Construction of Direct Z−Scheme SnS2 Quantum Dots/Conjugated Polyimide with Superior Photocarrier Separation for Enhanced Photocatalytic Performances
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials and Preparation of the Photocatalyst
2.2. Characterization
2.3. Electrochemical Measurements
2.4. Photocatalytic Performance Tests
3. Results and Discussion
3.1. Structure and Morphology Analysis
3.2. Optical and Electronic Properties
3.3. Photocatalytic Performance and Mechanism
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Li, X.; Wageh, S.; Al-Ghamdi, A.A.; Yu, J. CdS/Graphene Nanocomposite Photocatalysts. Adv. Energy Mater. 2015, 5, 1500010. [Google Scholar] [CrossRef]
- Murugan, K.; Rao, T.N.; Gandhi, A.S.; Murty, B.S. Effect of Aggregation of Methylene Blue Dye on TiO2 Surface in Self-Cleaning Studies. Catal. Commun. 2010, 11, 518–521. [Google Scholar] [CrossRef]
- Jiang, T.; Xie, T.; Chen, L.; Fu, Z.; Wang, D. Carrier Concentration-Dependent Electron Transfer in Cu2O/ZnO Nanorod Arrays and Their Photocatalytic Performance. Nanoscale 2013, 5, 2938–2944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdullin, K.A.; Kalkozova, Z.K.; Markhabayeva, A.A.; Dupre, R.; Moniruddin, M.; Nuraje, N. Core-Shell (W@WO3) Nanostructure to Improve Electrochemical Performance. ACS Appl. Energy Mater. 2019, 2, 797–803. [Google Scholar] [CrossRef]
- Fu, J.; Yu, J.; Jiang, C.; Cheng, B. G-C3N4-Based Heterostructured Photocatalysts. Adv. Energy Mater. 2018, 8, 1701503. [Google Scholar] [CrossRef]
- Wang, M.; Sun, L.; Lin, Z.; Cai, J.; Xie, K.; Lin, C. P–n Heterojunction Photoelectrodes Composed of Cu2O-Loaded TiO2 Nanotube Arrays with Enhanced Photoelectrochemical and Photoelectrocatalytic Activities. Energy Environ. Sci. 2013, 6, 1211–1220. [Google Scholar] [CrossRef]
- Low, J.; Yu, J.; Jaroniec, M.; Wageh, S.; Al-Ghamdi, A.A. Heterojunction Photocatalysts. Adv. Mater. 2017, 29, 1601694. [Google Scholar] [CrossRef]
- Kudo, A.; Miseki, Y. Heterogeneous Photocatalyst Materials for Water Splitting. Chem. Soc. Rev. 2009, 38, 253–278. [Google Scholar] [CrossRef]
- Tada, H.; Mitsui, T.; Kiyonaga, T.; Akita, T.; Tanaka, K. All-Solid-State Z-Scheme in CdS-Au-TiO2 Three-Component Nanojunction System. NatMa 2006, 5, 782–786. [Google Scholar] [CrossRef]
- Zhang, L.J.; Li, S.; Liu, B.K.; Wang, D.J.; Xie, T.F. Highly Efficient CdS/WO3 Photocatalysts: Z-Scheme Photocatalytic Mechanism for Their Enhanced Photocatalytic H2 Evolution under Visible Light. ACS Catal. 2014, 4, 3724–3729. [Google Scholar] [CrossRef]
- Xu, Q.; Zhang, L.; Yu, J.; Wageh, S.; Al-Ghamdi, A.A.; Jaroniec, M. Direct Z-Scheme Photocatalysts: Principles, Synthesis, and Applications. Mater. Today 2018, 21, 1042–1063. [Google Scholar] [CrossRef]
- Chu, S.; Wang, Y.; Guo, Y.; Zhou, P.; Yu, H.; Luo, L.; Kong, F.; Zou, Z. Facile Green Synthesis of Crystalline Polyimide Photocatalyst for Hydrogen Generation from Water. J. Mater. Chem. 2012, 22, 15519–15521. [Google Scholar] [CrossRef]
