The Impact of Isocyanate Index and Filler Functionalities on the Performance of Flexible Foamed Polyurethane/Ground Tire Rubber Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of PU Foams and PU/GTR Composites
2.3. Characterization Techniques
3. Results
3.1. Cellular Structure of Prepared PU Foams and PU/GTR Composites
3.2. Thermomechanical Performance of Prepared PU Foams and PU/GTR Composites
3.3. Thermal Stability of Prepared PU Foams and PU/GTR Composites
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Małysa, T.; Nowacki, K.; Wieczorek, J. Assessment of Sound Absorbing Properties of Polyurethane Sandwich System. Compos. Theory Pract. 2016, 16, 244–248. [Google Scholar]
- Miedzińska, K.; Członka, S.; Strąkowska, A.; Strzelec, K. Biobased Polyurethane Composite Foams Reinforced with Plum Stones and Silanized Plum Stones. Int. J. Mol. Sci. 2021, 22, 4757. [Google Scholar] [CrossRef] [PubMed]
- Bukowczan, A.; Hebda, E.; Michałowski, S.; Pielichowski, K. Modification of Polyurethane Viscoelastic Foams by Functionalized Polyhedral Oligomeric Silsesquioxanes (POSS). Compos. Theory Pract. 2018, 18, 77–81. [Google Scholar]
- Kairytė, A.; Członka, S.; Boris, R.; Vėjelis, S. Evaluation of the Performance of Bio-Based Rigid Polyurethane Foam with High Amounts of Sunflower Press Cake Particles. Materials 2021, 14, 5475. [Google Scholar] [CrossRef] [PubMed]
- Olszewski, A.; Kosmela, P.; Piasecki, A.; Żukowska, W.; Szczepański, M.; Wojtasz, P.; Barczewski, M.; Barczewski, R.; Hejna, A. Comprehensive Investigation of Stoichiometry–Structure–Performance Relationships in Flexible Polyurethane Foams. Polymers 2022, 14, 3813. [Google Scholar] [CrossRef]
- Lapprand, A.; Boisson, F.; Delolme, F.; Méchin, F.; Pascault, J.-P. Reactivity of Isocyanates with Urethanes: Conditions for Allophanate Formation. Polym. Degrad. Stab. 2005, 90, 363–373. [Google Scholar] [CrossRef]
- Vilar, W.D. Química e Tecnologia Dos Poliuretanos, 2nd ed.; Vilar Consultoria Técnica Ltd.: Rio de Janeiro, Brazil, 1998. [Google Scholar]
- Amran, U.A.; Salleh, K.M.; Zakaria, S.; Roslan, R.; Chia, C.H.; Jaafar, S.N.S.; Sajab, M.S.; Mostapha, M. Production of Rigid Polyurethane Foams Using Polyol from Liquefied Oil Palm Biomass: Variation of Isocyanate Indexes. Polymers 2021, 13, 3072. [Google Scholar] [CrossRef]
- Lee, C.S.; Ooi, T.L.; Chuah, C.H.; Ahmad, S. Effect of Isocyanate Index on Physical Properties of Flexible Polyurethane Foams. Malays. J. Sci. 2007, 26, 91–98. [Google Scholar]
- Wang, K.; Peng, Y.; Tong, R.; Wang, Y.; Wu, Z. The Effects of Isocyanate Index on the Properties of Aliphatic Waterborne Polyurethaneureas. J. Appl. Polym. Sci. 2010, 118, 920–927. [Google Scholar] [CrossRef]
- Baghban, S.A.; Khorasani, M.; Sadeghi, G.M.M. Acoustic Damping Flexible Polyurethane Foams: Effect of Isocyanate Index and Water Content on the Soundproofing. J. Appl. Polym. Sci. 2019, 136, 47363. [Google Scholar] [CrossRef]
- Prociak, A.; Malewska, E.; Bąk, S. Influence of Isocyanate Index on Selected Properties of Flexible Polyurethane Foams Modified with Various Bio-Components. J. Renew. Mater. 2016, 4, 78–85. [Google Scholar] [CrossRef]
- Chen, S.; Wang, Q.; Wang, T. Preparation, Tensile, Damping and Thermal Properties of Polyurethanes Based on Various Structural Polymer Polyols: Effects of Composition and Isocyanate Index. J. Polym. Res. 2012, 19, 9994. [Google Scholar] [CrossRef]
