Influence of Chitin Nanocrystals on the Crystallinity and Mechanical Properties of Poly(hydroxybutyrate) Biopolymer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Production of PHB
2.2. Production of ChNCs
2.3. Compounding and Sheet Calendering
2.4. Characterization
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ollier, R.P.; D’Amico, D.A.; Schroeder, W.F.; Cyras, V.P.; Alvarez, V.A. Effect of clay treatment on the thermal degradation of PHB based nanocomposites. Appl. Clay Sci. 2018, 163, 146–152. [Google Scholar] [CrossRef]
- Hablot, E.; Bordes, P.; Pollet, E.; Avérous, L. Thermal and thermo-mechanical degradation of poly(3-hydroxybutyrate)-based multiphase systems. Polym. Degrad. Stab. 2008, 93, 413–421. [Google Scholar] [CrossRef]
- Saad, G.R.; Salama, H.E.; Mohamed, N.A. Crystallization and thermal properties of biodegradable polyurethanes based on poly[(R)-3-hydroxybutyrate] and their composites with chitin whiskers. J. Appl. Polym. Sci. 2014, 131, 9395–9407. [Google Scholar] [CrossRef]
- Philip, S.; Keshavarz, T.; Roy, I. Polyhydroxyalkanoates: Biodegradable polymers with a range of applications. J. Chem. Technol. Biotechnol. 2007, 82, 233–247. [Google Scholar] [CrossRef]
- Ojumu, T.V.; Yu, J.; Solomon, B.O. Production of Polyhydroxyalkanoates, a bacterial biodegradable polymer. Afr. J. Biotechnol. 2004, 3, 18–24. [Google Scholar] [CrossRef] [Green Version]
- Pietrini, M.; Roes, L.; Patel, M.K.; Chiellini, E. Comparative life cycle studies on poly(3-hydroxybutyrate)-based composites as potential replacement for conventional petrochemical plastics. Biomacromolecules 2007, 8, 2210–2218. [Google Scholar] [CrossRef] [Green Version]
- Hazer, D.B.; Kiliçay, E.; Hazer, B. Poly (3-hydroxyalkanoate)s: Diversification and Biomedical Applications. A State of the Art Review. Mater. Sci. Eng. C 2012, 32, 637–647. [Google Scholar] [CrossRef]
- Chen, G.-Q. (Ed.) Plastics Completely Synthesized by Bacteria: Polyhydroxyalkanoates. In Plastics from Bacteria: Natural Functions and Applications. Microbiology Monographs; Springer: New York, NY, USA, 2010; Volume 14, pp. 17–37. [Google Scholar] [CrossRef]
- Khasanah, R.K.R.; Sato, H.; Takahashi, I.; Ozaki, Y. Intermolecular hydrogen bondings in the poly(3-hydroxybutyrate) and chitin blends: Their effects on the crystallization behavior and crystal structure of poly(3-hydroxybutyrate). Polymer 2015, 75, 141–150. [Google Scholar] [CrossRef]
- Qian, J.; Zhu, L.; Zhang, J.; Whitehouse, R.S. Comparison of different nucleating agents on crystallization of poly(3-hydroxybutyrate-co-3-hydroxyvalerates). J. Polym. Sci. B Polym. Phys. 2007, 45, 1564–1577. [Google Scholar] [CrossRef]
- Zhao, Q.; Cheng, G. Biodegradable PHB/PEG Derivatives and their Degradation Behavior. In New Frontiers in Polymer Research; Bregg, R.K., Ed.; Nova Science Publishers, Inc.: New York, NY, USA, 2006; Volume 5, pp. 99–124. [Google Scholar]
- Sudesh, K.; Abe, H.; Doi, Y. Synthesis, structure, and properties of polyhydroxyalkanoates: Biological polyester. Prog. Polym. Sci. 2000, 25, 1503–1555. [Google Scholar] [CrossRef]
