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Abstract: In this study, synthetic silicone rubber (SR) and Bi2O3 micro- and nanoparticles were pur-
chased. The percentages for both sizes of Bi2O3 were 10, 20 and 30 wt% as fillers. The morphological,
mechanical and shielding properties were determined for all the prepared samples. The Linear
Attenuation Coefficient (LAC) values of the silicon rubber (SR) without Bi2O3 and with 5, 10, 30 and
30% Bi2O3 (in micro and nano sizes) were experimentally measured using different radioactive point
sources in the energy range varying from 0.06 to 1.333 MeV. Additionally, we theoretically calculated
the LAC for SR with micro-Bi2O3 using XCOM software. A good agreement was noticed between the
two methods. The NaI (Tl) scintillation detector and four radioactive point sources (Am-241, Ba-133,
Cs-137 and Co-60) were used in the measurements. Other shielding parameters were calculated for
the prepared samples, such as the Half Value Layer (HVL), Mean Free Path (MFP) and Radiation
Protection Efficiency (RPE), all of which proved that adding nano-Bi2O3 ratios of SR produces higher
shielding efficiency than its micro counterpart.

Keywords: silicon rubber; nano-Bi2O3; LAC; RPE; HVL

1. Introduction

In medical facilities, such as hospitals, clinics, outpatient care centers, radiological
centers and dental facilities, where ionizing radiation is widely utilized, planning is com-
pulsory to protect patients and medical staff who are usually exposed to different types of
radiation. For this reason, it is important to use radiation protection materials, whether or
not these materials are worn, such as eyeglasses, neck guards or an apron [1–4]. Moreover,
it is important to utilize specific materials to insulate the walls of the medical facilities in
order to prevent radiation leakage into the surrounding environment. This applies not only
to the medical facilities, but also all facilities that utilize gamma radiation or X-ray, such as
universities and research laboratories, nuclear power plants, and factories [5,6].

The attenuation properties for the radiation protection medium must be accurately
known when planning to design any facility that uses gamma rays and X-rays, so that
appropriate protection is provided for patients, workers, visitors, and the surrounding
environment [7–9]. The radiation protection properties of a medium depend on its density
as well as the chemical composition of the medium’s constituent materials. Thickness is
also considered as another factor that affects the shielding properties of a given medium.
The traditional materials that are practically used in radiation protection applications have
several drawbacks.

Some of these materials are expensive and some are heavy, and this limits their use in
practical applications. For example, tungsten has a higher number of attenuation factors
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than lead; it also has a high cost and this prevents tungsten from being widely used in real
applications. Recently, researchers turned to the production of radiation protective clothing
that is characterized by its low cost, light weight, easy use, comfort and, most importantly,
its protection of workers in the field of ionizing radiation [10–12]. In this regard, some
additives are usually added to the flexible materials to fabricate protective garments, such
as aprons or curtains. In practical applications, vinyl, polymers and rubbers are one of the
most widespread materials used as matrix materials to obtain flexible protection materials,
while bismuth, tungsten and antimony powders are used as additives. The importance of
such additives is to increase the possibilities of the photon interactions with the atoms of
the prepared flexible protective materials.

As is known, the polymers and plastics have a relatively low density and this, to a
certain degree, produces their ability to attenuate photons. Therefore, these plastic materials
are usually used to attenuate low-energy radiation [13–15]. In order to increase its density
and thus improve its shielding performance, especially if it is exposed to photons of medium
energy, bismuth is used [16,17]. Silicone rubber (SR) is an important matrix material that
has good elasticity features. In the past few years, some researchers used silicone rubber to
develop flexible radiation shielding materials. Kameesy et al. [18] fabricated SR sheets filled
with four concentrations of PbO. They experimentally evaluated the radiation attenuation
factors for the prepared SR-PbO campsites using different radioactive sources. They found
that adding PbO to the SR enhances the physico-mechanical features. Gong et al. [19]
fabricated a novel radiation protection composite based on methyl vinyl silicone rubber.
The authors found that when benzophenone is added to the matrix, a notable enhancement
in the radiation resistance occurs. Based on their results, the transmission of the photon
with energy of 0.662 MeV through a sample thickness of 2 cm is only 0.7. Özdemir and
Yılmaz [20] prepared a mixed radiation shielding via 3-layered polydimethylsiloxane
rubber composite. The three layers were composed of hexagonal boron nitride, B2O3 and
Bi2O3. They developed a shielding material that possesses a lead equivalent thickness
of 0.35 mm Pb. Chai et al. [21] prepared new flexible shielding material using methyl
vinyl silicone rubber. They used zinc borate, B4C and hollow beads as filler materials.
They evaluated the neutron shielding performance of their flexible material of the thermal
neutron transmission technique with the help of an Am–Be radiation source. However,
even though different research groups studied the SR as flexible shielding materials, there
is still an urgent need for the further development of novel flexible materials using Bi2O3 as
a filler in nano and micro sizes. Therefore, in this study, we develop a new flexible material
against X-ray and γ-ray photons based on Bi2O3 nanoparticle content.