- Hejna, A.; Haponiuk, J.; Piszczyk, Ł.; Klein, M.; Formela, K. Performance Properties of Rigid Polyurethane-Polyisocyanurate/Brewers’ Spent Grain Foamed Composites as Function of Isocyanate Index. E-Polymers 2017, 17, 427–437. [Google Scholar] [CrossRef]
- Stachak, P.; Hebda, E.; Pielichowski, K. Foaming Extrusion of Thermoplastic Polyurethane Modified by POSS Nanofillers. Compos. Theory Pract. 2019, 19, 23–29. [Google Scholar]
- Smoleń, J.; Olszowska, K.; Godzierz, M. Composites of Rigid Polyurethane Foam and Shredded Car Window Glass Particles—Structure and Mechanical Properties. Compos. Theory Pract. 2021, 21, 135–140. [Google Scholar]
- Kairytė, A.; Członka, S.; Šeputytė-Jucikė, J.; Vėjelis, S. Impact of Sunflower Press Cake and Its Modification with Liquid Glass on Polyurethane Foam Composites: Thermal Stability, Ignitability, and Fire Resistance. Polymers 2022, 14, 4543. [Google Scholar] [CrossRef]
- Szefer, E.; Leszczyńska, A.; Pielichowski, K. Modification of Microcrystalline Cellulose Filler with Succinic Anhydride—Effect of Microwave and Conventional Heating. Compos. Theory Pract. 2018, 18, 25–31. [Google Scholar]
- Chaturvedi, A.; Ranakoti, L.; Rakesh, P.K.; Mishra, N.K. Experimental Investigations on Mechanical Properties of Walnut Shell and Pine Needle Ash Polylactic Acid Biocomposites. Compos. Theory Pract. 2021, 21, 114–120. [Google Scholar]
- Yang, Q.; Pan, X. Introducing Hydroxyl Groups as Cellulose-Binding Sites into Polymeric Solid Acids to Improve Their Catalytic Performance in Hydrolyzing Cellulose. Carbohydr. Polym. 2021, 261, 117895. [Google Scholar] [CrossRef]
- Lindh, E.L.; Bergenstråhle-Wohlert, M.; Terenzi, C.; Salmén, L.; Furó, I. Non-Exchanging Hydroxyl Groups on the Surface of Cellulose Fibrils: The Role of Interaction with Water. Carbohydr. Res. 2016, 434, 136–142. [Google Scholar] [CrossRef]
- Serrano, L.; Esakkimuthu, E.S.; Marlin, N.; Brochier-Salon, M.-C.; Mortha, G.; Bertaud, F. Fast, Easy, and Economical Quantification of Lignin Phenolic Hydroxyl Groups: Comparison with Classical Techniques. Energy Fuels 2018, 32, 5969–5977. [Google Scholar] [CrossRef]
- Członka, S.; Bertino, M.F.; Strzelec, K.; Strąkowska, A.; Masłowski, M. Rigid Polyurethane Foams Reinforced with Solid Waste Generated in Leather Industry. Polym. Test. 2018, 69, 225–237. [Google Scholar] [CrossRef]
- Żukowska, W.; Kosmela, P.; Wojtasz, P.; Szczepański, M.; Piasecki, A.; Barczewski, R.; Barczewski, M.; Hejna, A. Comprehensive Enhancement of Prepolymer-Based Flexible Polyurethane Foams’ Performance by Introduction of Cost-Effective Waste-Based Ground Tire Rubber Particles. Materials 2022, 15, 5728. [Google Scholar] [CrossRef] [PubMed]
- Piszczyk, L.; Hejna, A.; Formela, K.; Danowska, M.; Strankowski, M. Rigid Polyurethane Foams Modified with Ground Tire Rubber—Mechanical, Morphological and Thermal Studies. Cell. Polym. 2015, 34, 45–62. [Google Scholar] [CrossRef]
- Kosmela, P.; Olszewski, A.; Zedler, Ł.; Burger, P.; Piasecki, A.; Formela, K.; Hejna, A. Ground Tire Rubber Filled Flexible Polyurethane Foam—Effect of Waste Rubber Treatment on Composite Performance. Materials 2021, 14, 3807. [Google Scholar] [CrossRef]