- Zhou, J.; Lei, Y.; Ma, C.; Lv, W.; Li, N.; Wang, Y.; Xu, H.; Zou, Z. A (001) Dominated Conjugated Polymer with High-Performance of Hydrogen Evolution under Solar Light Irradiation. Chem. Commun. 2017, 53, 10536–10539. [Google Scholar] [CrossRef]
- Wan, S.; Gándara, F.; Asano, A.; Furukawa, H.; Saeki, A.; Dey, S.K.; Liao, L.; Ambrogio, M.W.; Botros, Y.Y.; Duan, X.; et al. Covalent Organic Frameworks with High Charge Carrier Mobility. Chem. Mater. 2011, 23, 4094–4097. [Google Scholar] [CrossRef]
- Yang, J.; Chu, S.; Guo, Y.; Luo, L.; Kong, F.; Wang, Y.; Zou, Z. Hyperbranched Polymeric N-Oxide: A Novel Kind of Metal-Free Photocatalyst. Chem. Commun. 2012, 48, 3533–3535. [Google Scholar] [CrossRef]
- Wang, C.; Guo, Y.; Yang, Y.; Chu, S.; Zhou, C.; Wang, Y.; Zou, Z. Sulfur-Doped Polyimide Photocatalyst with Enhanced Photocatalytic Activity under Visible Light Irradiation. ACS Appl. Mater. Interfaces 2014, 6, 4321–4328. [Google Scholar] [CrossRef]
- Chu, S.; Wang, Y.; Wang, C.; Yang, J.; Zou, Z. Bandgap Modulation of Polyimide Photocatalyst for Optimum H2 Production Activity under Visible Light Irradiation. Int. J. Hydrogen Energy 2013, 38, 10768–10772. [Google Scholar] [CrossRef]
- Ma, C.; Zhu, H.; Zhou, J.; Cui, Z.; Liu, T.; Wang, Y.; Wang, Y.; Zou, Z. Confinement Effect of Monolayer MoS2 Quantum Dots on Conjugated Polyimide and Promotion of Solar-Driven Photocatalytic Hydrogen Generation. Dalton Trans. 2017, 46, 3877–3886. [Google Scholar] [CrossRef]
- Lin, L.; Ye, P.; Cao, C.; Jin, Q.; Xu, G.S.; Shen, Y.H.; Yuan, Y.P. Rapid Microwave-Assisted Green Production of a Crystalline Polyimide for Enhanced Visible-Light-Induced Photocatalytic Hydrogen Production. J. Mater. Chem. A Mater. 2015, 3, 10205–10208. [Google Scholar] [CrossRef]
- Moniruddin, M.; Oppong, E.; Stewart, D.; McCleese, C.; Roy, A.; Warzywoda, J.; Nuraje, N. Designing CdS-Based Ternary Heterostructures Consisting of Co-Metal and CoOx Cocatalysts for Photocatalytic H2 Evolution under Visible Light. Inorg. Chem. 2019, 58, 12325–12333. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Zhou, J.; Zhu, H.; Yang, W.; Liu, J.; Wang, Y.; Zou, Z. Constructing a High-Efficiency MoO3/Polyimide Hybrid Photocatalyst Based on Strong Interfacial Interaction. ACS Appl. Mater. Interfaces 2015, 7, 14636–14637. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Zhou, J.; Cui, Z.; Wang, Y.; Zou, Z. In Situ Growth MoO3 Nanoflake on Conjugated Polymer: An Advanced Photocatalyst for Hydrogen Evolution from Water Solution under Solar Light. Sol. Energy Mater. Sol. Cells 2016, 150, 102–111. [Google Scholar] [CrossRef]
- Dasgupta, J.; Sikder, J.; Chakraborty, S.; Adhikari, U.; Reddy, B.V.P.; Mondal, A.; Curcio, S. Microwave-Assisted Modified Polyimide Synthesis: A Facile Route to the Enhancement of Visible-Light-Induced Photocatalytic Performance for Dye Degradation. ACS Sustain. Chem. Eng. 2017, 5, 6817–6826. [Google Scholar] [CrossRef]
- Li, J.Y.; Jiang, X.; Lin, L.; Zhou, J.J.; Xu, G.S.; Yuan, Y.P. Improving the Photocatalytic Performance of Polyimide by Constructing an Inorganic-Organic Hybrid ZnO-Polyimide Core–Shell Structure. J. Mol. Catal. A Chem. 2015, 406, 46–50. [Google Scholar] [CrossRef]