2. Materials and Methods
2.1. Matrix

Vulcanized silicone rubber was used as a flexible matrix material. The most common
form of silicone is the polydimethylsiloxane polymer, which is liquid in origin. This polymer
is a rigid structure of elastomers transformed by catalyzed cross-linking reactions [22]. To
obtain catalyzed cross-linking reactions, a stiffener with 4% (by weight) must be added to
the silicon rubber. The specific gravity of SR was 1.12 g/mL and the elongation was 350%.
The main elements of SR are hydrogen, carbon, oxygen and silicon, as shown in Figure 1.
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Bismuth oxide (Bi2O3) of micro and nano sizes was used as a filler in the composite. 

Before adding it to the solution, a transmission electron microscope (TEM) is used to im-
age the powder to ensure the size of the particles, as shown in Figure 2. The average size 
of the microparticles was 15 ± 5 µm, while the average size of the nanoparticles was 30 ± 
5 nm. 

 
Figure 2. TEM images for (a) Bi2O3 microparticles and (b) Bi2O3 nanoparticles. 

2.3. Composites 
Seven different SR samples were prepared. Codes, compositions and densities of the 

prepared samples are tabulated in Table 1. The homogenous mixtures (liquid SR + micro- 
or nanoparticles of Bi2O3 + stiffener) were poured into cylinder molds, which had a 3 cm 
diameter and different thicknesses (0.3, 0.66, 0.93 and 1.3 cm). The prepared samples 
waited for 24 h to become elastic-solid materials. The density of the SR sample is measured 
via the mass/volume, the volume of the sample is calculated by (𝜋𝑟ଶ. 𝑥), where 𝑟 is the 
radius and 𝑥 is the thickness of the measured sample. 

Table 1. Codes, compositions and densities of the prepared SR samples. 

Code 
Compositions (wt%) Density 

(g/cm3) SR Micro-Bi2O3 Nano-Bi2O3 Stiffener 
SR-0 100 - - 

4 

1.191 
SR-5m 95 5 - 1.301 
SR-5n 95 - 5 1.351 

SR-10m 90 10 - 1.368 
SR-20m 80 20 - 1.509 
SR-30m 70 30 - 1.684 
SR-30n 70 - 30 1.713 
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2.2. Fillers

Bismuth oxide (Bi2O3) of micro and nano sizes was used as a filler in the composite.
Before adding it to the solution, a transmission electron microscope (TEM) is used to image
the powder to ensure the size of the particles, as shown in Figure 2. The average size of the
microparticles was 15 ± 5 µm, while the average size of the nanoparticles was 30 ± 5 nm.
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Figure 2. TEM images for (a) Bi2O3 microparticles and (b) Bi2O3 nanoparticles.

2.3. Composites

Seven different SR samples were prepared. Codes, compositions and densities of the
prepared samples are tabulated in Table 1. The homogenous mixtures (liquid SR + micro-
or nanoparticles of Bi2O3 + stiffener) were poured into cylinder molds, which had a 3 cm
diameter and different thicknesses (0.3, 0.66, 0.93 and 1.3 cm). The prepared samples waited
for 24 h to become elastic-solid materials. The density of the SR sample is measured via the
mass/volume, the volume of the sample is calculated by (πr2 · x), where r is the radius and
x is the thickness of the measured sample.

Table 1. Codes, compositions and densities of the prepared SR samples.