- Gayathri, R.; Vasanthakumari, R.; Padmanabhan, C. Thermal and Mechanical Behavior of Polyurethane Foam Modified with Nano Silica, Nano Clay and Crumb Rubber Fillers. Int. J. Sci. Eng. Res. 2013, 4, 301–308. [Google Scholar]
- Zhang, X.; Lu, Z.; Tian, D.; Li, H.; Lu, C. Mechanochemical Devulcanization of Ground Tire Rubber and Its Application in Acoustic Absorbent Polyurethane Foamed Composites. J. Appl. Polym. Sci. 2013, 127, 4006–4014. [Google Scholar] [CrossRef]
- Formela, K. Sustainable Development of Waste Tires Recycling Technologies—Recent Advances, Challenges and Future Trends. Adv. Ind. Eng. Polym. Res. 2021, 4, 209–222. [Google Scholar] [CrossRef]
- Fazli, A.; Rodrigue, D. Recycling Waste Tires into Ground Tire Rubber (GTR)/Rubber Compounds: A Review. J. Compos. Sci. 2020, 4, 103. [Google Scholar] [CrossRef]
- Mangili, I.; Collina, E.; Anzano, M.; Pitea, D.; Lasagni, M. Characterization and Supercritical CO2 Devulcanization of Cryo-Ground Tire Rubber: Influence of Devulcanization Process on Reclaimed Material. Polym. Degrad. Stab. 2014, 102, 15–24. [Google Scholar] [CrossRef]
- Simon, D.Á.; Pirityi, D.; Tamás-Bényei, P.; Bárány, T. Microwave Devulcanization of Ground Tire Rubber and Applicability in SBR Compounds. J. Appl. Polym. Sci. 2020, 137, 48351. [Google Scholar] [CrossRef] [Green Version]
- Garcia, P.S.; de Sousa, F.D.B.; de Lima, J.A.; Cruz, S.A.; Scuracchio, C.H. Devulcanization of Ground Tire Rubber: Physical and Chemical Changes after Different Microwave Exposure Times. Express Polym. Lett. 2015, 9, 1015–1026. [Google Scholar] [CrossRef]
- Gągol, M.; Boczkaj, G.; Haponiuk, J.; Formela, K. Investigation of Volatile Low Molecular Weight Compounds Formed during Continuous Reclaiming of Ground Tire Rubber. Polym. Degrad. Stab. 2015, 119, 113–120. [Google Scholar] [CrossRef]
- Park, D.H.; Park, G.P.; Kim, S.H.; Kim, W.N. Effects of Isocyanate Index and Environmentally-Friendly Blowing Agents on the Morphological, Mechanical, and Thermal Insulating Properties of Polyisocyanurate-Polyurethane Foams. Macromol. Res. 2013, 21, 852–859. [Google Scholar] [CrossRef]
- Wang, H.; Wang, Q.; He, J.; Mao, Z.; Sun, J. Study on the Pyrolytic Behaviors and Kinetics of Rigid Polyurethane Foams. Procedia Eng. 2013, 52, 377–385. [Google Scholar] [CrossRef] [Green Version]
- Tu, Y.-C.; Fan, H.; Suppes, G.J.; Hsieh, F.-H. Physical Properties of Water-Blown Rigid Polyurethane Foams Containing Epoxidized Soybean Oil in Different Isocyanate Indices. J. Appl. Polym. Sci. 2009, 114, 2577–2583. [Google Scholar] [CrossRef]
- Bernardini, J.; Anguillesi, I.; Coltelli, M.-B.; Cinelli, P.; Lazzeri, A. Optimizing the Lignin Based Synthesis of Flexible Polyurethane Foams Employing Reactive Liquefying Agents. Polym. Int. 2015, 64, 1235–1244. [Google Scholar] [CrossRef] [Green Version]
- Rojek, P.; Prociak, A. Effect of Different Rapeseed-Oil-Based Polyols on Mechanical Properties of Flexible Polyurethane Foams. J. Appl. Polym. Sci. 2012, 125, 2936–2945. [Google Scholar] [CrossRef]
- Abdollahi Baghban, S.; Khorasani, M.; Sadeghi, G.M.M. Soundproofing Flexible Polyurethane Foams: The Impact of Polyester Chemical Structure on the Microphase Separation and Acoustic Damping. J. Appl. Polym. Sci. 2018, 135, 46744. [Google Scholar] [CrossRef]