- Satkowski, M.M.; Melik, D.H.; Autran, J.-P.; Green, P.R.; Noda, I.; Schechtman, L.A. Physical and processing properties of polyhydroxyalkanoate (PHA) copolymers. In Biopolymers; Steinbüchel, A., Doi, Y., Eds.; Wiley-VCH: Weinheim, Germany, 2001; Volume 3b, pp. 231–263. [Google Scholar] [CrossRef]
- Jaques, N.G.; dos Santos Silva, I.D.; da Cruz Barbosa Neto, M.; Ries, A.; Canedo, E.L.; Wellen, R.M.R. Effect of heat cycling on melting and crystallization of PHB/TiO2 compounds. Polimeros 2018, 28, 161–168. [Google Scholar] [CrossRef] [Green Version]
- Marchessault, R.H.; Okamura, K.; Su, C.J. Physical Properties of Poly(β-hydroxy butyrate). II. Conformational Aspects in Solution. Macromolecules 1970, 3, 735–740. [Google Scholar] [CrossRef]
- De Koning, G.J.M.; Lemstra, P.J. Crystallization phenomena in bacterial poly[(R)-3-hydroxybutyrate]: 2. Embrittlement and rejuvenation. Polymer 1993, 34, 4089–4094. [Google Scholar] [CrossRef] [Green Version]
- De Koning, G.J. Embrittlement and Rejuvenation of Bacterial Poly[(R)-3-hydroxybutyrate]. In Polymers from Agricultural Coproducts; Fishman, M.L., Friedman, R.B., Huang, S.J., Eds.; American Chemical Society: Washington, DC, USA, 1994; Chapter 13; Volume 575, pp. 188–201. [Google Scholar] [CrossRef]
- Yeo, J.C.C.; Muiruri, J.K.; Thitsartarn, W.; Li, Z.; He, C. Recent advances in the development of biodegradable PHB-based toughening materials: Approaches, advantages, and applications. Mater. Sci. Eng. C Mater. Biol. Appl. 2018, 92, 1092–1116. [Google Scholar] [CrossRef] [PubMed]
- Gerard, T.; Budtova, T.; Podshivalov, A.; Bronnikov, S. Polylactide/poly(hydroxybutyrate-co-hydroxyvalerate) blends: Morphology and mechanical properties. eXPRESS Polym. Lett. 2014, 8, 609–617. [Google Scholar] [CrossRef]
- Perret, E.; Reifler, F.A.; Gooneie, A.; Chen, K.; Selli, F.; Hufenus, R. Structural response of melt-spun poly(3-hydroxybutyrate) fibers to stress and temperature. Polymer 2020, 197, 122503. [Google Scholar] [CrossRef]
- Pandey, J.K.; Kumar, A.P.; Misra, M.; Mohanty, A.K.; Drzal, L.T.; Palsingh, R. Recent advances in biodegradable nanocomposites. J. Nanosci. Nanotechnol. 2005, 5, 497–526. [Google Scholar] [CrossRef]
- Chivrac, F.; Kadlecová, Z.; Pollet, E.; Avérous, L. Aromatic copolyester-based nano-biocomposites: Elaboration, structural characterization, and properties. J. Polym. Environ. 2006, 14, 393–401. [Google Scholar] [CrossRef]
- Chen, G.; Hao, G.; Guo, T.; Song, M.; Zhang, B. Structure and mechanical properties of poly (3-hydroxybutyrate-co-3-hydroxyvalerate)(PHBV)/clay nanocompo-sites. J. Mater. Sci. Lett. 2002, 21, 1587–1589. [Google Scholar] [CrossRef]
- Chen, G.; Hao, G.; Guo, T.; Song, M.; Zhang, B. Crystallization kinetics of poly (3-hydroxybutyrate-co-3-hydroxyvalerate)/clay nanocomposites. J. Appl. Polym. Sci. 2004, 93, 655–661. [Google Scholar] [CrossRef]