Code
Compositions (wt%) Density

(g/cm3)SR Micro-Bi2O3 Nano-Bi2O3 Stiffener

SR-0 100 - -

4

1.191
SR-5m 95 5 - 1.301
SR-5n 95 - 5 1.351

SR-10m 90 10 - 1.368
SR-20m 80 20 - 1.509
SR-30m 70 30 - 1.684
SR-30n 70 - 30 1.713

2.4. Morphological Images

A scanning electron microscope (SEM) of JSM-5300, JEOL model, Tokyo, Japan was
used for scanning the images of the prepared SR samples. The samples were coated using
an ion sputtering coating device (JEOL-JFC-1100E, Tokyo, Japan), and then the samples
were placed inside the electron microscope with an operating voltage of 20 keV [23].

2.5. Mechanical Properties

The tensile strength, Young’s modulus and elongation at break were determined for
the present SR samples using an electronic tensile testing machine (model 1425, Germany),
according to standard methods with ASTM D412. The Shore hardness was measured
according to ASTM D2240.
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2.6. Shielding Properties

The linear attenuation coefficient (LAC) was measured for all discussed SR samples
using the narrow beam technique of gamma ray spectroscopy in a radiation physics
laboratory (Faculty of Science, Alexandria University, Alexandria, Egypt). The devices
used in this method were the detector, collimator and radioactive point sources. An NaI
(Tl) cylindrical scintillation detector with a (3′′ × 3′′) dimension, a relative efficiency of
15% and an energy value of Cs-137 (0.662 MeV) was used. The inner diameter of the lead
collimator was 8mm and the outer diameter was 100 mm. The point radioactive sources
were chosen to cover a wide range of energy, where four radioactive sources were used
as follows: Am-241 (0.06 MeV), Ba-133 (0.081, 0.356 MeV), Cs-137 (0.662 MeV) and Co-60
(1.173, 1.333 MeV) [24–29]. The illustration of the experimental setup is shown in Figure 3.
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The intensity (I0), count rate (N0) or area under the peak (A0) were measured for all
energies in a case without the SR sample, and then the sample was placed between the
source and detector and the count rate (N) or area under the peak (A) was measured at the
same time. The LAC was measured experimentally using the following equation [30,31]:

LAC =
1
x

ln
N0

N
=

1
x

ln
A0

A
(1)

The experimental values of the LAC for SR and the micro filler were compared to the
results obtained from the XCOM software [32,33]. The relative deviation between the two
results is calculated by the following:

Dev(%) =
LACxcom − LACexp

LACexp
× 100 (2)

While the relative increase between the results of the LAC of the micro and nano fillers
are evaluated via the following:

R · I(%) =
LACnano − LACmicro

LACmicro
× 100 (3)

The other radiation attenuation parameters are based on the LAC, such as the Half
Value Layer (HVL), which represents the thickness needed to reduce the initial intensity to
its half value; the Mean Free Path (MFP), which represents the path of the photon inside
the sample without any interactions; and the Tenth Value Layer (TVL), which represents
the thickness needed to reduce the initial intensity to its tenth value and can be estimated
from the following equation [34–36]:

HVL =
ln 2
LAC

, MFP =
1

LAC
, TVL =

ln 10
LAC

(4)
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The efficiency of shielding materials is estimated by an important parameter called the
Radiation Protection Efficiency (RPE) and calculated using the following equation [37–39]:

RPE(%) = [1− N
N0

]× 100 (5)

3. Results and Discussion
3.1. SEM Results

SEM images of the prepared samples were scanned and showed, in general, a good
distribution of Bi2O3 with the SR composite. On the other hand, the distribution of nanopar-
ticles was better than the microparticles, as shown in Figure 4, which means that the SR
containing nanoparticles of Bi2O3 has a higher surface area and lower porosity, compared
to the same contents of SR containing microparticles of Bi2O3. as Additionally, the porosity
of SR containing nanoparticles of Bi2O3 is low, which led to an increase in the mechanical
and shielding properties.
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Figure 4. SEM images of the prepared samples of (a) SR, (b) SR-5m, (c) SR-5n, (d) SR-30m and
(e) SR-30n.

3.2. Mechanical Results

In the case of free SR, the mechanical properties (MPs) of SR composites are relatively
poor. The MPs of the SR/micro- and nano Bi2O3 composites are plotted in Figure 5A–D.
These figures show the variability of tensile strength, Young’s modulus and elongation at
break with different concentrations of micro- and nano-Bi2O3 as fillers. The results show
that increasing the filler load leads to a significant increase in the tensile strength, Young’s
modulus and elongation at break of up to 30 wt%.

