A Comparative Study of Gamma-Ray Irradiation-Induced Oxidation: Polyethylene, Poly (Vinylidene Fluoride), and Polytetrafluoroethylene
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation and Radiation
2.2. Characterization
3. Results and Discussion
3.1. ATR-FTIR
3.2. XPS Analysis
3.3. XRD Analysis
3.4. Thermal Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Bhattacharya, A. Radiation and industrial polymers. Prog. Polym. Sci. 2000, 25, 371–401. [Google Scholar] [CrossRef]
- Darwis, D.; Abbas, E.B.; Nurlidar, F.; Putra, D.P. Radiation processing of polymers for medical and pharmaceutical applications. Macromol. Symp. 2015, 353, 15–23. [Google Scholar] [CrossRef]
- Jaganathan, S.K.; Balaji, A.; Vellayappan, M.V.; Subramanian, A.P.; John, A.A.; Asokan, M.K.; Supriyanto, E. Review: Radiation-induced surface modification of polymers for biomaterial application. J. Mater. Sci. 2015, 50, 2007–2018. [Google Scholar] [CrossRef]
- Yesappa, L.; Ashokkumar, S.P.; Vijeth, H.; Basappa, M.; Ganesh, S.; Devendrappa, H. Effect of electron beam irradiation on structure, morphology, and optical properties of PVDF-HFP/PEO blend polymer electrolyte films. J. Radioanal. Nucl. Chem. 2019, 322, 5–10. [Google Scholar] [CrossRef]
- Drobny, J.G. Ionizing Radiation and Polymers: Principles, Technology, and Applications; PDL Handbook Series; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Elshereafy, E.; Mohamed, M.A.; EL-Zayat, M.M.; El Miligy, A.A. Gamma radiation curing of nitrile rubber/high density polyethylene blends. J. Radioanal. Nucl. Chem. 2012, 293, 941–947. [Google Scholar] [CrossRef]
- Ashfaq, A.; Clochard, M.C.; Coqueret, X.; Dispenza, C.; Driscoll, M.S.; Ulański, P.; Al-Sheikhly, M. Polymerization reactions and modifications of polymers by ionizing radiation. Polymers 2020, 12, 2877. [Google Scholar] [CrossRef]
- Clough, R.L. High-energy radiation and polymers: A review of commercial processes and emerging applications. Nucl. Instrum. Methods Phys. Res. B 2001, 185, 8–33. [Google Scholar] [CrossRef]
- Aljoumaa, K.; Ajji, Z. Mechanical and electrical properties of gamma-irradiated silane crosslinked polyethylene (Si-XLPE). J. Radioanal. Nucl. Chem. 2016, 307, 1391–1399. [Google Scholar] [CrossRef]
- Rao, V. Radiation processing of polymers. Adv. Polym. Process. 2009, 3, 402–437. [Google Scholar]
- Naikwadi, A.T.; Sharma, B.K.; Bhatt, K.D.; Mahanwar, P.A. Gamma radiation processed polymeric materials for high performance applications: A review. Front. Chem. 2009, 10, 837111. [Google Scholar] [CrossRef]
- Bednarek, M.; Borska, K.; Kubisa, P. Crosslinking of polylactide by high energy irradiation and photo-curing. Molecules 2020, 25, 4919. [Google Scholar] [CrossRef]
- Yadegari, A.; Gohs, U.; Khonakdar, H.A.; Wagenknecht, U. Influence of post-irradiation conditions on crosslinking and oxidation of microporous polyethylene membrane. Radiat. Phys. Chem. 2022, 193, 109997. [Google Scholar] [CrossRef]
- Spadaro, G.; Alessi, S.; Dispenza, C. Applications of Ionizing Radiation in Materials Processing; Sun, Y., Chmielewski, A.G., Eds.; Institute of Nuclear Chemistry and Technology: Warsava, Poland, 2017. [Google Scholar]
- Mariani, M.; Consolati, G.; Quasso, F.; Lotti, N.; Munari, A.; Galletta, M.; Macerata, E. Effects of gamma irradiation on poly(ethylene isophthalate). J. Radioanal. Nucl. Chem. 2010, 286, 625–629. [Google Scholar] [CrossRef]
