.; Sayyed, M.; Abbas, M.; El-Khatib, M. Impact of micro and nano aluminium on the efficiency of photon detectors. Results Phys. 2021, 30, 104908. [Google Scholar] [CrossRef]
- Abbas, M.I. Validation of analytical formulae for the efficiency calibration of gamma detectors used in laboratory and in-situ measurements. Appl. Radiat. Isot. 2006, 64, 1661–1664. [Google Scholar] [CrossRef] [PubMed]
- Abbas, M.I. A new analytical method to calibrate cylindrical phoswich and LaBr3(Ce) scintillation detectors. Nucl. Instrum. Methods Sect. A 2010, 621, 413–418. [Google Scholar] [CrossRef]
- Elsafi, M.; El-Nahal, M.A.; Sayyed, M.I.; Saleh, I.H.; Abbas, M.I. Effect of bulk and nanoparticle Bi2O3 on attenuation capability of radiation shielding glass. Ceram. Int. 2021, 47, 19651–19658. [Google Scholar] [CrossRef]
- Eid, M.S.; Bondouk, I.I.; Saleh, H.M.; Omar, K.M.; Sayyed, M.I.; El-Khatib, A.M.; Elsafi, M. Implementation of waste silicate glass into composition of ordinary cement for radiation shielding applications. Nucl. Eng. Technol. 2021, in press. [CrossRef]
- Elsafi, M.; Sayyed, M.; Almuqrin, A.H.; Gouda, M.; El-Khatib, A. Analysis of particle size on mass dependent attenuation capability of bulk and nanoparticle PbO radiation shields. Results Phys. 2021, 26, 104458. [Google Scholar] [CrossRef]
- El-Khatib, A.M.; Abbas, M.I.; Elzaher, M.A.; Badawi, M.S.; Alabsy, M.T.; Alharshan, G.A.; Aloraini, D. Gamma Attenuation Coefficients of Nano Cadmium Oxide/High density Polyethylene Composites. Sci. Rep. 2019, 9, 16012. [Google Scholar] [CrossRef] [Green Version]
- Alabsy, M.T.; Alzahrani, J.S.; Sayyed, M.I.; Abbas, M.I.; Tishkevich, D.I.; El-Khatib, A.M.; Elsafi, M. Gamma-Ray Attenuation and Exposure Buildup Factor of Novel Polymers in Shielding Using Geant4 Simulation. Materials 2021, 14, 5051. [Google Scholar] [CrossRef]
- El-Khatib, A.M.; Elsafi, M.; Almutiri, M.N.; Mahmoud, R.M.M.; Alzahrani, J.S.; Sayyed, M.I.; Abbas, M.I. Enhancement of Bentonite Materials with Cement for Gamma-Ray Shielding Capability. Materials 2021, 14, 4697. [Google Scholar] [CrossRef]
- Sayyed, M.I.; Albarzan, B.; Almuqrin, A.H.; El-Khatib, A.M.; Kumar, A.; Tishkevich, D.I.; Trukhanov, A.V.; Elsafi, M. Experimental and Theoretical Study of Radiation Shielding Features of CaO K2O-Na2O-P2O5 Glass Systems. Materials 2021, 14, 3772. [Google Scholar] [CrossRef]
- Elsafi, M.; Dib, M.F.; Mustafa, H.E.; Sayyed, M.I.; Khandaker, M.U.; Alsubaie, A.; Almalki, A.S.A.; Abbas, M.I.; El-Khatib, A.M. Enhancement of Ceramics Based Red-Clay by Bulk and Nano Metal Oxides for Photon Shielding Features. Materials 2021, 14, 7878. [Google Scholar] [CrossRef] [PubMed]
- Al-Hadeethi, Y.; Sayyed, M.I.; Barasheed, A.Z.; Ahmed, M.; Elsafi, M. Fabrication of Lead Free Borate Glasses Modified by Bismuth Oxide for Gamma Ray Protection Applications. Materials 2022, 15, 789. [Google Scholar] [CrossRef]