- Hejna, A.; Olszewski, A.; Zedler, Ł.; Kosmela, P.; Formela, K. The Impact of Ground Tire Rubber Oxidation with H2O2 and KMnO4 on the Structure and Performance of Flexible Polyurethane/Ground Tire Rubber Composite Foams. Materials 2021, 14, 499. [Google Scholar] [CrossRef]
- Olszewski, A.; Kosmela, P.; Żukowska, W.; Wojtasz, P.; Szczepański, M.; Barczewski, M.; Zedler, Ł.; Formela, K.; Hejna, A. Insights into Stoichiometry Adjustments Governing the Performance of Flexible Foamed Polyurethane/Ground Tire Rubber Composites. Polymers 2022, 14, 3838. [Google Scholar] [CrossRef] [PubMed]
- Olszewski, A.; Kosmela, P.; Zedler, Ł.; Formela, K.; Hejna, A. Optimization of Foamed Polyurethane/Ground Tire Rubber Composites Manufacturing. In Proceedings of the 2nd International Online Conference on Polymer Science&mdash, Online, 1–15 November 2021; Polymers and Nanotechnology for Industry 4.0. MDPI: Basel, Switzerland, 2021; p. 12. [Google Scholar]
- Mosiewicki, M.A.; Dell’Arciprete, G.A.; Aranguren, M.I.; Marcovich, N.E. Polyurethane Foams Obtained from Castor Oil-Based Polyol and Filled with Wood Flour. J. Compos. Mater. 2009, 43, 3057–3072. [Google Scholar] [CrossRef]
- Merillas, B.; Villafañe, F.; Rodríguez-Pérez, M.Á. Nanoparticles Addition in PU Foams: The Dramatic Effect of Trapped-Air on Nucleation. Polymers 2021, 13, 2952. [Google Scholar] [CrossRef]
- Phiri, M.M.; Phiri, M.J.; Formela, K.; Hlangothi, S.P. Chemical Surface Etching Methods for Ground Tire Rubber as Sustainable Approach for Environmentally-Friendly Composites Development—A Review. Compos. B Eng. 2021, 204, 108429. [Google Scholar] [CrossRef]
- Delebecq, E.; Pascault, J.-P.; Boutevin, B.; Ganachaud, F. On the Versatility of Urethane/Urea Bonds: Reversibility, Blocked Isocyanate, and Non-Isocyanate Polyurethane. Chem. Rev. 2013, 113, 80–118. [Google Scholar] [CrossRef] [PubMed]
- Takashimizu, Y.; Iiyoshi, M. New Parameter of Roundness R: Circularity Corrected by Aspect Ratio. Prog. Earth Planet. Sci. 2016, 3, 2. [Google Scholar] [CrossRef] [Green Version]
- Uram, K.; Kurańska, M.; Andrzejewski, J.; Prociak, A. Rigid Polyurethane Foams Modified with Biochar. Materials 2021, 14, 5616. [Google Scholar] [CrossRef]
- Gama, N.; Ferreira, A.; Barros-Timmons, A. 3D Printed Cork/Polyurethane Composite Foams. Mater. Des. 2019, 179, 107905. [Google Scholar] [CrossRef]
- Antunes, M.; Cano, Á.; Haurie, L.; Velasco, J.I. Esparto Wool as Reinforcement in Hybrid Polyurethane Composite Foams. Ind. Crops Prod. 2011, 34, 1641–1648. [Google Scholar] [CrossRef]
- Espadas-Escalante, J.J.; Avilés, F. Anisotropic Compressive Properties of Multiwall Carbon Nanotube/Polyurethane Foams. Mech. Mater. 2015, 91, 167–176. [Google Scholar] [CrossRef]
- Xiang, A.; Li, Y.; Fu, L.; Chen, Y.; Tian, H.; Rajulu, A.V. Thermal Degradation and Flame Retardant Properties of Isocyanate-Based Flexible Polyimide Foams with Different Isocyanate Indices. Thermochim. Acta 2017, 652, 160–165. [Google Scholar] [CrossRef]
- Cimavilla-Román, P.; Pérez-Tamarit, S.; Santiago-Calvo, M.; Rodríguez-Pérez, M.Á. Influence of Silica Aerogel Particles on the Foaming Process and Cellular Structure of Rigid Polyurethane Foams. Eur. Polym. J. 2020, 135, 109884. [Google Scholar] [CrossRef]
- Kurańska, M.; Prociak, A.; Kirpluks, M.; Cabulis, U. Polyurethane–Polyisocyanurate Foams Modified with Hydroxyl Derivatives of Rapeseed Oil. Ind. Crops. Prod. 2015, 74, 849–857. [Google Scholar] [CrossRef]