- Al-Ghamdi, H.; Farah, K.; Almuqrin, A.; Hosni, F. FTIR study of gamma and electron irradiated high-density polyethylene for high dose measurements. Nucl. Eng. Technol. 2022, 54, 255–261. [Google Scholar] [CrossRef]
- Moeza, A.A.; Aly, S.S.; Elshaer, Y.H. Effect of gamma radiation on low density polyethylene (LDPE) films: Optical, dielectric and FTIR studies. Spectrochim. Acta A 2012, 93, 203–207. [Google Scholar] [CrossRef]
- Kömmling, A.; Chatzigiannakis, E.; Beckmann, J.; Wachtendorf, V.; von der Ehe, K.; Braun, U.; Jaunich, M.; Schade, U.; Wolff, D. Discoloration effects of high-dose γ-irradiation and long-term thermal aging of (U)HMW-PE. Int. J. Polym. Sci. 2017, 2017, 1362491. [Google Scholar] [CrossRef] [Green Version]
- Saxena, P.; Shukla, P. A comprehensive review on fundamental properties and applications of poly (vinylidene fluoride)(PVDF). Adv. Compos. Hybrid Mater. 2021, 4, 8–26. [Google Scholar] [CrossRef]
- Saxena, P.; Shukla, P. A comparative analysis of the basic properties and applications of poly (vinylidene fluoride)(PVDF) and poly (methyl methacrylate)(PMMA). Polym. Bull. 2022, 79, 5635–5665. [Google Scholar] [CrossRef]
- Améduri, B.; Boutevin, B.; Kostov, G. Fluoroelastomers: Synthesis, properties and applications. Prog. Polym. Sci. 2001, 26, 105–187. [Google Scholar] [CrossRef]
- Lyons, B.J. Radiation crosslinking of fluoropolymers—A review. Radiat. Phys. Chem. 1995, 45, 159–174. [Google Scholar] [CrossRef]
- Dargaville, T.R.; Hill, D.J.T.; Whittaker, A.K. An ESR study of irradiated poly(tetrafluoroethylene-co-perfluoropropylvinylether)(PFA). Radiat. Phys. Chem. 2001, 62, 25–31. [Google Scholar] [CrossRef]
- Hill, D.J.T.; Thurecht, K.J.; Whittaker, A.K. New structure formation on γ-irradiation of poly(chlorotrifluoroethylene). Radiat. Phys. Chem. 2003, 67, 729–736. [Google Scholar] [CrossRef]
- Teng, H. Overview of the development of the fluoropolymer industry. Appl. Sci. 2012, 2, 496–512. [Google Scholar] [CrossRef] [Green Version]
- Forsythe, J.S.; Hill, D.J.T. The radiation chemistry of fluoropolymers. Prog. Polym. Sci. 2000, 25, 101–136. [Google Scholar] [CrossRef]
- Coote, C.F.; Hamilton, J.V.; McGimpsey, W.G.; Thompson, R.W. Oxidation of gamma-irradiated ultrahigh molecular weight polyethylene. J. Appl. Polym. Sci. 2000, 77, 2525–2542. [Google Scholar] [CrossRef]
- Batista, A.S.M.; Gual, M.R.; Pereira, C.; Faria, L.O. Influence of the dose rate in the PVDF degradation processes. In Proceedings of the 2015 International Nuclear Atlantic Conference, Sao Paulo, Brazi, 4–9 October 2015. [Google Scholar]
- Saidi-Amroun, N.; Mouaci, S.; Mezouar, A.; Saidi, M.; Griseri, V.; Teyssedre, G. Analysis of the gamma irradiation effect on PTFE films by FTIR and DSC. In Proceedings of the 2018 IEEE Conference on Electrical Insulation and Dielectric Phenomena, Cancun, Mexico, 21–24 October 2018; pp. 430–433. [Google Scholar]
- Keene, B.; Bourham, M.; Viswanath, V.; Avci, H.; Kotek, R. Characterization of degradation of polypropylene nonwovens irradiated by γ-ray. J. Appl. Polym. Sci. 2014, 131, 39917. [Google Scholar] [CrossRef]
- Rahaman, M.H.A.; Khandaker, M.U.; Khan, Z.R.; Kufian, M.Z.; Noor, I.S.M.; Arof, A.K. Effect of gamma irradiation on poly(vinyledene difluoride)–lithium bis(oxalato)borate electrolyte. Phys. Chem. Chem. Phys. 2014, 16, 11527–11537. [Google Scholar] [CrossRef] [Green Version]