- Afroz, K.; Moniruddin, M.; Bakranov, N.; Kudaibergenov, S.; Nuraje, N. A Heterojunction Strategy to Improve the Visible Light Sensitive Water Splitting Performance of Photocatalytic Materials. J. Mater. Chem. A Mater. 2018, 6, 21696–21718. [Google Scholar] [CrossRef]
- Hu, Y.; Hao, X.; Cui, Z.; Zhou, J.; Chu, S.; Wang, Y.; Zou, Z. Enhanced Photocarrier Separation in Conjugated Polymer Engineered CdS for Direct Z-Scheme Photocatalytic Hydrogen Evolution. Appl. Catal. B 2020, 260, 118131. [Google Scholar] [CrossRef]
- Zhang, Y.C.; Du, Z.N.; Li, K.W.; Zhang, M.; Dionysiou, D.D. High-Performance Visible-Light-Driven SnS2/SnO2 Nanocomposite Photocatalyst Prepared via in Situ Hydrothermal Oxidation of SnS₂ Nanoparticles. ACS Appl. Mater. Interfaces 2011, 3, 1528–1537. [Google Scholar] [CrossRef]
- An, X.; Yu, J.C.; Tang, J. Biomolecule-Assisted Fabrication of Copper Doped SnS2 Nanosheet–Reduced Graphene Oxide Junctions with Enhanced Visible-Light Photocatalytic Activity. J. Mater. Chem. A Mater. 2013, 2, 1000–1005. [Google Scholar] [CrossRef]
- Burton, L.A.; Whittles, T.J.; Hesp, D.; Linhart, W.M.; Skelton, J.M.; Hou, B.; Webster, R.F.; O’Dowd, G.; Reece, C.; Cherns, D.; et al. Electronic and Optical Properties of Single Crystal SnS2: An Earth-Abundant Disulfide Photocatalyst. J. Mater. Chem. A Mater. 2016, 4, 1312–1318. [Google Scholar] [CrossRef]
- Di, T.; Zhu, B.; Cheng, B.; Yu, J.; Xu, J. A Direct Z-Scheme g-C3N4/SnS2 Photocatalyst with Superior Visible-Light CO2 Reduction Performance. J. Catal. 2017, 352, 532–541. [Google Scholar] [CrossRef]
- Zhao, W.; Li, Y.; Zhao, P.; Zhang, L.; Dai, B.; Huang, H.; Zhou, J.; Zhu, Y.; Ma, K.; Leung, D.Y.C. Insights into the Photocatalysis Mechanism of the Novel 2D/3D Z-Scheme g-C3N4/SnS2 Heterojunction Photocatalysts with Excellent Photocatalytic Performances. J. Hazard. Mater. 2021, 402, 123711. [Google Scholar] [CrossRef]
- Qiang, T.; Chen, L.; Xia, Y.; Qin, X. Dual Modified MoS2/SnS2 Photocatalyst with Z-Scheme Heterojunction and Vacancies Defects to Achieve a Superior Performance in Cr (VI) Reduction and Dyes Degradation. J. Clean. Prod. 2021, 291, 125213. [Google Scholar] [CrossRef]
- Cai, M.; Tong, X.; Zhao, H.; Li, X.; You, Y.; Wang, R.; Xia, L.; Zhou, N.; Wang, L.; Wang, Z.M. Ligand-Engineered Quantum Dots Decorated Heterojunction Photoelectrodes for Self-Biased Solar Water Splitting. Small 2022, 18, 2204495. [Google Scholar] [CrossRef]
- Yuan, Y.J.; Chen, D.Q.; Shi, X.F.; Tu, J.R.; Hu, B.; Yang, L.X.; Yu, Z.T.; Zou, Z.G. Facile Fabrication of “Green” SnS2 Quantum Dots/Reduced Graphene Oxide Composites with Enhanced Photocatalytic Performance. Chem. Eng. J. 2017, 313, 1438–1446. [Google Scholar] [CrossRef]
- Meena, B.; Subramanyam, P.; Suryakala, D.; Biju, V.; Subrahmanyam, C. Efficient Solar Water Splitting Using a CdS Quantum Dot Decorated TiO2/Ag2Se Photoanode. Int. J. Hydrogen Energy 2021, 46, 34079–34088. [Google Scholar] [CrossRef]
- Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J.M.; Domen, K.; Antonietti, M. A Metal-Free Polymeric Photocatalyst for Hydrogen Production from Water under Visible Light. Nat. Mater. 2009, 8, 76–80. [Google Scholar] [CrossRef]
- Song, Y.; Gu, J.; Xia, K.; Yi, J.; Chen, H.; She, X.; Chen, Z.; Ding, C.; Li, H.; Xu, H. Construction of 2D SnS2/g-C3N4 Z-Scheme Composite with Superior Visible-Light Photocatalytic Performance. Appl. Surf. Sci. 2019, 467–468, 56–64. [Google Scholar] [CrossRef]
- Shown, I.; Samireddi, S.; Chang, Y.C.; Putikam, R.; Chang, P.H.; Sabbah, A.; Fu, F.Y.; Chen, W.F.; Wu, C.I.; Yu, T.Y.; et al. Carbon-Doped SnS2 Nanostructure as a High-Efficiency Solar Fuel Catalyst under Visible Light. Nat. Commun. 2018, 9, 169. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Chen, M.; Jiang, D.; Xie, J. A Facile Strategy for SnS2/g-C3N4 Heterojunction Composite and the Mechanism in Photocatalytic Degradation of MO. J. Mol. Catal. A Chem. 2016, 425, 174–182. [Google Scholar] [CrossRef]
- Huang, Y.; Jiao, W.; Chu, Z.; Nie, X.; Wang, R.; He, X. SnS2 Quantum Dot-Based Optoelectronic Flexible Sensors for Ultrasensitive Detection of NO2 Down to 1 ppb. ACS Appl. Mater. Interfaces 2020, 12, 25178–25188. [Google Scholar] [CrossRef] [PubMed]
- Deka, K.; Kalita, M.P.C. Evidence of Reaction Rate Influencing Cubic and Hexagonal Phase Formation Process in CdS Nanocrystals. Chem. Phys. Lett. 2016, 652, 11–15. [Google Scholar] [CrossRef]
- Yu, J.; Jin, J.; Cheng, B.; Jaroniec, M. A Noble Metal-Free Reduced Graphene Oxide–CdS Nanorod Composite for the Enhanced Visible-Light Photocatalytic Reduction of CO2 to Solar Fuel. J. Mater. Chem. A Mater. 2014, 2, 3407–3416. [Google Scholar] [CrossRef]
- Hao, X.; Zhou, J.; Cui, Z.; Wang, Y.; Wang, Y.; Zou, Z. Zn-Vacancy Mediated Electron-Hole Separation in ZnS/g-C3N4 Heterojunction for Efficient Visible-Light Photocatalytic Hydrogen Production. Appl. Catal. B 2018, 229, 41–51. [Google Scholar] [CrossRef]
- Yan, Y.; Xia, B.; Ge, X.; Liu, Z.; Wang, J.Y.; Wang, X. Ultrathin MoS2 Nanoplates with Rich Active Sites as Highly Efficient Catalyst for Hydrogen Evolution. ACS Appl. Mater. Interfaces 2013, 5, 12794–12798. [Google Scholar] [CrossRef]
- Zhang, P.; Shao, C.; Zhang, Z.; Zhang, M.; Mu, J.; Guo, Z.; Liu, Y. In Situ Assembly of Well-Dispersed Ag Nanoparticles (AgNPs) on Electrospun Carbon Nanofibers (CNFs) for Catalytic Reduction of 4-Nitrophenol. Nanoscale 2011, 3, 3357–3363. [Google Scholar] [CrossRef]
- Sun, M.; Hu, J.; Zhai, C.; Zhu, M.; Pan, J. CuI as Hole-Transport Channel for Enhancing Photoelectrocatalytic Activity by Constructing CuI/BiOI Heterojunction. ACS Appl. Mater. Interfaces 2017, 9, 13223–13230. [Google Scholar] [CrossRef]
- Li, C.; Du, Y.; Wang, D.; Yin, S.; Tu, W.; Chen, Z.; Kraft, M.; Chen, G.; Xu, R. Unique P—Co—N Surface Bonding States Constructed on g-C3N4 Nanosheets for Drastically Enhanced Photocatalytic Activity of H2 Evolution. Adv. Funct. Mater. 2017, 27, 1604328. [Google Scholar] [CrossRef]
- Sun, Y.; Cheng, H.; Gao, S.; Sun, Z.; Liu, Q.; Leu, Q.; Lei, F.; Yao, T.; He, J.; Wei, S.; et al. Freestanding Tin Disulfide Single-Layers Realizing Efficient Visible-Light Water Splitting. Angew. Chem. Int. Ed. Engl. 2012, 51, 8727–8731. [Google Scholar] [CrossRef]
