Influence of Alternating Multi-Layered Design on Damping Characteristics of Butyl Rubber Composites and a New Idea for Achieving Wide Temperature Range and High Damping Performance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Instruments and Characterization
2.3. Sample Preparation
2.3.1. Preparation of Modified IIR
2.3.2. Preparation of Alternating Multi-Layered Structure
3. Results and Discussion
3.1. Dynamic Mechanical Properties of IIR-0/IIR-1/IIR-2/IIR-3
3.2. Effect of Alternate Layered Design on Free Damping
3.3. Effect of Alternate Layered Design on Micro-Constrained Damping
3.4. Different Methods for Broadening the Damping Temperature Range and Improving the Damping Loss Factor
3.4.1. Alternating Layered Design of Low/High-Temperature Rubber Free Damping
3.4.2. Alternating Layered Design of Wide Temperature Range Rubber/Plastics with Micro-Constrained Damping
4. Conclusions
- (1)
- Low-temperature rubber (IIR-1, −50.6 °C~23.5 °C, tanδ > 0.3), medium-temperature rubber (IIR-2, −25.1 °C~45.3 °C, tanδ > 0.3) and high-temperature rubber (IIR-3, 20.1 °C~92 °C, tanδ > 0.3) with a relatively same temperature range (72 ± 2 °C) are prepared by adjusting the content of P125 petroleum resin. A wide-temperature-range rubber (IIR-0, −33 °C~54.8 °C, tanδ > 0.3) is prepared by damping modification of butyl rubber with expanded graphite.
- (2)
- For the alternating multi-layered micro-constrained damping, the loss factor of the 8-layered composites is 2.21 times higher than that of the 2-layered composites. While for the alternating multi-layered free damping, the loss factor of the 8-layered composites is 1.6 times higher than that of the 2-layered composites. Alternating multi-layered design can improve the damping loss factor of composites.
- (3)
- The alternating multi-layered free damping has a loss factor of 0.845 and a temperature range of 93.2 °C, while the alternating multi-layered constrained damping has a loss factor of 0.488 and a temperature range of 89.4 °C. It is effective and feasible to obtain high damping and wide temperature range by first preparing damping materials with a wide temperature range, and then improving the damping peak based on micro-constrained alternating layered design.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Ammineni, S.P.; Nagaraju, C.; Raju, D.L. Modal performance degradation of naturally aged NBR. Polym. Test. 2022, 115, 107710. [Google Scholar] [CrossRef]
- Cui, H.W.; Jing, Q.; Li, D.W.; Zhuang, T.T.; Gao, Y.X.; Ran, X.H. Study on the high-temperature damping properties of silicone rubber modified by boron-terminated polysiloxane. J. Appl. Polym. Sci. 2023, 140, e53262. [Google Scholar] [CrossRef]
- Chen, B.W.; Dai, J.W.; Song, T.S.; Guan, Q.S. Research and Development of High-Performance High-Damping Rubber Materials for High-Damping Rubber Isolation Bearings: A Review. Polymers 2022, 14, 2427. [Google Scholar] [CrossRef] [PubMed]
- Suresh, K.I.; Sitaramam, B.S.; Raju, K. Effect of copolymer composition on the dynamic mechanical and thermal behaviour of butyl acrylate-acrylonitrile copolymers. Macromol. Mater. Eng. 2003, 288, 980–988. [Google Scholar] [CrossRef]
- Patri, M.; Reddy, C.V.; Narasimhan, C.; Samui, A.B. Sequential interpenetrating polymer network based on styrene butadiene rubber and polyalkyl methacrylates. J. Appl. Polym. Sci. 2007, 103, 1120–1126. [Google Scholar] [CrossRef]
- Lei, T.; Zhang, Y.W.; Kuang, D.L.; Yang, Y.R. Preparation and Properties of Rubber Blends for High-Damping-Isolation Bearings. Polymers 2019, 11, 1374. [Google Scholar] [CrossRef] [Green Version]