- Lim, S.T.; Hyun, Y.H.; Lee, C.H.; Choi, H.J. Preparation, and characterization of microbial biodegradable poly (3-hydroxybutyrate)/organoclay nanocomposite. J. Mater. Sci. Lett. 2003, 22, 299–302. [Google Scholar] [CrossRef]
- Choi, W.M.; Kim, T.W.; Park, O.O.; Chang, Y.K.; Lee, J.W. Preparation and characterization of poly(hydroxybutyrate-co-hydroxyvalerate)-organoclay nanocomposites. J. Appl. Polym. Sci. 2003, 90, 525–529. [Google Scholar] [CrossRef]
- Wang, S.; Song, C.; Chen, G.; Guo, T.; Liu, J.; Zhang, B.; Takeuchi, S. Characteristics, and biodegradation properties of poly (3-hydroxybutyrate-co-3-hy-droxyvalerate)/organophilic montmorillonite (PHBV/OMMT) nanocomposite. Polym. Degrad. Stab. 2005, 87, 69–76. [Google Scholar] [CrossRef]
- Malucelli, G. High barrier composite materials based on renewable sources for food packaging applications. In Food Packaging; Grumezescu, A.M., Ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2017; Volume 2, pp. 45–78. [Google Scholar] [CrossRef]
- Duan, B.; Huang, Y.; Lu, A.; Zhang, L.N. Recent advances in chitin-based materials con-structed via physical methods. Prog. Polym. Sci. 2018, 82, 1–33. [Google Scholar] [CrossRef]
- Shamshina, J.L.; Berton, P.; Rogers, R.D. Advances in functional chitin materials: A review. ACS Sustain. Chem. Eng. 2019, 7, 6444–6457. [Google Scholar] [CrossRef]
- Li, J.; Wang, Y.; Wang, Z.; Wang, J.; Wu, D. Surface chain engineering of chitin nanocrystals towards tailoring the nucleating capacities for poly(β-hydroxybutyrate). Int. J. Biol. Macromol. 2021, 166, 967–976. [Google Scholar] [CrossRef]
- Li, S.C.Y.; Sun, Y.C.; Guan, Q.; Naguib, H. Effects of chitin nanowhiskers on the thermal, barrier, mechanical, and rheological properties of polypropylene nanocomposites. RSC Adv. 2016, 6, 72086–72095. [Google Scholar] [CrossRef]
- Rinaudo, M. Chitin and chitosan: Properties and applications. Prog. Polym. Sci. 2006, 31, 603–632. [Google Scholar] [CrossRef]
- Marchessault, R.H.; Morehead, F.F.; Walter, N.M. Liquid crystal systems from fibrillar polysaccharides. Nature 1959, 184, 632–633. [Google Scholar] [CrossRef]
- Zeng, J.B.; He, Y.S.; Li, S.L.; Wang, Y.Z. Chitin whiskers: An overview. Biomacromolecules 2012, 13, 1–11. [Google Scholar] [CrossRef]
- Paillet, M.; Dufresne, A. Chitin whisker reinforced thermoplastic nanocomposites. Macromolecules 2001, 34, 6527–6530. [Google Scholar] [CrossRef]
- Gopalan Nair, K.; Dufresne, A. Crab shell chitin whisker reinforced natural rubber nanocomposites. 1. Processing and swelling behavior. Biomacromolecules 2003, 4, 657–665. [Google Scholar] [CrossRef] [PubMed]
- Pereira, A.G.B.; Muniz, E.C.; Hsieh, Y.L. Chitosan-sheath and chitincore nanowhiskers. Carbohydr. Polym. 2014, 107, 158–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, M.; Schwendemann, D.; Spigno, G.; Geng, S.; Berglund, L.; Oksman, K. Functional nanocomposite films of poly(Lactic acid) with well-dispersed chitin nanocrystals achieved using a dispersing agent and liquid-assisted extrusion process. Molecules 2021, 26, 4557. [Google Scholar] [CrossRef]