The results also show that the addition of nano-Bi2O3 produces a greater an increase in
tensile strength, Young’s modulus and elongation at break than micro-Bi2O3 with the same
percentage. The concentration of the filler was increased to 40%, and the same mechanical
properties were studied as before, and it was found that it was less than 30%, and this is
what made us conduct a comprehensive study with a maximum of 30% for micro- and
nano-Bi2O3 as a filler in the SR. Low mechanical properties at 40 wt% of the filler content is
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likely due to the accumulation of filler material in different rubber layers. The hardness
was increased with the increase in the filler contents, and this was normal because the
addition of filler in the SR leads to an increase in material hardness.
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3.3. Shielding Results

In order to obtain the linear attenuation coefficient experimentally, we represented the
relation between Ln (I/I0) and the thickness of the samples, according to the Lambert–Beer
law. The slope of the straight line is the absolute value of the LAC. We represent the
reduction in the intensity of the photons as a function of the thickness for four samples in
Figure 6a–d. In this figure, we show the results for the following samples: SR-5m, SR-5n,
SR-30m and SR-30n. The other samples have the same trend shown in this figure, so we
did not present the data for the remaining samples in Figure 6a–d.

As one can see in this figure, the slope is negative, which implies that the transmission
of the photons through the prepared silicone rubber samples decrease with increasing the
thickness from 3 to 13 mm. The slope of the rubber silicon sample, SR-5m, is −0.1502 at
0.356 MeV, and, as can be seen from Table 2, the LAC for this sample at 0.356 MeV is 0.1502
cm−1. The LAC values for all the prepared rubber silicon with different amounts of micro-
and nano-Bi2O3 is summarized in Table 3.



Polymers 2022, 14, 1048 7 of 14

Polymers 2022, 14, 1048 7 of 14 
 

 

Beer law. The slope of the straight line is the absolute value of the LAC. We represent the 
reduction in the intensity of the photons as a function of the thickness for four samples in 
Figure 6a–d. In this figure, we show the results for the following samples: SR-5m, SR-5n, 
SR-30m and SR-30n. The other samples have the same trend shown in this figure, so we 
did not present the data for the remaining samples in Figure 6a–d. 

 
Figure 6. Graphical representation of the reduction in the intensity of the photons as a function of 
the thickness for (a) SR-5m, (b) SR-5n, (c) SR-30m and (d) SR-30n. 

As one can see in this figure, the slope is negative, which implies that the transmis-
sion of the photons through the prepared silicone rubber samples decrease with increas-
ing the thickness from 3 to 13 mm. The slope of the rubber silicon sample, SR-5m, is 
−0.1502 at 0.356 MeV, and, as can be seen from Table 2, the LAC for this sample at 0.356 
MeV is 0.1502 cm−1. The LAC values for all the prepared rubber silicon with different 
amounts of micro- and nano-Bi2O3 is summarized in Table 3. 

Table 2. Linear attenuation coefficient of silicon rubber with different additives (fraction by weight). 

Energy 
(MeV) 

SR-0 SR-10m SR-20m 
XCOM EXP Dev (%) XCOM EXP Dev (%) XCOM EXP Dev (%) 

0.060 0.3097 0.3059 1.25 0.9620 0.9464 1.65 1.7499 1.7215 1.65 
0.081 0.2456 0.2384 3.01 0.544 0.5305 2.52 0.9042 0.8860 2.05 

Figure 6. Graphical representation of the reduction in the intensity of the photons as a function of the
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Table 2. Linear attenuation coefficient of silicon rubber with different additives (fraction by weight).

Energy
(MeV)

SR-0 SR-10m SR-20m

XCOM EXP Dev (%) XCOM EXP Dev (%) XCOM EXP Dev (%)

0.060 0.3097 0.3059 1.25 0.9620 0.9464 1.65 1.7499 1.7215 1.65
0.081 0.2456 0.2384 3.01 0.544 0.5305 2.52 0.9042 0.8860 2.05
0.356 0.1354 0.1351 0.25 0.171 0.1657 3.25 0.2141 0.2113 1.35
0.662 0.1043 0.1033 0.98 0.118 0.1154 1.85 0.1336 0.1308 2.14
1.173 0.0794 0.0779 1.89 0.087 0.0861 0.62 0.0954 0.0952 0.28
1.333 0.0744 0.0728 2.11 0.081 0.0796 1.63 0.0889 0.0876 1.48
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Table 3. Linear attenuation coefficient of bulk and nano samples.