- Zhang, H.; Fang, W.-Z.; Li, Y.-M.; Tao, W.-Q. Experimental Study of the Thermal Conductivity of Polyurethane Foams. Appl. Therm. Eng. 2017, 115, 528–538. [Google Scholar] [CrossRef]
- Olcay, H.; Kocak, E.D. The Mechanical, Thermal and Sound Absorption Properties of Flexible Polyurethane Foam Composites Reinforced with Artichoke Stem Waste Fibers. J. Ind. Text. 2022, 51, 8738S–8763S. [Google Scholar] [CrossRef]
- Yang, H.; Yu, B.; Song, P.; Maluk, C.; Wang, H. Surface-Coating Engineering for Flame Retardant Flexible Polyurethane Foams: A Critical Review. Compos. B. Eng. 2019, 176, 107185. [Google Scholar] [CrossRef]
- Marć, M. Emissions of Selected Monoaromatic Hydrocarbons as a Factor Affecting the Removal of Single-Use Polymer Barbecue and Kitchen Utensils from Everyday Use. Sci. Total Environ. 2020, 720, 137485. [Google Scholar] [CrossRef] [PubMed]
- Modesti, M.; Lorenzetti, A. An Experimental Method for Evaluating Isocyanate Conversion and Trimer Formation in Polyisocyanate–Polyurethane Foams. Eur. Polym. J. 2001, 37, 949–954. [Google Scholar] [CrossRef]
- Andrzejewski, J.; Szostak, M.; Barczewski, M.; Łuczak, P. Cork-Wood Hybrid Filler System for Polypropylene and Poly(Lactic Acid) Based Injection Molded Composites. Structure Evaluation and Mechanical Performance. Compos. B Eng. 2019, 163, 655–668. [Google Scholar] [CrossRef]
- Kim, S.H.; Kim, B.K.; Lim, H. Effect of Isocyanate Index on the Properties of Rigid Polyurethane Foams Blown by HFC 365mfc. Macromol. Res. 2008, 16, 467–472. [Google Scholar] [CrossRef]
- Levine, F.; Escarsega, J.; la Scala, J. Effect of Isocyanate to Hydroxyl Index on the Properties of Clear Polyurethane Films. Prog. Org. Coat. 2012, 74, 572–581. [Google Scholar] [CrossRef]
- Petrović, Z.S.; Zhang, W.; Zlatanić, A.; Lava, C.C.; Ilavskyý, M. Effect of OH/NCO Molar Ratio on Properties of Soy-Based Polyurethane Networks. J. Polym. Environ. 2002, 10, 5–12. [Google Scholar] [CrossRef]
- Ivdre, A.; Abolins, A.; Sevastyanova, I.; Kirpluks, M.; Cabulis, U.; Merijs-Meri, R. Rigid Polyurethane Foams with Various Isocyanate Indices Based on Polyols from Rapeseed Oil and Waste PET. Polymers 2020, 12, 738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pugar, J.A.; Childs, C.M.; Huang, C.; Haider, K.W.; Washburn, N.R. Elucidating the Physicochemical Basis of the Glass Transition Temperature in Linear Polyurethane Elastomers with Machine Learning. J. Phys. Chem. B 2020, 124, 9722–9733. [Google Scholar] [CrossRef] [PubMed]
- Ubaidillah; Yunus, N.A.; Aziz, S.A.A.; Wahab, N.A.A.; Mazlan, S.A. Rheological Properties of a Reclaimed Waste Tire Rubber through High-Pressure High-Temperature Sintering. In AIP Conference Proceedings; AIP Publishing LLC: Melville, NY, USA, 2017; p. 030036. [Google Scholar]
- Wang, Q.; Chen, S.; Wang, T.; Zhang, X. Damping, Thermal, and Mechanical Properties of Polyurethane Based on Poly(Tetramethylene Glycol)/Epoxy Interpenetrating Polymer Networks: Effects of Composition and Isocyanate Index. Appl. Phys. A 2011, 104, 375–382. [Google Scholar] [CrossRef]
- Vaughan, B.R.; Wilkes, G.L.; Dounis, D.V.; McLaughlin, C. Effect of Vegetable-Based Polyols in Unimodal Glass-Transition Polyurethane Slabstock Viscoelastic Foams and Some Guidance for the Control of Their Structure-Property Behavior. II. J. Appl. Polym. Sci. 2011, 119, 2698–2713. [Google Scholar] [CrossRef]