- Salaberria, A.M.; Labidi, J.; Fernandes, S.C.M. Different routes to turn chitin into stunning nano-objects. Eur. Polym. J. 2015, 68, 503–515. [Google Scholar] [CrossRef]
- Dutta, A.K.; Hironori, I.; Minoru, M.; Hiroyuki, S.; Shinsukeifuku. Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments. J. Chitin. Chitosan. Sci. 2014, 2, 179–184. [Google Scholar] [CrossRef]
- Oun, A.A.; Rhim, J.W. Effect of isolation methods of chitin nanocrystals on the properties of chitin-silver hybrid nanoparticles. Carbohydr. Polym. 2018, 197, 349–358. [Google Scholar] [CrossRef]
- Scaffaro, R.; Botta, L.; Lopresti, F.; Maio, A.; Sutera, F. Polysaccharide nanocrystals as fillers for PLA based nanocomposites. Cellulose 2017, 24, 447–478. [Google Scholar] [CrossRef]
- Ravi Kumar, M.N.V. A review of chitin and chitosan applications. React. Funct. Polym. 2000, 46, 1–27. [Google Scholar] [CrossRef]
- Singh, S.; Maspoch, M.L.; Oksman, K. Crystallization of triethyl-citrate-plasticized poly(lactic acid) induced by chitin nanocrystals. J. Appl. Polym. Sci. 2019, 136, 47936. [Google Scholar] [CrossRef]
- Visakh, P.M.; Monti, M.; Puglia, D.; Rallini, M.; Santulli, C.; Sarasini, F.; Thomas, S.; Kenny, J.M. Mechanical and thermal properties of crab chitin reinforced carboxylated SBR composites. Express Polym. Lett. 2012, 6, 396–409. [Google Scholar] [CrossRef]
- Singh, S.; Patel, M.; Schwendemann, D.; Zaccone, M.; Geng, S.Y.; Maspoch, M.L.; Oksman, K. Effect of chitin nanocrystals on crystallization and properties of poly(lactic acid)-based nanocomposites. Polymers 2020, 12, 726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, B.S.; Lee, S.C.; Lee, S.Y.; Chang, H.N.; Chang, Y.K.; Woo, S.I. Production of poly(3-hydroxybutyric acid) by fed-batch culture of Alcaligenes eutrophus with glucose concentration control. Biotechnol. Bioeng. 1994, 43, 892–898. [Google Scholar] [CrossRef] [PubMed]
- Barham, P.J.; Keller, A.E.; Otun, L.; Holmes, P.A. Crystallization and morphology of a bacterial thermoplastic: Poly-3-hydroxybutyrate. J. Mat. Sci. 1984, 19, 2781–2794. [Google Scholar] [CrossRef]
- Meng, D.; Xie, J.; Waterhouse, G.I.N.; Zhang, K.; Zhao, Q.; Wang, S.; Qiu, S.; Chen, K.; Li, J.; Ma, C.; et al. Biodegradable Poly(butylene adipate-co-terephthalate) composites reinforced with bio-based nanochitin: Preparation, enhanced mechanical and thermal properties. J. Appl. Polym. Sci. 2019, 137, 48485. [Google Scholar] [CrossRef]
- Roman, M.; Winter, W.T. Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromolecules 2004, 5, 1671–1677. [Google Scholar] [CrossRef]
- Kai, W.; He, Y.; Inoue, Y. Fast crystallization of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with talc and boron nitride as nucleating agents. Polym. Int. 2005, 54, 780–789. [Google Scholar] [CrossRef]
- Ikejima, T.; Yagi, K.; Inoue, Y. Thermal properties and crystallization behavior of poly (3-hydroxybutyric acid) in blends with chitin and chitosan. Macromol. Chem. Phys. 1999, 200, 413–421. [Google Scholar] [CrossRef]