- Al-Harbi, N.; Sayyed, M.I.; Al-Hadeethi, Y.; Kumar, A.; Elsafi, M.; Mahmoud, K.A.; Khandaker, M.U.; Bradley, D.A. A novel CaO–K2O–Na2O–P2O5 glass systems for radiation shielding applications. Radiat. Phys. Chem. 2021, 188, 109645. [Google Scholar] [CrossRef]
- Mhareb, M.H.A.; Zeama, M.; Elsafi, M.; Alajerami, Y.S.; Sayyed, M.I.; Saleh, G.; Hamad, R.M.; Hamad, M.K. Radiation shielding features for various tellurium-based alloys: A comparative study. J. Mater. Sci. Mater. Electron. 2021, 32, 26798–26811. [Google Scholar] [CrossRef]
- Aloraini, D.A.; Almuqrin, A.H.; Sayyed, M.I.; Al-Ghamdi, H.; Kumar, A.; Elsafi, M. Experimental Investigation of Radiation Shielding Competence of Bi2O3-CaO-K2O-Na2O-P2O5 Glass Systems. Materials 2021, 14, 5061. [Google Scholar] [CrossRef]
- Elsafi, M.; Alrashedi, M.; Sayyed, M.; Al-Hamarneh, I.; El-Nahal, M.; El-Khatib, M.; Khandaker, M.; Osman, H.; Askary, A. The Potentials of Egyptian and Indian Granites for Protection of Ionizing Radiation. Materials 2021, 14, 3928. [Google Scholar] [CrossRef] [PubMed]
- Elsafi, M.; Koraim, Y.; Almurayshid, M.; Almasoud, F.I.; Sayyed, M.I.; Saleh, I.H. Investigation of Photon Radiation Attenuation Capability of Different Clay Materials. Materials 2021, 14, 6702. [Google Scholar] [CrossRef]
- Buyuk, B. Gamma-Ray Attenuation Properties of Flexible Silicone Rubber Materials while using Cs-137 as Radioactive Source. Eur. J. Sci. Technol. 2019, 15, 28–35. [Google Scholar] [CrossRef]
Code | Compositions (wt%) | Density (g/cm3) | |||
---|---|---|---|---|---|
SR | Micro-Bi2O3 | Nano-Bi2O3 | Stiffener | ||
SR-0 | 100 | - | - | 4 | 1.191 |
SR-5m | 95 | 5 | - | 1.301 | |
SR-5n | 95 | - | 5 | 1.351 | |
SR-10m | 90 | 10 | - | 1.368 | |
SR-20m | 80 | 20 | - | 1.509 | |
SR-30m | 70 | 30 | - | 1.684 | |
SR-30n | 70 | - | 30 | 1.713 |
Energy (MeV) | SR-0 | SR-10m | SR-20m | ||||||
---|---|---|---|---|---|---|---|---|---|
XCOM | EXP | Dev (%) | XCOM | EXP | Dev (%) | XCOM | EXP | Dev (%) | |
0.060 | 0.3097 | 0.3059 | 1.25 | 0.9620 | 0.9464 | 1.65 | 1.7499 | 1.7215 | 1.65 |
0.081 | 0.2456 | 0.2384 | 3.01 | 0.544 | 0.5305 | 2.52 | 0.9042 | 0.8860 | 2.05 |
0.356 | 0.1354 | 0.1351 | 0.25 | 0.171 | 0.1657 | 3.25 | 0.2141 | 0.2113 | 1.35 |
0.662 | 0.1043 | 0.1033 | 0.98 | 0.118 | 0.1154 | 1.85 | 0.1336 | 0.1308 | 2.14 |
1.173 | 0.0794 | 0.0779 | 1.89 | 0.087 | 0.0861 | 0.62 | 0.0954 | 0.0952 | 0.28 |
1.333 | 0.0744 | 0.0728 | 2.11 | 0.081 | 0.0796 | 1.63 | 0.0889 | 0.0876 | 1.48 |
Energy (MeV) | SR-5 | SR-30 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
XCOM | SR-5m | Dev (%) | SR-5n | R.I (%) | XCOM | SR-30m | Dev (%) | SR-30m | R.I (%) | |
0.060 | 0.6213 | 0.6085 | 2.11 | 0.6923 | 12.11 | 2.7206 | 2.6749 | 1.71 | 3.4519 | 22.51 |
0.081 | 0.3881 | 0.3805 | 1.99 | 0.4254 | 10.55 | 1.3481 | 1.3315 | 1.25 | 1.7538 | 20.08 |
0.356 | 0.1525 | 0.1502 | 1.52 | 0.1635 | 8.14 | 0.2672 | 0.2621 | 1.95 | 0.3248 | 15.32 |