- Pechar, T.W.; Wilkes, G.L.; Zhou, B.; Luo, N. Characterization of Soy-Based Polyurethane Networks Prepared with Different Diisocyanates and Their Blends with Petroleum-Based Polyols. J. Appl. Polym. Sci. 2007, 106, 2350–2362. [Google Scholar] [CrossRef]
- Chattopadhyay, D.K.; Webster, D.C. Thermal Stability and Flame Retardancy of Polyurethanes. Prog. Polym. Sci. 2009, 34, 1068–1133. [Google Scholar] [CrossRef]
- Chauhan, M.; Gupta, M.; Singh, B.; Singh, A.K.; Gupta, V.K. Effect of Functionalized Lignin on the Properties of Lignin–Isocyanate Prepolymer Blends and Composites. Eur. Polym. J. 2014, 52, 32–43. [Google Scholar] [CrossRef]
- Chattopadhyay, D.K.; Sreedhar, B.; Raju, K.V.S.N. Influence of Varying Hard Segments on the Properties of Chemically Crosslinked Moisture-Cured Polyurethane-Urea. J. Polym. Sci. B Polym. Phys. 2006, 44, 102–118. [Google Scholar] [CrossRef]
- Javni, I.; Petrovic, Z.S.; Guo, A.; Fuller, R. Thermal Stability of Polyurethanes Based on Vegetable Oils. J. Appl. Polym. Sci. 2000, 77, 1723–1734. [Google Scholar] [CrossRef]
- Levchik, S.V.; Weil, E.D. Thermal Decomposition, Combustion and Fire-Retardancy of Polyurethanes—A Review of the Recent Literature. Polym. Int. 2004, 53, 1585–1610. [Google Scholar] [CrossRef]
- Allan, D.; Daly, J.; Liggat, J.J. Thermal Volatilisation Analysis of TDI-Based Flexible Polyurethane Foam. Polym. Degrad. Stab. 2013, 98, 535–541. [Google Scholar] [CrossRef] [Green Version]
- Lan, Z.; Daga, R.; Whitehouse, R.; McCarthy, S.; Schmidt, D. Structure–Properties Relations in Flexible Polyurethane Foams Containing a Novel Bio-Based Crosslinker. Polymer 2014, 55, 2635–2644. [Google Scholar] [CrossRef]
- Petrović, Z.S.; Zavargo, Z.; Flyn, J.H.; Macknight, W.J. Thermal Degradation of Segmented Polyurethanes. J. Appl. Polym. Sci. 1994, 51, 1087–1095. [Google Scholar] [CrossRef] [Green Version]
- Nadal Gisbert, A.; Crespo Amorós, J.E.; López Martínez, J.; Garcia, A.M. Study of Thermal Degradation Kinetics of Elastomeric Powder (Ground Tire Rubber). Polym. Plast. Technol. Eng. 2007, 47, 36–39. [Google Scholar] [CrossRef]
- Garrido, M.A.; Font, R. Pyrolysis and Combustion Study of Flexible Polyurethane Foam. J. Anal. Appl. Pyrolysis 2015, 113, 202–215. [Google Scholar] [CrossRef]
Component | Unfilled Foams | GTR not Considered | GTR Considered | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Content, wt.% | |||||||||||||||
F3000 | 35.4 | 34.2 | 33.2 | 32.2 | 31.2 | 29.5 | 28.5 | 27.6 | 26.8 | 26.0 | 28.3 | 27.3 | 26.4 | 25.5 | 24.6 |
V700 | 35.4 | 34.2 | 33.2 | 32.2 | 31.2 | 29.5 | 28.5 | 27.6 | 26.8 | 26.0 | 28.3 | 27.3 | 26.4 | 25.5 | 24.6 |
Glycerol | 0.9 | 0.8 | 0.8 | 0.8 | 0.8 | 0.7 | 0.7 | 0.7 | 0.6 | 0.6 | 0.7 | 0.7 | 0.6 | 0.6 | 0.6 |
DBTDL | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.4 |
33LV | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 |
TKA30 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 |
Water | 0.4 | 0.4 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 |
NF 434 | 26.6 | 28.9 | 31.1 | 33.2 | 35.2 | 22.1 | 24.1 | 25.9 | 27.7 | 29.3 | 24.5 | 26.6 | 28.7 | 30.6 | 32.3 |
GTR | - | - | - | - | - | 16.7 | 16.7 | 16.7 | 16.7 | 16.7 | 16.7 | 16.7 | 16.7 | 16.7 | 16.7 |