Energy
(MeV)

SR-5 SR-30

XCOM SR-5m Dev (%) SR-5n R.I (%) XCOM SR-30m Dev (%) SR-30m R.I (%)

0.060 0.6213 0.6085 2.11 0.6923 12.11 2.7206 2.6749 1.71 3.4519 22.51
0.081 0.3881 0.3805 1.99 0.4254 10.55 1.3481 1.3315 1.25 1.7538 20.08
0.356 0.1525 0.1502 1.52 0.1635 8.14 0.2672 0.2621 1.95 0.3248 15.32
0.662 0.1106 0.1083 2.15 0.1169 7.31 0.1534 0.1496 2.54 0.1786 13.22
1.173 0.0829 0.0815 1.62 0.0876 6.88 0.1063 0.1039 2.31 0.1182 11.46
1.333 0.0775 0.0756 2.55 0.0810 6.67 0.0987 0.0976 1.22 0.1098 11.11

In this study, the linear attenuation coefficient (LAC) values of the SR without Bi2O3
and with 5, 10, 20 and 30% Bi2O3 (in micro and nano sizes) were experimentally measured
using different radioactive point sources in the energy range varying from 0.06 to 1.333 MeV.
Additionally, we theoretically calculated the LAC for the SR with micro-Bi2O3 using XCOM
software. The other parameters based on LAC were calculated, such as HVL, MFP and
TVL, and tabulated in Table 4.

Table 4. The HVL, MFP and TVL for all the micro and nano prepared samples.

Shielding
Parameters

Energy
(MeV) SR-0 SR-5m SR-5n SR-10m SR-20m SR-30m SR-30n

HVL (cm)

0.060 2.2380 1.1156 1.0012 0.7206 0.3961 0.2548 0.2008
0.081 2.8221 1.7860 1.6294 1.2745 0.7666 0.5142 0.3952
0.356 5.1177 4.5465 4.2399 4.0525 3.2373 2.5943 2.1339
0.662 6.6456 6.2649 5.9318 5.8966 5.1878 4.5185 3.8818
1.173 8.7318 8.3659 7.9165 8.0008 7.2628 6.5214 5.8647
1.333 9.3223 8.9437 8.5600 8.5649 7.7959 7.0193 6.3156

MFP (cm)

0.060 3.2287 1.6095 1.4444 1.0395 0.5715 0.3676 0.2897
0.081 4.0714 2.5767 2.3507 1.8387 1.1060 0.7418 0.5702
0.356 7.3833 6.5592 6.1169 5.8466 4.6705 3.7428 3.0786
0.662 9.5876 9.0383 8.5577 8.5069 7.4844 6.5188 5.6002
1.173 12.5973 12.0695 11.4212 11.5427 10.4779 9.4084 8.4610
1.333 13.4492 12.9030 12.3495 12.3565 11.2472 10.1267 9.1114

TVL (cm)

0.060 7.4345 3.7060 3.3259 2.3936 1.3158 0.8463 0.6670
0.081 9.3748 5.9330 5.4126 4.2338 2.5466 1.7080 1.3129
0.356 17.0007 15.1031 14.0846 13.4623 10.7542 8.6181 7.0887
0.662 22.0762 20.8115 19.7049 19.5879 17.2335 15.0102 12.8949
1.173 29.0063 27.7910 26.2982 26.5780 24.1264 21.6636 19.4822
1.333 30.9680 29.7103 28.4357 28.4519 25.8976 23.3176 20.9799