- Gulmine, J.V.; Janissek, P.R.; Heise, H.M.; Akcelrud, L. Polyethylene characterization by FTIR. Polym. Test. 2002, 21, 557–563. [Google Scholar] [CrossRef]
- Daems, N.; Milis, S.; Verbeke, R.; Szymczyk, A.; Pescarmona, P.P.; Vankelecom, I.F.J. High-performance membranes with full pH stability. RSC Adv. 2018, 8, 8813–8827. [Google Scholar] [CrossRef] [Green Version]
- Oshima, A.; Ikeda, S.; Katoh, E.; Tabat, Y. Chemical structure and physical properties of radiation-induced crosslinking of polytetrafluoroethylene. Radiat. Phys. Chem. 2001, 62, 39–45. [Google Scholar] [CrossRef]
- Legeay, G.; Coudreuse, A.; Legeais, J.M.; Werner, L.; Bulou, A.; Buzaré, J.Y.; Emery, J.; Silly, G. AF fluoropolymer for optical use: Spectroscopic and surface energy studies; comparison with other fluoropolymers. Eur. Polym. J. 1998, 34, 1457–1465. [Google Scholar] [CrossRef]
- Khatipov, S.A.; Nurmukhametov, R.N.; Sakhno, Y.E.; Klimenko, V.G.; Seliverstov, D.I.; Sychkova, S.T.; Sakhno, T.V. Color and fluorescence of polytetrafluoroethylene treated by γ-irradiation near the melting point. Nucl. Instrum. Meth. B 2011, 269, 2600–2604. [Google Scholar] [CrossRef]
- Liu, S.; Fu, C.; Gu, A.; Yu, Z. Structural changes of polytetrafluoroethylene during irradiation in oxygen. Radiat. Phys. Chem. 2015, 109, 1–5. [Google Scholar] [CrossRef]
- Ibrahim, M.; Mahmoud, A.; Osman, O.; Refaat, A.; El-Sayed, E.S.M. Molecular spectroscopic analysis of nano-chitosan blend as biosensor. Spectrochim. Acta A 2010, 77, 802–806. [Google Scholar] [CrossRef]
- Jaleh, B.; Gavary, N.; Fakhri, P.; Muensit, N.; Taheri, S.M. Characteristics of PVDF membranes irradiated by electron beam. Membranes 2015, 5, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.; Ni, Z.; Liu, Y. The investigation of the structural change and the wetting behavior of electron beam irradiated PTFE film. e-Polymers 2016, 16, 111–115. [Google Scholar]
- Brzhezinskaya, M.M.; Morilova, V.M.; Baitinger, E.M.; Evsyukov, S.E.; Pesin, L.A. Study of poly(vinylidene fluoride) radiative modification using core level spectroscopy. Polym. Degrad. Stabil. 2014, 99, 176–179. [Google Scholar] [CrossRef]
- Chebotaryov, S.S.; Baitinger, E.M.; Volegov, A.A.; Margamov, I.G.; Gribov, I.V.; Moskvina, N.A.; Kuznetsov, V.L.; Evsyukov, S.E.; Pesin, L.A. Radiative defluorination of poly(vinylidene fluoride) under soft X-ray radiation. Radiat. Phys. Chem. 2006, 75, 2024–2028. [Google Scholar] [CrossRef]
- Lee, B.M.; Bui, V.T.; Lee, H.S.; Hong, S.K.; Choi, H.S.; Choi, J.H. Fabrication of hexagonally-arranged porous carbon films by proton beam irradiation and carbonization. Radiat. Phys. Chem. 2019, 163, 18–21. [Google Scholar] [CrossRef]
- Viswanath, P.; Yoshimura, M. Light-induced reversible phase transition in polyvinylidene fluoride-based nanocomposites. SN Appl. Sci. 2019, 1, 1519. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Liu, S.; Man, B.; Xie, C.; Chen, D.; Wang, D.; Ye, T.; Liu, M. Analysis by using X-ray photoelectron spectroscopy for polymethyl methacrylate and polytetrafluoroethylene etched by KrF excimer laser. Appl. Surf. Sci. 2007, 253, 3122–3126. [Google Scholar] [CrossRef]