Isocyanate index | 0.8 | 0.9 | 1.0 | 1.1 | 1.2 | 0.8 | 0.9 | 1.0 | 1.1 | 1.2 | 0.8 | 0.9 | 1.0 | 1.1 | 1.2 |
Component | PU | N-GTR | C-GTR | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Isocyanate index | 0.8 | 0.9 | 1.0 | 1.1 | 1.2 | 0.8 | 0.9 | 1.0 | 1.1 | 1.2 | 0.8 | 0.9 | 1.0 | 1.1 | 1.2 |
Average particle size, µm | 225 ± 85 | 252 ± 73 | 274 ± 75 | 226 ± 73 | 218 ± 65 | 221 ± 77 | 200 ± 71 | 194 ± 61 | 208 ± 56 | 212 ± 72 | 222 ± 76 | 193 ± 72 | 190 ± 66 | 191 ± 57 | 208 ± 59 |
Circularity | 0.31 ± 0.13 | 0.30 ± 0.11 | 0.31 ± 0.13 | 0.31 ± 0.11 | 0.25 ± 0.08 | 0.19 ± 0.12 | 0.28 ± 0.18 | 0.24 ± 0.15 | 0.27 ± 0.17 | 0.26 ± 0.16 | 0.19 ± 0.12 | 0.26 ± 0.16 | 0.26 ± 0.15 | 0.31 ± 0.17 | 0.29 ± 0.18 |
Aspect ratio | 1.30 ± 0.26 | 1.35 ± 0.29 | 1.30 ± 0.24 | 1.27 ± 0.24 | 1.25 ± 0.2 | 1.37 ± 0.23 | 1.37 ± 0.24 | 1.39 ± 0.21 | 1.35 ± 0.25 | 1.30 ± 0.22 | 1.37 ± 0.25 | 1.38 ± 0.25 | 1.35 ± 0.25 | 1.32 ± 0.23 | 1.30 ± 0.23 |
Roundness | 0.80 ± 0.13 | 0.77 ± 0.14 | 0.79 ± 0.13 | 0.81 ± 0.13 | 0.82 ± 0.11 | 0.75 ± 0.11 | 0.75 ± 0.12 | 0.73 ± 0.11 | 0.76 ± 0.12 | 0.79 ± 0.12 | 0.75 ± 0.12 | 0.75 ± 0.13 | 0.77 ± 0.13 | 0.78 ± 0.12 | 0.79 ± 0.12 |
Open cell content, % | 83.1 ± 3.6 | 74.3 ± 3.3 | 59.9 ± 5.2 | 33.3 ± 4.8 | 22.4 ± 2.5 | 82.5 ± 4.1 | 81.7 ± 2.7 | 80.5 ± 1.6 | 76.8 ± 3.7 | 64.2 ± 2.2 | 82.9 ± 3.0 | 73.6 ± 2.9 | 66.6 ± 4.0 | 51.6 ± 1.9 | 37.9 ± 2.0 |
Thermal conductivity coefficient, mW/(m·K) | 66.7 ± 0.8 | 66.8 ± 1.7 | 67.4 ± 1.1 | 70.1 ± 0.3 | 68.9 ± 0.5 | 68.7 ± 0.2 | 68.4 ± 0.7 | 68.5 ± 0.9 | 67.8 ± 0.9 | 67.9 ± 0.8 | 68.9 ± 1.0 | 69.0 ± 0.8 | 68.8 ± 1.6 | 68.0 ± 1.1 | 67.1 ± 0.8 |
Structural Parameter | PU | N-GTR | |||||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | ||
1: Isocyanate index | 1.00 | 1 | 1.00 | ||||||||||||
2: Average cell size | −0.27 | 1.00 | 2 | −0.15 | 1.00 | ||||||||||
3: Circularity | −0.67 | 0.46 | 1.00 | 3 | 0.58 | −0.57 | 1.00 | ||||||||
4: Aspect ratio | −0.75 | 0.59 | 0.53 | 1.00 | 4 | −0.74 | −0.44 | −0.29 | 1.00 | ||||||
5: Roundness | 0.66 | −0.71 | −0.52 | −0.98 | 1.00 | 5 | 0.65 | 0.51 | 0.28 | −0.99 | 1.00 | ||||
6: Open cell content | −0.98 | 0.41 | 0.64 | 0.82 | −0.75 | 1.00 | 6 | −0.87 | −0.21 | −0.33 | 0.94 | −0.89 | 1.00 | ||
7: λ coefficient | 0.82 | −0.46 | −0.27 | −0.75 | 0.71 | −0.89 | 1.00 | 7 | −0.87 | −0.03 | −0.67 | 0.73 | −0.70 | 0.71 | 1.00 |
Structural Parameter | C-GTR | All Samples | |||||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | ||
1: Isocyanate index | 1.00 | 1 | 1.00 | ||||||||||||
2: Average cell size | −0.34 | 1.00 | 2 | −0.17 | 1.00 | ||||||||||
3: Circularity | 0.87 | −0.69 | 1.00 | 3 | 0.33 | 0.24 | 1.00 | ||||||||
4: Aspect ratio | −0.94 | 0.07 | −0.71 | 1.00 | 4 | −0.61 | −0.34 | −0.49 | 1.00 | ||||||
5: Roundness | 0.97 | −0.22 | 0.77 | −0.98 | 1.00 | 5 | 0.53 | 0.35 | 0.53 | −0.98 | 1.00 | ||||
6: Open cell content | −0.99 | 0.23 | −0.83 | 0.96 | −0.96 | 1.00 | 6 | −0.78 | −0.06 | −0.35 | 0.82 | −0.78 | 1.00 | ||
7: λ coefficient | −0.89 | −0.10 | −0.62 | 0.95 | −0.90 | 0.94 | 1.00 | 7 | 0.05 | −0.35 | −0.40 | 0.05 | −0.08 | −0.24 | 1.00 |
Parameter | PU | N-GTR | |||||||||
1 | 2 | 3 | 4 | 5 | 1 | 2 | 3 | 4 | 5 | ||
1: Isocyanate index | 1.00 | 1 | 1.00 | ||||||||
2: E’ in glassy state | 0.52 | 1.00 | 2 | 0.05 | 1.00 | ||||||
3: E’ in rubbery state | 0.89 | 0.27 | 1.00 | 3 | 0.91 | 0.16 | 1.00 | ||||