The comparison between the experimental and theoretical LAC for the SR (free Bi2O3)
and SR with 20% micro-Bi2O3 is plotted in Figure 7. We notice good comparability between
both LAC values measured in the lab and those calculated by XCOM. This is true for most
tested energies, however, we found some minor differences between both approaches, and
this is acceptable since usually anyone can find some small errors in the experimental part,
but generally the experimental results match the XCOM results in an acceptable manner.
This is an essential and important step since it provides confidence in the accuracy of the
geometry utilized in the lab for the determination of LAC for the SR and SR/micro-Bi2O3
samples. We also calculated the error (Dev.%) between the experimental and XCOM data.
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We found that the Dev.% for SR (free Bi2O3) is confined between 0.25 and 2.55%, while
the Dev.% for the SR with 10 micro-Bi2O3 is limited between 0.62 and 3.25%. The Dev.%
also ranges between 0.28 and 2.14% for the SR with 20 micro-Bi2O3, while the Dev.% for
the SR with 30 micro-Bi2O3 is limited between 1.22% and 2.54%. These results confirm that
the Dev.% is small (less than 3%), which reaffirms the compatibility of the practical and
theoretical results.

In Figure 8a, we plot the LAC for the SR and the RS with different concentrations of
micro-Bi2O3 (5, 10, 20 and 30%). Using this figure, we aim to understand the influence of
adding some fractions of Bi2O3 into the SR on the attenuation performance of the prepared
samples. Evidently, the lowest LAC is found in the SR and the LAC progressively increases
as the amount of Bi2O3 increases from 5 to 30%, where the maximum LAC is reported for
the SR + 30% Bi2O3 sample. The reason for this enhancement in LAC is due to the high
density and atomic number of bismuth, and it is known that adding high atomic number
elements to the materials increases the probability of the interaction between the photons
and the electrons in the materials. Consequently, incorporating Bi2O3 into the SR sample
leads to the enhancement of the radiation protection performance.

In order to compare the effect of Bi2O3 size on the attenuation performance of the SR,
we plotted the LAC for the SR with 5% micro- and nano-Bi2O3 in Figure 8b, and SR with
30% micro- and nano-Bi2O3 in Figure 8c. The LAC values for the SR-5n is higher than the
LAC of SR-5m, and the same for 30% (i.e., the LAC for the SR with nanoparticles is higher
than micro-Bi2O3). These results imply that the radiation interaction probability increases
when the micro-Bi2O3 is replaced with nano-Bi2O3 in the SR. From Equation (3), we define
a parameter called relative increase (R.I), which shows the enhancement in the LAC due to
the replacement of micro-Bi2O3 by nano-Bi2O3. The R.I is higher than 1, which reaffirms
the importance of using nanosized Bi2O3 to develop an effective attenuation barrier (see
Figure 8d). Additionally, the RI for 30% of Bi2O3 is higher than that with 5% of Bi2O3.
Accordingly, SR with 30% of Bi2O3 has interesting radiation shielding features, compared
to the SR with micro-Bi2O3.

Figure 9a,b shows the measured gamma photon transmission through the RS with
micro-Bi2O3 and nano-Bi2O3, respectively. We call this T micro and T nano. It can be seen
that both T micro and T nano exponentially decrease with increasing the thickness from
3 to 13 mm. In Figure 9a, the T micro is lower than that of SR (free Bi2O3), which means
that the transmission of the photons through the sample with Bi2O3 is lower than the
transmission of photons through the free Bi2O3 SR sample. This means that the addition
of Bi2O3 reduces the transmission of the photons through the prepared silicon rubber.
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Additionally, we can see that the T micro depends on the amount of Bi2O3 incorporated
into the SR. The more Bi2O3 in the SR, the lower the T micro. Hence, the incorporation
of Bi2O3 has a positive influence on the attenuation performance of the SR. If we observe
Figure 9b, we can conclude the same results obtained in Figure 9a. In the other words, the
photon’s transmission through free Bi2O3-SR is higher than the SR with nano-Bi2O3. This
result reaffirms that the increase in the weight fraction of Bi2O3 in the SR can efficaciously
diminish the photon’s transmittance. Therefore, a high amount of Bi2O3 (micro or nano
sized) in the SR is a good choice to improve the gamma ray shielding performance for the
prepared SR.
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In order to understand the influence of the thickness of the prepared SR on the
attenuation performance, we plotted the radiation shielding efficiency (RPE) for the SR,
SR-5m and SR-30m, in Figure 10a, and SR, SR-5n and SR-30n, in Figure 10b, at the same
energy value of 0.081 MeV. In both subfigures, it is evident that the RPE for the SR is less
than the RPE for the SR with Bi2O3 (micro or nano sized), which reaffirms that adding
Bi2O3 to the SR causes an improvement in the attenuation performance. Most importantly,
we can see that the RPE for the SR with a thickness of 13 mm is higher than that with
a thickness of 3 mm. This is correct for the SR incorporating micro- or nano-Bi2O3. For
instance, from Figure 10a, for the SR-5m, the RPE is 10% and this is increased to 40% for
the same sample with a thickness of 13 mm. Therefore, we can conclude that the thickness
is an important parameter that affects the attenuation competence of the prepared SR. The
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high thickness SR is recommended as a good attenuator barrier. Moreover, we found that
the RPE for the SR with nano-Bi2O3 is higher than that of the corresponding micro-Bi2O3.