- Liang, J.Y.; Chang, S.Q.; Feng, N. Effect of C5 petroleum resin content on damping behavior, morphology, and mechanical properties of BIIR/BR vulcanizates. J. Appl. Polym. Sci. 2013, 130, 510–515. [Google Scholar] [CrossRef]
- Wu, C.Y.; Wu, G.Z.; Wu, C.F. Dynamic mechanical properties in blends of poly(styrene-b-isoprene-b-styrene) with aromatic hydrocarbon resin. J. Appl. Polym. Sci. 2006, 102, 4157–4164. [Google Scholar] [CrossRef]
- Wan, S.H.; Zhou, S.S.; Huang, X.; Chen, S.B.; Cai, S.W.; He, X.R.; Zhang, R. Effect of Aromatic Petroleum Resin on Damping Properties of Polybutyl Methacrylate. Polymers 2020, 12, 543. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.-Y.; Cao, Y.-J.; Zou, H.; Li, J.; Zhang, L.-Q. Structure and dynamic properties of nitrile-butadiene rubber/hindered phenol composites. J. Appl. Polym. Sci. 2012, 123, 3696–3702. [Google Scholar] [CrossRef]
- Wang, X.; Chen, X.; Song, M.; Wang, Q.; Zheng, W.; Song, H.; Fan, Z.; Myat Thu, A. Effects of Hindered Phenol Organic Molecules on Enhancing Thermo-Oxidative Resistance and Damping Capacity for Nitrile Butadiene Rubber: Insights from Experiments and Molecular Simulation. Ind. Eng. Chem. Res. 2020, 59, 11494–11504. [Google Scholar] [CrossRef]
- Kongsinlark, A.; Rempel, G.L.; Prasassarakich, P. Synthesis of monodispersed polyisoprene-silica nanoparticles via differential microemulsion polymerization and mechanical properties of polyisoprene nanocomposite. Chem. Eng. J. 2012, 193, 215–226. [Google Scholar] [CrossRef]
- Li, C.; Wu, G.; Xiao, F.; Wu, C. Damping behavior of sandwich beam laminated with CHR/petroleum resins blends by DMA measurement. J. Appl. Polym. Sci. 2007, 106, 2472–2478. [Google Scholar] [CrossRef]
- Sheng, Z.Y.; Wang, J.C.; Yang, S.Y.; Song, S.Q. Novel polysiloxane microspheres: Preparation and application in chlorinated butyl rubber (CIIR) damping composites. Adv. Powder Technol. 2019, 30, 632–643. [Google Scholar]
- Qu, L.; Huang, G.; Wu, J.; Tang, Z. Damping mechanism of chlorobutyl rubber and phenolic resin vulcanized blends. J. Mater. Sci. 2007, 42, 7256–7262. [Google Scholar] [CrossRef]
- Hu, X.; Zhang, R.N.; Wemyss, A.M.; Du, A.H.; Bao, X.J.; Geng, X.Y.; Wan, C.Y. Damping and Electromechanical Behavior of Ionic-Modified Brominated Poly(isobutylene-co-isoprene) Rubber Containing Petroleum Resin C5. Ind. Eng. Chem. Res. 2022, 61, 3063–3074. [Google Scholar] [CrossRef]
- Li, C.; Xu, S.-A.; Xiao, F.-Y.; Wu, C.-F. Dynamic mechanical properties of chlorinated butyl rubber blends. Eur. Polym. J. 2006, 42, 2507–2514. [Google Scholar] [CrossRef]
- Shen, M.L.; Xia, L.C.; Feng, Q.; Zhang, J.; Li, J.; Guo, S.Y. Damping characteristics of a multi-layered constrained beam using viscoelastic butyl rubber layer with wide temperature range. Mater. Express 2021, 11, 372–380. [Google Scholar]
- Li, C.L.; Ji, X.X.; Lyu, Y.; Shi, X.Y. A strengthening approach for damping property and shape memory property of acrylic rubber/polylactide blends. J. Elastomers Plast. 2019, 51, 626–643. [Google Scholar] [CrossRef]
- Yang, H.L.; Zhang, W.; Moffitt, R.D.; Ward, T.C.; Dillard, D.A. Multi-layer in-situ for evaluation of dynamic mechanical properties of pressure sensitive adhesives. Int. J. Adhes. Adhes. 2007, 27, 536–546. [Google Scholar] [CrossRef]
- Zhang, F.S.; Guo, M.L.; Xu, K.M.; He, G.S.; Wu, H.; Guo, S.Y. Multi-layered damping composites with damping layer/constraining layer prepared by a novel method. Compos. Sci. Technol. 2014, 101, 167–172. [Google Scholar] [CrossRef]
- Zhang, F.S.; He, G.S.; Xu, K.M.; Wu, H.; Guo, S.Y. The Damping and Flame-Retardant Properties of Poly(vinyl chloride)/Chlorinated Butyl Rubber Multi-layered Composites. J. Appl. Polym. Sci. 2015, 132, 41259. [Google Scholar]