4: C factor | - | - | - | - | 4 | 0.94 | 0.15 | 0.75 | 1.00 | ||
5: Tg | 0.99 | 0.55 | 0.91 | - | 1.00 | 5 | 0.92 | −0.23 | 0.90 | 0.74 | 1.00 |
Parameter | C-GTR | All Samples | |||||||||
1 | 2 | 3 | 4 | 5 | 1 | 2 | 3 | 4 | 5 | ||
1: Isocyanate index | 1.00 | 1 | 1.00 | ||||||||
2: E’ in glassy state | 0.65 | 1.00 | 2 | 0.29 | 1.00 | ||||||
3: E’ in rubbery state | 0.92 | 0.52 | 1.00 | 3 | 0.77 | 0.27 | 1.00 | ||||
4: C factor | −0.36 | −0.82 | −0.10 | 1.00 | 4 | - | - | - | - | ||
5: Tg | 0.97 | 0.55 | 0.98 | −0.20 | 1.00 | 5 | 0.91 | 0.14 | 0.91 | - | 1.00 |
Isocyanate Index | T−2%, °C | T−5%, °C | T−10%, °C | T−50%, °C | Tmax1, °C | Tmax2, °C | Tmax3, °C | Tmax4, °C | Tmax5, °C | Residue, wt.% | |
---|---|---|---|---|---|---|---|---|---|---|---|
PU | 0.8 | 223.5 | 271.4 | 309.2 | 373.8 | 186.9 | 239.1 | 344.5 | 389.7 | 468.4 | 12.51 |
0.9 | 219.9 | 267.9 | 308.8 | 377.0 | 185.7 | 234.7 | 339.6 | 394.5 | 462.6 | 13.07 | |
1.0 | 221.6 | 266.6 | 305.5 | 374.9 | 187.8 | 236.1 | 343.1 | 395.5 | 461.7 | 12.62 | |
1.1 | 214.4 | 262.8 | 309.2 | 378.3 | 183.6 | 223.1 | 348.9 | 392.8 | 463.6 | 12.11 | |
1.2 | 214.0 | 250.0 | 308.1 | 380.3 | 182.2 | 229.5 | 345.4 | 394.0 | 462.8 | 14.12 | |
N-GTR | 0.8 | 214.7 | 270.1 | 306.3 | 381.4 | 195.7 | 245.1 | 345.5 | 394.1 | 460.2 | 12.52 |
0.9 | 215.9 | 272.6 | 309.0 | 383.0 | 193.2 | 240.0 | 350.2 | 395.3 | 457.6 | 13.28 | |
1.0 | 214.7 | 269.4 | 308.6 | 383.4 | 191.4 | 239.7 | 350.2 | 395.4 | 457.6 | 13.94 | |
1.1 | 214.8 | 270.2 | 309.5 | 383.2 | 183.7 | 229.3 | 349.6 | 394.8 | 457.2 | 14.55 | |
1.2 | 211.8 | 263.4 | 306.7 | 385.7 | 185.0 | 239.6 | 344.5 | 396.0 | 452.0 | 15.43 | |
C-GTR | 0.8 | 220.9 | 276.7 | 309.2 | 380.5 | 199.7 | 238.5 | 339.8 | 393.2 | 458.1 | 12.95 |
0.9 | 215.2 | 269.0 | 308.7 | 380.5 | 184.7 | 236.2 | 341.3 | 394.5 | 455.5 | 14.07 | |
1.0 | 214.6 | 266.5 | 305.9 | 382.5 | 203.2 | 238.7 | 346.0 | 394.7 | 455.5 | 13.72 | |
1.1 | 216.0 | 261.3 | 307.2 | 385.1 | 188.7 | 241.2 | 345.5 | 395.8 | 454.7 | 15.30 | |
1.2 | 210.8 | 255.5 | 302.8 | 382.7 | 185.1 | 244.5 | 346.4 | 395.6 | 456.2 | 13.76 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olszewski, A.; Kosmela, P.; Piasecki, A.; Barczewski, M.; Hejna, A. The Impact of Isocyanate Index and Filler Functionalities on the Performance of Flexible Foamed Polyurethane/Ground Tire Rubber Composites. Polymers 2022, 14, 5558. https://doi.org/10.3390/polym14245558
Olszewski A, Kosmela P, Piasecki A, Barczewski M, Hejna A. The Impact of Isocyanate Index and Filler Functionalities on the Performance of Flexible Foamed Polyurethane/Ground Tire Rubber Composites. Polymers. 2022; 14(24):5558. https://doi.org/10.3390/polym14245558
Chicago/Turabian StyleOlszewski, Adam, Paulina Kosmela, Adam Piasecki, Mateusz Barczewski, and Aleksander Hejna. 2022. "The Impact of Isocyanate Index and Filler Functionalities on the Performance of Flexible Foamed Polyurethane/Ground Tire Rubber Composites" Polymers 14, no. 24: 5558. https://doi.org/10.3390/polym14245558
APA StyleOlszewski, A., Kosmela, P., Piasecki, A., Barczewski, M., & Hejna, A. (2022). The Impact of Isocyanate Index and Filler Functionalities on the Performance of Flexible Foamed Polyurethane/Ground Tire Rubber Composites. Polymers, 14(24), 5558. https://doi.org/10.3390/polym14245558