- Jia, X.; Tahir, M.; Pan, L.; Huang, Z.F.; Zhang, X.; Wang, L.; Zou, J.J. Direct Z-Scheme Composite of CdS and Oxygen-Defected CdWO4: An Efficient Visible-Light-Driven Photocatalyst for Hydrogen Evolution. Appl. Catal. B 2016, 198, 154–161. [Google Scholar] [CrossRef]
- Niu, F.; Chen, D.; Qin, L.; Gao, T.; Zhang, N.; Wang, S.; Chen, Z.; Wang, J.; Sun, X.; Huang, Y. Synthesis of Pt/BiFeO3 Heterostructured Photocatalysts for Highly Efficient Visible-Light Photocatalytic Performances. Sol. Energy Mater. Sol. Cells 2015, 143, 386–396. [Google Scholar] [CrossRef]
- Xie, S.; Shen, Z.; Deng, J.; Guo, P.; Zhang, Q.; Zhang, H.; Ma, C.; Jiang, Z.; Cheng, J.; Deng, D.; et al. Visible Light-Driven C−H Activation and C–C Coupling of Methanol into Ethylene Glycol. Nat. Commun. 2018, 9, 1181. [Google Scholar] [CrossRef] [Green Version]
- Xiang, Q.; Yu, J.; Jaroniec, M. Preparation and Enhanced Visible-Light Photocatalytic H2-Production Activity of Graphene/C3N4 Composites. J. Phys. Chem. C 2011, 115, 7355–7363. [Google Scholar] [CrossRef]
- Ge, L.; Han, C. Synthesis of MWNTs/g-C3N4 Composite Photocatalysts with Efficient Visible Light Photocatalytic Hydrogen Evolution Activity. Appl. Catal. B 2012, 117–118, 268–274. [Google Scholar] [CrossRef]
- She, X.; Wu, J.; Xu, H.; Zhong, J.; Wang, Y.; Song, Y.; Nie, K.; Liu, Y.; Yang, Y.; Rodrigues, M.T.F.; et al. High Efficiency Photocatalytic Water Splitting Using 2D A-Fe2O3/g-C3N4 Z-Scheme Catalysts. Adv. Energy Mater. 2017, 7, 1700025. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, Y.; Lin, M.; Long, J.; Zhang, Z.; Lin, H.; Wu, J.C.S.; Wang, X. Monolayered Bi2WO6 Nanosheets Mimicking Heterojunction Interface with Open Surfaces for Photocatalysis. Nat. Commun. 2015, 6, 8340. [Google Scholar] [CrossRef] [Green Version]
- Arena, F.; Gumina, B.; Lombardo, A.F.; Espro, C.; Patti, A.; Spadaro, L.; Spiccia, L. Nanostructured MnOx Catalysts in the Liquid Phase Selective Oxidation of Benzyl Alcohol with Oxygen: Part I. Effects of Ce and Fe Addition on Structure and Reactivity. Appl. Catal. B 2015, 162, 260–267. [Google Scholar] [CrossRef]
- Hao, X.; Jin, Z.; Yang, H.; Lu, G.; Bi, Y. Peculiar Synergetic Effect of MoS2 Quantum Dots and Graphene on Metal-Organic Frameworks for Photocatalytic Hydrogen Evolution. Appl. Catal. B 2017, 210, 45–56. [Google Scholar] [CrossRef]
- Ou, J.Z.; Chrimes, A.F.; Wang, Y.; Tang, S.Y.; Strano, M.S.; Kalantar-Zadeh, K. Ion-Driven Photoluminescence Modulation of Quasi-Two-Dimensional MoS2 Nanoflakes for Applications in Biological Systems. Nano Lett. 2014, 14, 857–863. [Google Scholar] [CrossRef]
- Hao, X.; Cui, Z.; Zhou, J.; Wang, Y.; Hu, Y.; Wang, Y.; Zou, Z. Architecture of High Efficient Zinc Vacancy Mediated Z-Scheme Photocatalyst from Metal-Organic Frameworks. Nano Energy 2018, 52, 105–116. [Google Scholar] [CrossRef]