- Wang, H.P.; Keum, J.K.; Hiltner, A.; Baer, E.; Freeman, B.; Rozanski, A.; Galeski, A. Confined Crystallization of Polyethylene Oxide in Nanolayer Assemblies. Science 2009, 323, 757–760. [Google Scholar] [CrossRef] [PubMed]
- Lai, C.; Ayyer, R.; Hiltner, A.; Baer, E. Effect of confinement on the relaxation behavior of poly(ethylene oxide). Polymer 2010, 51, 1820–1829. [Google Scholar] [CrossRef]
- Ding, X.B.; Liu, T.; Zhang, Y.H.; Han, J. Analysis and prediction of damping properties of multi-layered organic hybrid materials consisting of polarized polymers and small molecules. In Advanced Materials Research; Trans Tech Publications, Ltd.: Zurich, Switzerland, 2012; Volume 535–537, pp. 1197–1200. [Google Scholar]
- Xia, L.C.; Li, C.H.; Zhang, X.M.; Wang, J.F.; Wu, H.; Guo, S.Y. Effect of chain length of polyisobutylene oligomers on the molecular motion modes of butyl rubber: Damping property. Polymer 2018, 141, 70–78. [Google Scholar] [CrossRef]
- Yun, Y.M.; Lee, J.H.; Choi, M.C.; Kim, J.W.; Kang, H.M.; Bae, J.W. A Study on the Effect of Petroleum Resin on Vibration Damping Characteristics of Natural Rubber Composites. Elastomers Compos. 2021, 56, 201–208. [Google Scholar]
- Fang, L.H.; Shen, Z.; Li, J.F.; Huang, A.H.; Lin, M.S.; Su, Z.Z. Damping properties of expanded graphite filled fluorinated polyacrylate composites. Polym. Bull. 2022, 79, 4745–4759. [Google Scholar] [CrossRef]
- Qin, R.; Huang, R.L.; Lu, X. Use of gradient laminating to prepare NR/ENR composites with excellent damping performance. Mater. Des. 2018, 149, 43–50. [Google Scholar] [CrossRef]
- Xu, K.M.; Hu, Q.M.; Wang, J.H.; Zhou, H.D.; Chen, J.L. Towards a Stable and High-Performance Hindered Phenol/Polymer-Based Damping Material Through Structure Optimization and Damping Mechanism Revelation. Polymers 2019, 11, 884. [Google Scholar] [CrossRef]
Sample | IIR | PIB-2400 | CaCO3 | P125 | EG |
---|---|---|---|---|---|
IIR-0 | 100 | 100 | 100 | 70 | 80 |
IIR-1 | 100 | 100 | 100 | / | / |
IIR-2 | 100 | 100 | 100 | 80 | / |
IIR-3 | 100 | 100 | 100 | 240 | / |
Sample | Layered Structure |
---|---|
IIR-2-2L | IIR-2/IIR-2 |
IIR-2-4L | IIR-2/IIR-2/IIR-2/IIR-2 |
IIR-2-8L | IIR-2/IIR-2/IIR-2/IIR-2/IIR-2/IIR-2/IIR-2/IIR-2 |
Sample | Layered Arrangement |
---|---|
IIR-2/PMMA-2L | IIR-2/PMMA |
IIR-2/PMMA-4L | IIR-2/PMMA/IIR-2/PMMA |
IIR-2/PMMA-8L | IIR-2/PMMA/IIR-2/PMMA/IIR-2/PMMA/IIR-2/PMMA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, C.; Feng, Q.; Zhang, J.; Li, J.; Guo, S. Influence of Alternating Multi-Layered Design on Damping Characteristics of Butyl Rubber Composites and a New Idea for Achieving Wide Temperature Range and High Damping Performance. Polymers 2022, 14, 5484. https://doi.org/10.3390/polym14245484
Qin C, Feng Q, Zhang J, Li J, Guo S. Influence of Alternating Multi-Layered Design on Damping Characteristics of Butyl Rubber Composites and a New Idea for Achieving Wide Temperature Range and High Damping Performance. Polymers. 2022; 14(24):5484. https://doi.org/10.3390/polym14245484
Chicago/Turabian StyleQin, Chao, Qiang Feng, Jie Zhang, Jiang Li, and Shaoyun Guo. 2022. "Influence of Alternating Multi-Layered Design on Damping Characteristics of Butyl Rubber Composites and a New Idea for Achieving Wide Temperature Range and High Damping Performance" Polymers 14, no. 24: 5484. https://doi.org/10.3390/polym14245484
APA StyleQin, C., Feng, Q., Zhang, J., Li, J., & Guo, S. (2022). Influence of Alternating Multi-Layered Design on Damping Characteristics of Butyl Rubber Composites and a New Idea for Achieving Wide Temperature Range and High Damping Performance. Polymers, 14(24), 5484. https://doi.org/10.3390/polym14245484