Polymers 2022, 14, 1048 11 of 14 
 

 

In order to understand the influence of the thickness of the prepared SR on the atten-
uation performance, we plotted the radiation shielding efficiency (RPE) for the SR, SR-5m 
and SR-30m, in Figure 10a, and SR, SR-5n and SR-30n, in Figure 10b, at the same energy 
value of 0.081 MeV. In both subfigures, it is evident that the RPE for the SR is less than the 
RPE for the SR with Bi2O3 (micro or nano sized), which reaffirms that adding Bi2O3 to the 
SR causes an improvement in the attenuation performance. Most importantly, we can see 
that the RPE for the SR with a thickness of 13 mm is higher than that with a thickness of 3 
mm. This is correct for the SR incorporating micro- or nano-Bi2O3. For instance, from Fig-
ure 10a, for the SR-5m, the RPE is 10% and this is increased to 40% for the same sample 
with a thickness of 13 mm. Therefore, we can conclude that the thickness is an important 
parameter that affects the attenuation competence of the prepared SR. The high thickness 
SR is recommended as a good attenuator barrier. Moreover, we found that the RPE for the 
SR with nano-Bi2O3 is higher than that of the corresponding micro-Bi2O3. 

 
Figure 9. The measured gamma photon transmission through the RS with micro-Bi2O3 and nano-
Bi2O3, respectively, (a) RS with micro-Bi2O3 at 0.06 MeV, (b) RS with micro-Bi2O3 at 0.662 MeV, (c) 
RS with nano-Bi2O3 at 0.06 MeV and (d) RS with nano-Bi2O3 at 0.662 MeV 

It is important to compare the radiation attenuation performance for the prepared SR 
doped with Bi2O3 with a similar material, in order to check the possibility of using these 
samples in real applications. For this purpose, we compared the half value layer of the SR 

Figure 9. The measured gamma photon transmission through the RS with micro-Bi2O3 and nano-
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It is important to compare the radiation attenuation performance for the prepared SR
doped with Bi2O3 with a similar material, in order to check the possibility of using these
samples in real applications. For this purpose, we compared the half value layer of the
SR with 30% of micro- and nano-Bi2O3 with 3 samples: SR 30, 40 and 50% of magnetite
iron [40], as shown in Figure 11. We selected one energy value in the comparison, i.e.,
0.662 MeV. Evidently, the SR with 30% of Bi2O3 (micro and nano sized) have a lower HVL
and thus better attenuation competence than the SR with 30% of magnetite iron. The SR
with 30% of micro-Bi2O3 has an HVL of 4.52 cm and this is close to 4.62 cm, which was
reported for the SR with 40% of iron. The SR with 30% nano-Bi2O3 is lower than that of the
SR with 30 and 40% of iron, but has an almost similar HVL, with the SR being in contact
with 50% of the magnetite iron.
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4. Conclusions

Flexible materials were prepared from SR and different sizes of Bi2O3. The morpho-
logical, mechanical and shielding properties were determined. The SEM results indicate
that the nano filler is significantly better than micro filler. The mechanical results conclude
that the flexibility of the materials decreases as we increase the Bi2O3 filler with 30 wt%.
Therefore, the attenuation study was controlled by the flexibility results. The LAC was
determined experimentally and the results show good agreement with the theoretical
results. The attenuation coefficients of the prepared SR samples showed a clear superiority
in lower energy levels over other energies, and the SR’s nano-Bi2O3 was better than the
corresponding SR’s micro-Bi2O3 at all discussed energies for the shielding materials.
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