- Bartnik, A.; Lisowski, W.; Sobczak, J.; Wachulak, P.; Budner, B.; Korczyc, B.; Fiedorowicz, H. Simultaneous treatment of polymer surface by EUV radiation and ionized nitrogen. Appl. Phys. A 2012, 109, 39–43. [Google Scholar] [CrossRef]
- Akashi, N.; Kuroda, S. Protein immobilization onto poly (vinylidene fluoride) microporous membranes activated by the atmospheric pressure low temperature plasma. Polymer 2014, 55, 2780–2791. [Google Scholar] [CrossRef] [Green Version]
- Park, Y.W.; Inagaki, N. A new approach for selective surface modification of fluoropolymers by remote plasmas. J. Appl. Polym. Sci. 2004, 93, 1012–1020. [Google Scholar] [CrossRef]
- Perry, C.C.; Wagner, A.J.; Fairbrother, D.H. Electron stimulated C–F bond breaking kinetics in fluorine-containing organic thin films. Chem. Phys. 2002, 280, 111–118. [Google Scholar] [CrossRef]
- Benabid, F.Z.; Kharchi, N.; Zouai, F.; Mourad, A.H.I.; Benachour, D. Impact of co-mixing technique and surface modification of ZnO nanoparticles using stearic acid on their dispersion into HDPE to produce HDPE/ZnO nanocomposites. Polym. Polym. Compos. 2019, 27, 389–399. [Google Scholar] [CrossRef]
- Wu, T.; Zhou, B.; Zhu, T.; Shi, J.; Xu, Z.; Hu, C.; Wang, J. Facile and low-cost approach towards a PVDF ultrafiltration membrane with enhanced hydrophilicity and antifouling performance via graphene oxide/water-bath coagulation. RSC Adv. 2015, 5, 7880–7889. [Google Scholar] [CrossRef]
- Si, J.; Ma, R.; Wu, Y.; Dong, Y.; Yao, K. Microstructure and magnetic properties of novel powder cores composed of iron-based amorphous alloy and PTFE. J. Mater. Sci. 2022, 57, 8154–8166. [Google Scholar] [CrossRef]
- Tamada, M. Radiation processing of polymers and its applications. In Radiation Applications; Springer: Singapore, 2018; pp. 63–80. [Google Scholar]
- Medeiros, A.S.; Gual, M.R.; Pereira, C.; Faria, L.O. Thermal analysis for study of the gamma radiation effects in poly (vinylidene fluoride). Radiat. Phys. Chem. 2015, 116, 345–348. [Google Scholar] [CrossRef]
- Ewais, A.M.R.; Rowe, R.K. Effect of aging on the stress crack resistance of an HDPE geomembrane. Polym. Degrad. Stab. 2014, 109, 194–208. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shim, H.-E.; Lee, B.-M.; Lim, D.-H.; Nam, Y.-R.; Choi, P.-S.; Gwon, H.-J. A Comparative Study of Gamma-Ray Irradiation-Induced Oxidation: Polyethylene, Poly (Vinylidene Fluoride), and Polytetrafluoroethylene. Polymers 2022, 14, 4570. https://doi.org/10.3390/polym14214570
Shim H-E, Lee B-M, Lim D-H, Nam Y-R, Choi P-S, Gwon H-J. A Comparative Study of Gamma-Ray Irradiation-Induced Oxidation: Polyethylene, Poly (Vinylidene Fluoride), and Polytetrafluoroethylene. Polymers. 2022; 14(21):4570. https://doi.org/10.3390/polym14214570
Chicago/Turabian StyleShim, Ha-Eun, Byoung-Min Lee, Dae-Hee Lim, You-Ree Nam, Pyung-Seok Choi, and Hui-Jeong Gwon. 2022. "A Comparative Study of Gamma-Ray Irradiation-Induced Oxidation: Polyethylene, Poly (Vinylidene Fluoride), and Polytetrafluoroethylene" Polymers 14, no. 21: 4570. https://doi.org/10.3390/polym14214570
APA StyleShim, H.-E., Lee, B.-M., Lim, D.-H., Nam, Y.-R., Choi, P.-S., & Gwon, H.-J. (2022). A Comparative Study of Gamma-Ray Irradiation-Induced Oxidation: Polyethylene, Poly (Vinylidene Fluoride), and Polytetrafluoroethylene. Polymers, 14(21), 4570. https://doi.org/10.3390/polym14214570