- Wang, X.; Liu, G.; Chen, Z.G.; Li, F.; Wang, L.; Lu, G.Q.; Cheng, H.M. Enhanced Photocatalytic Hydrogen Evolution by Prolonging the Lifetime of Carriers in ZnO/CdS Heterostructures. Chem. Commun. 2009, 23, 3452–3454. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Xia, P.; Megerdich, N.; Fishman, D.A.; Vullev, V.I.; Tang, M.L. ZnS Shells Enhance Triplet Energy Transfer from CdSe Nanocrystals for Photon Upconversion. ACS Photonics 2018, 5, 3089–3096. [Google Scholar] [CrossRef]
- Wang, L.; Hu, Y.; Qi, F.; Ding, L.; Wang, J.; Zhang, X.; Liu, Q.; Liu, L.; Sun, H.; Qu, P. Anchoring Black Phosphorus Nanoparticles onto ZnS Porous Nanosheets: Efficient Photocatalyst Design and Charge Carrier Dynamics. ACS Appl. Mater. Interfaces 2020, 12, 8157–8167. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Du, C.; Bai, H.; Su, Y.; Wei, D.; Wang, Y.; Liu, G.; Yang, L. Fabrication of Plate-on-Plate Z-Scheme SnS2/Bi2MoO6 Heterojunction Photocatalysts with Enhanced Photocatalytic Activity. J. Mater. Sci. 2018, 53, 10743–10757. [Google Scholar] [CrossRef]
- Ge, S.; Zhang, L. Efficient Visible Light Driven Photocatalytic Removal of RhB and NO with Low Temperature Synthesized In(OH)XSy Hollow Nanocubes: A Comparative Study. Environ. Sci. Technol. 2011, 45, 3027–3033. [Google Scholar] [CrossRef]
- Yan, L.; Zhang, Z.; Li, G.; Xue, Y.; Xu, J. Evolution of the Microstructure, Texture and Mechanical Properties of ZK60 Alloy during Processing by Rotating Shear Extrusion. J. Alloys Compd. 2021, 877, 160229. [Google Scholar] [CrossRef]
- Masih, D.; Ma, Y.; Rohani, S. Graphitic C3N4 Based Noble-Metal-Free Photocatalyst Systems: A Review. Appl. Catal. B 2017, 206, 556–588. [Google Scholar] [CrossRef]
- Jiang, R.; Lu, G.; Liu, J.; Wu, D.; Yan, Z.; Wang, Y. Incorporation of π-Conjugated Molecules as Electron Donors in g-C3N4 Enhances Photocatalytic H2-Production. Renew. Energy 2021, 164, 531–540. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, C.; Ma, C.; Zhang, D.; Luo, Z.; Zhu, M.; Li, B.; Zhang, Y.; Wang, J. Construction of Direct Z−Scheme SnS2 Quantum Dots/Conjugated Polyimide with Superior Photocarrier Separation for Enhanced Photocatalytic Performances. Polymers 2022, 14, 5483. https://doi.org/10.3390/polym14245483
Yang C, Ma C, Zhang D, Luo Z, Zhu M, Li B, Zhang Y, Wang J. Construction of Direct Z−Scheme SnS2 Quantum Dots/Conjugated Polyimide with Superior Photocarrier Separation for Enhanced Photocatalytic Performances. Polymers. 2022; 14(24):5483. https://doi.org/10.3390/polym14245483
Chicago/Turabian StyleYang, Changqing, Chenghai Ma, Duoping Zhang, Zhiang Luo, Meitong Zhu, Binhao Li, Yuanyuan Zhang, and Jiawei Wang. 2022. "Construction of Direct Z−Scheme SnS2 Quantum Dots/Conjugated Polyimide with Superior Photocarrier Separation for Enhanced Photocatalytic Performances" Polymers 14, no. 24: 5483. https://doi.org/10.3390/polym14245483
APA StyleYang, C., Ma, C., Zhang, D., Luo, Z., Zhu, M., Li, B., Zhang, Y., & Wang, J. (2022). Construction of Direct Z−Scheme SnS2 Quantum Dots/Conjugated Polyimide with Superior Photocarrier Separation for Enhanced Photocatalytic Performances. Polymers, 14(24), 5483. https://doi.org/10.3390/polym14245483