- Owen, A.J.; Krabi, J.H.; Divjakovi, V. Crystallization and melting behaviour of PHB and PHB/HV copolymer. Polymer 1992, 33, 1563–1567. [Google Scholar] [CrossRef]
- La Mantia, F.P.; Ceraulo, M.; Testa, P.; Morreale, M. Biodegradable Polymers for the Production of Nets for Agricultural Product Packaging. Materials 2021, 14, 323. [Google Scholar] [CrossRef]
- Herrera, N.; Roch, H.; Salaberria, A.M.; Pino-Orellana, M.A.; Labidi, J.; Fernandes, S.C.M.; Radic, D.; Leiva, A.; Oksman, K. Functionalized blown films of plasticized polylactic acid/chitin nanocomposite: Preparation and characterization. Mater. Des. 2016, 92, 846–852. [Google Scholar] [CrossRef]
- Coltelli, M.B.; Cinelli, P.; Gigante, V.; Aliotta, L.; Morganti, P.; Panariello, L.; Lazzeri, A. Chitin nanofibrils in poly(lactic acid) (PLA) nanocomposites: Dispersion and thermo-mechanical properties. Int. J. Mol. Sci. 2019, 20, 504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herrera, N.; Salaberria, A.M.; Mathew, A.P.; Oksman, K. Plasticized polylactic acid nanocomposite films with cellulose and chitin nanocrystals prepared using extrusion and compression molding with two cooling rates: Effects on mechanical, thermal and optical properties. Compos. Part A 2019, 83, 89–97. [Google Scholar] [CrossRef] [Green Version]
Materials | Cooling | 2nd Heating | |||||
---|---|---|---|---|---|---|---|
Tc [°C] | ΔHc [J/g] | Tcc [°C] | ΔHcc [J/g] | Tm [°C] | ΔHm [J/g] | Xc [%] | |
Neat PHB | 66 | 58 | - | 0 | 170 | 88 | 60 |
PHB/1ChNC | 54 | 36 | 42 | 8 | 170 | 82 | 50 |
PHB/5ChNC | 49 | 29 | 41 | 10 | 170 | 79 | 49 |
Materials | E-Modulus [GPa] | σmax [MPa] | ε at σmax [%] | εbreak [%] | Toughness [MJ/m3] | |
---|---|---|---|---|---|---|
PHB | MD | 2.7 ± 0.2 | 24 ± 2 | 1.1 ± 0.1 | 1.2 ± 0.1 | 0.13 ± 0.0 |
TD | 1.8 ± 0.2 | 14 ± 0 | 0.9 ± 0.2 | 1.0 ± 0.2 | 0.06 ± 0.1 | |
PHB/1ChNC | MD | 2.7 ± 0.1 | 27 ± 1 | 1.3 ± 0.1 | 1.5 ± 0.2 | 0.18 ± 0.1 |
TD | 2.4 ± 0.3 | 22 ± 0 | 1.1 ± 0.1 | 1.1 ± 0.1 | 0.13 ± 0.1 | |
PHB/5ChNC | MD | 2.8 ± 0.1 | 33 ± 4 | 1.6 ± 0.4 | 1.7 ± 0.4 | 0.22 ± 0.0 |
TD | 2.5 ± 0.2 | 21 ± 0 | 1.0 ± 0.1 | 1.0 ± 0.1 | 0.12 ± 0.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaccone, M.; Patel, M.K.; De Brauwer, L.; Nair, R.; Montalbano, M.L.; Monti, M.; Oksman, K. Influence of Chitin Nanocrystals on the Crystallinity and Mechanical Properties of Poly(hydroxybutyrate) Biopolymer. Polymers 2022, 14, 562. https://doi.org/10.3390/polym14030562
Zaccone M, Patel MK, De Brauwer L, Nair R, Montalbano ML, Monti M, Oksman K. Influence of Chitin Nanocrystals on the Crystallinity and Mechanical Properties of Poly(hydroxybutyrate) Biopolymer. Polymers. 2022; 14(3):562. https://doi.org/10.3390/polym14030562
Chicago/Turabian StyleZaccone, Marta, Mitul Kumar Patel, Laurens De Brauwer, Rakesh Nair, Maria Luana Montalbano, Marco Monti, and Kristiina Oksman. 2022. "Influence of Chitin Nanocrystals on the Crystallinity and Mechanical Properties of Poly(hydroxybutyrate) Biopolymer" Polymers 14, no. 3: 562. https://doi.org/10.3390/polym14030562