0.662 | 0.1106 | 0.1083 | 2.15 | 0.1169 | 7.31 | 0.1534 | 0.1496 | 2.54 | 0.1786 | 13.22 |
1.173 | 0.0829 | 0.0815 | 1.62 | 0.0876 | 6.88 | 0.1063 | 0.1039 | 2.31 | 0.1182 | 11.46 |
1.333 | 0.0775 | 0.0756 | 2.55 | 0.0810 | 6.67 | 0.0987 | 0.0976 | 1.22 | 0.1098 | 11.11 |
Shielding Parameters | Energy (MeV) | SR-0 | SR-5m | SR-5n | SR-10m | SR-20m | SR-30m | SR-30n |
---|---|---|---|---|---|---|---|---|
HVL (cm) | 0.060 | 2.2380 | 1.1156 | 1.0012 | 0.7206 | 0.3961 | 0.2548 | 0.2008 |
0.081 | 2.8221 | 1.7860 | 1.6294 | 1.2745 | 0.7666 | 0.5142 | 0.3952 | |
0.356 | 5.1177 | 4.5465 | 4.2399 | 4.0525 | 3.2373 | 2.5943 | 2.1339 | |
0.662 | 6.6456 | 6.2649 | 5.9318 | 5.8966 | 5.1878 | 4.5185 | 3.8818 | |
1.173 | 8.7318 | 8.3659 | 7.9165 | 8.0008 | 7.2628 | 6.5214 | 5.8647 | |
1.333 | 9.3223 | 8.9437 | 8.5600 | 8.5649 | 7.7959 | 7.0193 | 6.3156 | |
MFP (cm) | 0.060 | 3.2287 | 1.6095 | 1.4444 | 1.0395 | 0.5715 | 0.3676 | 0.2897 |
0.081 | 4.0714 | 2.5767 | 2.3507 | 1.8387 | 1.1060 | 0.7418 | 0.5702 | |
0.356 | 7.3833 | 6.5592 | 6.1169 | 5.8466 | 4.6705 | 3.7428 | 3.0786 | |
0.662 | 9.5876 | 9.0383 | 8.5577 | 8.5069 | 7.4844 | 6.5188 | 5.6002 | |
1.173 | 12.5973 | 12.0695 | 11.4212 | 11.5427 | 10.4779 | 9.4084 | 8.4610 | |
1.333 | 13.4492 | 12.9030 | 12.3495 | 12.3565 | 11.2472 | 10.1267 | 9.1114 | |
TVL (cm) | 0.060 | 7.4345 | 3.7060 | 3.3259 | 2.3936 | 1.3158 | 0.8463 | 0.6670 |
0.081 | 9.3748 | 5.9330 | 5.4126 | 4.2338 | 2.5466 | 1.7080 | 1.3129 | |
0.356 | 17.0007 | 15.1031 | 14.0846 | 13.4623 | 10.7542 | 8.6181 | 7.0887 | |
0.662 | 22.0762 | 20.8115 | 19.7049 | 19.5879 | 17.2335 | 15.0102 | 12.8949 | |
1.173 | 29.0063 | 27.7910 | 26.2982 | 26.5780 | 24.1264 | 21.6636 | 19.4822 | |
1.333 | 30.9680 | 29.7103 | 28.4357 | 28.4519 | 25.8976 | 23.3176 | 20.9799 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abbas, M.I.; El-Khatib, A.M.; Dib, M.F.; Mustafa, H.E.; Sayyed, M.I.; Elsafi, M. The Influence of Bi2O3 Nanoparticle Content on the γ-ray Interaction Parameters of Silicon Rubber. Polymers 2022, 14, 1048. https://doi.org/10.3390/polym14051048
Abbas MI, El-Khatib AM, Dib MF, Mustafa HE, Sayyed MI, Elsafi M. The Influence of Bi2O3 Nanoparticle Content on the γ-ray Interaction Parameters of Silicon Rubber. Polymers. 2022; 14(5):1048. https://doi.org/10.3390/polym14051048
Chicago/Turabian StyleAbbas, Mahmoud I., Ahmed M. El-Khatib, Mirvat Fawzi Dib, Hoda Ezzelddin Mustafa, M. I. Sayyed, and Mohamed Elsafi. 2022. "The Influence of Bi2O3 Nanoparticle Content on the γ-ray Interaction Parameters of Silicon Rubber" Polymers 14, no. 5: 1048. https://doi.org/10.3390/polym14051048
APA StyleAbbas, M. I., El-Khatib, A. M., Dib, M. F., Mustafa, H. E., Sayyed, M. I., & Elsafi, M. (2022). The Influence of Bi2O3 Nanoparticle Content on the γ-ray Interaction Parameters of Silicon Rubber. Polymers, 14(5), 1048. https://doi.org/10.3390/polym14051048